Properties

Label 384.5.h.d.65.1
Level $384$
Weight $5$
Character 384.65
Self dual yes
Analytic conductor $39.694$
Analytic rank $0$
Dimension $2$
CM discriminant -24
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [384,5,Mod(65,384)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(384, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 1, 1]))
 
N = Newforms(chi, 5, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("384.65");
 
S:= CuspForms(chi, 5);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 384 = 2^{7} \cdot 3 \)
Weight: \( k \) \(=\) \( 5 \)
Character orbit: \([\chi]\) \(=\) 384.h (of order \(2\), degree \(1\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(39.6940658242\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{6}) \)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - 6 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 2^{3} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{U}(1)[D_{2}]$

Embedding invariants

Embedding label 65.1
Root \(-2.44949\) of defining polynomial
Character \(\chi\) \(=\) 384.65

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+9.00000 q^{3} -19.5959 q^{5} -97.9796 q^{7} +81.0000 q^{9} +O(q^{10})\) \(q+9.00000 q^{3} -19.5959 q^{5} -97.9796 q^{7} +81.0000 q^{9} +142.000 q^{11} -176.363 q^{15} -881.816 q^{21} -241.000 q^{25} +729.000 q^{27} +1469.69 q^{29} +1861.61 q^{31} +1278.00 q^{33} +1920.00 q^{35} -1587.27 q^{45} +7199.00 q^{49} +4605.04 q^{53} -2782.62 q^{55} -6862.00 q^{59} -7936.35 q^{63} +8158.00 q^{73} -2169.00 q^{75} -13913.1 q^{77} +8524.22 q^{79} +6561.00 q^{81} -4178.00 q^{83} +13227.2 q^{87} +16754.5 q^{93} +17282.0 q^{97} +11502.0 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q + 18 q^{3} + 162 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 2 q + 18 q^{3} + 162 q^{9} + 284 q^{11} - 482 q^{25} + 1458 q^{27} + 2556 q^{33} + 3840 q^{35} + 14398 q^{49} - 13724 q^{59} + 16316 q^{73} - 4338 q^{75} + 13122 q^{81} - 8356 q^{83} + 34564 q^{97} + 23004 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/384\mathbb{Z}\right)^\times\).

