Properties

Label 384.6.d
Level $384$
Weight $6$
Character orbit 384.d
Rep. character $\chi_{384}(193,\cdot)$
Character field $\Q$
Dimension $40$
Newform subspaces $10$
Sturm bound $384$
Trace bound $7$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 384 = 2^{7} \cdot 3 \)
Weight: \( k \) \(=\) \( 6 \)
Character orbit: \([\chi]\) \(=\) 384.d (of order \(2\) and degree \(1\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 8 \)
Character field: \(\Q\)
Newform subspaces: \( 10 \)
Sturm bound: \(384\)
Trace bound: \(7\)
Distinguishing \(T_p\): \(5\), \(7\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{6}(384, [\chi])\).

Total New Old
Modular forms 336 40 296
Cusp forms 304 40 264
Eisenstein series 32 0 32

Trace form

\( 40 q - 3240 q^{9} + O(q^{10}) \) \( 40 q - 3240 q^{9} - 1616 q^{17} - 37464 q^{25} - 9904 q^{41} + 154568 q^{49} + 51552 q^{57} - 236864 q^{65} + 149840 q^{73} + 262440 q^{81} - 421392 q^{89} - 352016 q^{97} + O(q^{100}) \)

Decomposition of \(S_{6}^{\mathrm{new}}(384, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field CM Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
384.6.d.a 384.d 8.b $2$ $61.587$ \(\Q(\sqrt{-1}) \) None \(0\) \(0\) \(0\) \(-424\) $\mathrm{SU}(2)[C_{2}]$ \(q+9iq^{3}+96iq^{5}-212q^{7}-3^{4}q^{9}+\cdots\)
384.6.d.b 384.d 8.b $2$ $61.587$ \(\Q(\sqrt{-1}) \) None \(0\) \(0\) \(0\) \(-136\) $\mathrm{SU}(2)[C_{2}]$ \(q-9iq^{3}+24iq^{5}-68q^{7}-3^{4}q^{9}+\cdots\)
384.6.d.c 384.d 8.b $2$ $61.587$ \(\Q(\sqrt{-1}) \) None \(0\) \(0\) \(0\) \(-72\) $\mathrm{SU}(2)[C_{2}]$ \(q-9iq^{3}+80iq^{5}-6^{2}q^{7}-3^{4}q^{9}+\cdots\)
384.6.d.d 384.d 8.b $2$ $61.587$ \(\Q(\sqrt{-1}) \) None \(0\) \(0\) \(0\) \(72\) $\mathrm{SU}(2)[C_{2}]$ \(q+9iq^{3}+80iq^{5}+6^{2}q^{7}-3^{4}q^{9}+\cdots\)
384.6.d.e 384.d 8.b $2$ $61.587$ \(\Q(\sqrt{-1}) \) None \(0\) \(0\) \(0\) \(136\) $\mathrm{SU}(2)[C_{2}]$ \(q+9iq^{3}+24iq^{5}+68q^{7}-3^{4}q^{9}+\cdots\)
384.6.d.f 384.d 8.b $2$ $61.587$ \(\Q(\sqrt{-1}) \) None \(0\) \(0\) \(0\) \(424\) $\mathrm{SU}(2)[C_{2}]$ \(q-9iq^{3}+96iq^{5}+212q^{7}-3^{4}q^{9}+\cdots\)
384.6.d.g 384.d 8.b $4$ $61.587$ \(\Q(i, \sqrt{61})\) None \(0\) \(0\) \(0\) \(-32\) $\mathrm{SU}(2)[C_{2}]$ \(q+9\beta _{1}q^{3}+(-20\beta _{1}+\beta _{2})q^{5}+(-8+\cdots)q^{7}+\cdots\)
384.6.d.h 384.d 8.b $4$ $61.587$ \(\Q(i, \sqrt{61})\) None \(0\) \(0\) \(0\) \(32\) $\mathrm{SU}(2)[C_{2}]$ \(q-9\beta _{1}q^{3}+(-20\beta _{1}+\beta _{2})q^{5}+(8-5\beta _{3})q^{7}+\cdots\)
384.6.d.i 384.d 8.b $8$ $61.587$ 8.0.110166016.2 None \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q-\beta _{2}q^{3}+\beta _{4}q^{5}+\beta _{5}q^{7}-3^{4}q^{9}+\cdots\)
384.6.d.j 384.d 8.b $12$ $61.587$ \(\mathbb{Q}[x]/(x^{12} + \cdots)\) None \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q+\beta _{6}q^{3}+\beta _{8}q^{5}+\beta _{4}q^{7}-3^{4}q^{9}+\cdots\)

Decomposition of \(S_{6}^{\mathrm{old}}(384, [\chi])\) into lower level spaces

\( S_{6}^{\mathrm{old}}(384, [\chi]) \cong \)