\(n\) \(127\) \(133\) \(257\)
\(\chi(n)\) \(1\) \(-1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 9.00000 1.00000
\(4\) 0 0
\(5\) −19.5959 −0.783837 −0.391918 0.920000i \(-0.628188\pi\)
−0.391918 + 0.920000i \(0.628188\pi\)
\(6\) 0 0
\(7\) −97.9796 −1.99958 −0.999792 0.0204082i \(-0.993503\pi\)
−0.999792 + 0.0204082i \(0.993503\pi\)
\(8\) 0 0
\(9\) 81.0000 1.00000
\(10\) 0 0
\(11\) 142.000 1.17355 0.586777 0.809749i \(-0.300397\pi\)
0.586777 + 0.809749i \(0.300397\pi\)
\(12\) 0 0
\(13\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(14\) 0 0
\(15\) −176.363 −0.783837
\(16\) 0 0
\(17\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(18\) 0 0
\(19\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(20\) 0 0
\(21\) −881.816 −1.99958
\(22\) 0 0
\(23\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(24\) 0 0
\(25\) −241.000 −0.385600
\(26\) 0 0
\(27\) 729.000 1.00000
\(28\) 0 0
\(29\) 1469.69 1.74756 0.873778 0.486326i \(-0.161663\pi\)
0.873778 + 0.486326i \(0.161663\pi\)
\(30\) 0 0
\(31\) 1861.61 1.93716 0.968581 0.248699i \(-0.0800031\pi\)
0.968581 + 0.248699i \(0.0800031\pi\)
\(32\) 0 0
\(33\) 1278.00 1.17355
\(34\) 0 0
\(35\) 1920.00 1.56735
\(36\) 0 0
\(37\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(42\) 0 0
\(43\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(44\) 0 0
\(45\) −1587.27 −0.783837
\(46\) 0 0
\(47\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(48\) 0 0
\(49\) 7199.00 2.99833
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) 4605.04 1.63939 0.819694 0.572802i \(-0.194143\pi\)
0.819694 + 0.572802i \(0.194143\pi\)
\(54\) 0 0
\(55\) −2782.62 −0.919874
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) −6862.00 −1.97127 −0.985636 0.168882i \(-0.945984\pi\)
−0.985636 + 0.168882i \(0.945984\pi\)
\(60\) 0 0
\(61\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(62\) 0 0
\(63\) −7936.35 −1.99958
\(64\) 0 0
\(65\) 0 0
\(66\) 0 0
\(67\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(72\) 0 0
\(73\) 8158.00 1.53087 0.765434 0.643514i \(-0.222524\pi\)
0.765434 + 0.643514i \(0.222524\pi\)
\(74\) 0 0
\(75\) −2169.00 −0.385600
\(76\) 0 0
\(77\) −13913.1 −2.34662
\(78\) 0 0
\(79\) 8524.22 1.36584 0.682921 0.730492i \(-0.260709\pi\)
0.682921 + 0.730492i \(0.260709\pi\)
\(80\) 0 0
\(81\) 6561.00 1.00000
\(82\) 0 0
\(83\) −4178.00 −0.606474 −0.303237 0.952915i \(-0.598067\pi\)
−0.303237 + 0.952915i \(0.598067\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) 0 0
\(87\) 13227.2 1.74756
\(88\) 0 0
\(89\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(90\) 0 0
\(91\) 0 0
\(92\) 0 0
\(93\) 16754.5 1.93716
\(94\) 0 0
\(95\) 0 0
\(96\) 0 0
\(97\) 17282.0 1.83675 0.918376 0.395709i \(-0.129501\pi\)
0.918376 + 0.395709i \(0.129501\pi\)
\(98\) 0 0
\(99\) 11502.0 1.17355
\(100\) 0 0
\(101\) −13031.3 −1.27745 −0.638726 0.769434i \(-0.720538\pi\)
−0.638726 + 0.769434i \(0.720538\pi\)
\(102\) 0 0
\(103\) −2057.57 −0.193946 −0.0969729 0.995287i \(-0.530916\pi\)
−0.0969729 + 0.995287i \(0.530916\pi\)
\(104\) 0 0
\(105\) 17280.0 1.56735
\(106\) 0 0
\(107\) −15502.0 −1.35400 −0.677002 0.735981i \(-0.736721\pi\)
−0.677002 + 0.735981i \(0.736721\pi\)
\(108\) 0 0
\(109\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) 0 0
\(120\) 0 0
\(121\) 5523.00 0.377228
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) 16970.1 1.08608
\(126\) 0 0
\(127\) −24788.8 −1.53691 −0.768455 0.639903i \(-0.778974\pi\)
−0.768455 + 0.639903i \(0.778974\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) 28178.0 1.64198 0.820989 0.570943i \(-0.193422\pi\)
0.820989 + 0.570943i \(0.193422\pi\)
\(132\) 0 0
\(133\) 0 0
\(134\) 0 0
\(135\) −14285.4 −0.783837
\(136\) 0 0
\(137\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(138\) 0 0
\(139\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) 0 0
\(144\) 0 0
\(145\) −28800.0 −1.36980
\(146\) 0 0
\(147\) 64791.0 2.99833
\(148\) 0 0
\(149\) 19889.9 0.895899 0.447950 0.894059i \(-0.352154\pi\)
0.447950 + 0.894059i \(0.352154\pi\)
\(150\) 0 0
\(151\) −14599.0 −0.640277 −0.320139 0.947371i \(-0.603729\pi\)
−0.320139 + 0.947371i \(0.603729\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) −36480.0 −1.51842
\(156\) 0 0
\(157\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(158\) 0 0
\(159\) 41445.4 1.63939
\(160\) 0 0
\(161\) 0 0
\(162\) 0 0
\(163\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(164\) 0 0
\(165\) −25043.6 −0.919874
\(166\) 0 0
\(167\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(168\) 0 0
\(169\) 28561.0 1.00000
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) −15774.7 −0.527071 −0.263536 0.964650i \(-0.584889\pi\)
−0.263536 + 0.964650i \(0.584889\pi\)
\(174\) 0 0
\(175\) 23613.1 0.771039
\(176\) 0 0
\(177\) −61758.0 −1.97127
\(178\) 0 0
\(179\) −11182.0 −0.348990 −0.174495 0.984658i \(-0.555829\pi\)
−0.174495 + 0.984658i \(0.555829\pi\)
\(180\) 0 0
\(181\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) 0 0
\(186\) 0 0
\(187\) 0 0
\(188\) 0 0
\(189\) −71427.1 −1.99958
\(190\) 0 0
\(191\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(192\) 0 0
\(193\) −9602.00 −0.257779 −0.128889 0.991659i \(-0.541141\pi\)
−0.128889 + 0.991659i \(0.541141\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) 66528.1 1.71425 0.857123 0.515112i \(-0.172250\pi\)
0.857123 + 0.515112i \(0.172250\pi\)
\(198\) 0 0
\(199\) 69271.6 1.74924 0.874619 0.484811i \(-0.161112\pi\)
0.874619 + 0.484811i \(0.161112\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) −144000. −3.49438
\(204\) 0 0
\(205\) 0 0
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) 0 0
\(210\) 0 0
\(211\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) 0 0
\(216\) 0 0
\(217\) −182400. −3.87352
\(218\) 0 0
\(219\) 73422.0 1.53087
\(220\) 0 0
\(221\) 0 0
\(222\) 0 0
\(223\) −87887.7 −1.76733 −0.883666 0.468117i \(-0.844933\pi\)
−0.883666 + 0.468117i \(0.844933\pi\)
\(224\) 0 0
\(225\) −19521.0 −0.385600
\(226\) 0 0
\(227\) −16658.0 −0.323274 −0.161637 0.986850i \(-0.551677\pi\)
−0.161637 + 0.986850i \(0.551677\pi\)
\(228\) 0 0
\(229\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(230\) 0 0
\(231\) −125218. −2.34662
\(232\) 0 0
\(233\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(234\) 0 0
\(235\) 0 0
\(236\) 0 0
\(237\) 76718.0 1.36584
\(238\) 0 0
\(239\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(240\) 0 0
\(241\) −29762.0 −0.512422 −0.256211 0.966621i \(-0.582474\pi\)
−0.256211 + 0.966621i \(0.582474\pi\)
\(242\) 0 0
\(243\) 59049.0 1.00000
\(244\) 0 0
\(245\) −141071. −2.35020
\(246\) 0 0
\(247\) 0 0
\(248\) 0 0
\(249\) −37602.0 −0.606474
\(250\) 0 0
\(251\) −94898.0 −1.50629 −0.753147 0.657853i \(-0.771465\pi\)
−0.753147 + 0.657853i \(0.771465\pi\)
\(252\) 0 0
\(253\) 0 0
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(258\) 0 0
\(259\) 0 0
\(260\) 0 0
\(261\) 119045. 1.74756
\(262\) 0 0
\(263\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(264\) 0 0
\(265\) −90240.0 −1.28501
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) 139033. 1.92138 0.960690 0.277622i \(-0.0895462\pi\)
0.960690 + 0.277622i \(0.0895462\pi\)
\(270\) 0 0
\(271\) 31255.5 0.425586 0.212793 0.977097i \(-0.431744\pi\)
0.212793 + 0.977097i \(0.431744\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) −34222.0 −0.452522
\(276\) 0 0
\(277\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(278\) 0 0
\(279\) 150791. 1.93716
\(280\) 0 0
\(281\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(282\) 0 0
\(283\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 0 0
\(288\) 0 0
\(289\) 83521.0 1.00000
\(290\) 0 0
\(291\) 155538. 1.83675
\(292\) 0 0
\(293\) −170191. −1.98244 −0.991220 0.132221i \(-0.957789\pi\)
−0.991220 + 0.132221i \(0.957789\pi\)
\(294\) 0 0
\(295\) 134467. 1.54516
\(296\) 0 0
\(297\) 103518. 1.17355
\(298\) 0 0
\(299\) 0 0
\(300\) 0 0
\(301\) 0 0
\(302\) 0 0
\(303\) −117282. −1.27745
\(304\) 0 0
\(305\) 0 0
\(306\) 0 0
\(307\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(308\) 0 0
\(309\) −18518.1 −0.193946
\(310\) 0 0
\(311\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(312\) 0 0
\(313\) −84962.0 −0.867234 −0.433617 0.901097i \(-0.642763\pi\)
−0.433617 + 0.901097i \(0.642763\pi\)
\(314\) 0 0
\(315\) 155520. 1.56735
\(316\) 0 0
\(317\) −179989. −1.79113 −0.895563 0.444934i \(-0.853227\pi\)
−0.895563 + 0.444934i \(0.853227\pi\)
\(318\) 0 0
\(319\) 208697. 2.05085
\(320\) 0 0
\(321\) −139518. −1.35400
\(322\) 0 0
\(323\) 0 0
\(324\) 0 0
\(325\) 0 0
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) 0 0
\(330\) 0 0
\(331\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) 0 0
\(336\) 0 0
\(337\) 191038. 1.68213 0.841066 0.540933i \(-0.181929\pi\)
0.841066 + 0.540933i \(0.181929\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) 264349. 2.27336
\(342\) 0 0
\(343\) −470106. −3.99584
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) 229582. 1.90668 0.953342 0.301891i \(-0.0976180\pi\)
0.953342 + 0.301891i \(0.0976180\pi\)
\(348\) 0 0
\(349\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(360\) 0 0
\(361\) 130321. 1.00000
\(362\) 0 0
\(363\) 49707.0 0.377228
\(364\) 0 0
\(365\) −159863. −1.19995
\(366\) 0 0
\(367\) −132174. −0.981331 −0.490665 0.871348i \(-0.663246\pi\)
−0.490665 + 0.871348i \(0.663246\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) −451200. −3.27809
\(372\) 0 0
\(373\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(374\) 0 0
\(375\) 152731. 1.08608
\(376\) 0 0
\(377\) 0 0
\(378\) 0 0
\(379\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(380\) 0 0
\(381\) −223100. −1.53691
\(382\) 0 0
\(383\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(384\) 0 0
\(385\) 272640. 1.83937
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) 143344. 0.947285 0.473643 0.880717i \(-0.342939\pi\)
0.473643 + 0.880717i \(0.342939\pi\)
\(390\) 0 0
\(391\) 0 0
\(392\) 0 0
\(393\) 253602. 1.64198
\(394\) 0 0
\(395\) −167040. −1.07060
\(396\) 0 0
\(397\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(402\) 0 0
\(403\) 0 0
\(404\) 0 0
\(405\) −128569. −0.783837
\(406\) 0 0
\(407\) 0 0
\(408\) 0 0
\(409\) 180962. 1.08178 0.540892 0.841092i \(-0.318087\pi\)
0.540892 + 0.841092i \(0.318087\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) 672336. 3.94172
\(414\) 0 0
\(415\) 81871.7 0.475377
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) −181778. −1.03541 −0.517706 0.855559i \(-0.673214\pi\)
−0.517706 + 0.855559i \(0.673214\pi\)
\(420\) 0 0
\(421\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) 0 0
\(426\) 0 0
\(427\) 0 0
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(432\) 0 0
\(433\) 73922.0 0.394274 0.197137 0.980376i \(-0.436836\pi\)
0.197137 + 0.980376i \(0.436836\pi\)
\(434\) 0 0
\(435\) −259200. −1.36980
\(436\) 0 0
\(437\) 0 0
\(438\) 0 0
\(439\) 231526. 1.20135 0.600676 0.799493i \(-0.294898\pi\)
0.600676 + 0.799493i \(0.294898\pi\)
\(440\) 0 0
\(441\) 583119. 2.99833
\(442\) 0 0
\(443\) 385102. 1.96231 0.981157 0.193214i \(-0.0618912\pi\)
0.981157 + 0.193214i \(0.0618912\pi\)
\(444\) 0 0
\(445\) 0 0
\(446\) 0 0
\(447\) 179009. 0.895899
\(448\) 0 0
\(449\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(450\) 0 0
\(451\) 0 0
\(452\) 0 0
\(453\) −131391. −0.640277
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) −136798. −0.655009 −0.327505 0.944850i \(-0.606208\pi\)
−0.327505 + 0.944850i \(0.606208\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) −399855. −1.88148 −0.940742 0.339124i \(-0.889869\pi\)
−0.940742 + 0.339124i \(0.889869\pi\)
\(462\) 0 0
\(463\) 222904. 1.03981 0.519906 0.854223i \(-0.325967\pi\)
0.519906 + 0.854223i \(0.325967\pi\)
\(464\) 0 0
\(465\) −328320. −1.51842
\(466\) 0 0
\(467\) 34222.0 0.156918 0.0784588 0.996917i \(-0.475000\pi\)
0.0784588 + 0.996917i \(0.475000\pi\)
\(468\) 0 0
\(469\) 0 0
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) 0 0
\(474\) 0 0
\(475\) 0 0
\(476\) 0 0
\(477\) 373008. 1.63939
\(478\) 0 0
\(479\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(480\) 0 0
\(481\) 0 0
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) −338657. −1.43971
\(486\) 0 0
\(487\) −85536.2 −0.360655 −0.180327 0.983607i \(-0.557716\pi\)
−0.180327 + 0.983607i \(0.557716\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) −261262. −1.08371 −0.541855 0.840472i \(-0.682278\pi\)
−0.541855 + 0.840472i \(0.682278\pi\)
\(492\) 0 0
\(493\) 0 0
\(494\) 0 0
\(495\) −225392. −0.919874
\(496\) 0 0
\(497\) 0 0
\(498\) 0 0
\(499\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(504\) 0 0
\(505\) 255360. 1.00131
\(506\) 0 0
\(507\) 257049. 1.00000
\(508\) 0 0
\(509\) −128647. −0.496552 −0.248276 0.968689i \(-0.579864\pi\)
−0.248276 + 0.968689i \(0.579864\pi\)
\(510\) 0 0
\(511\) −799317. −3.06110
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) 40320.0 0.152022
\(516\) 0 0
\(517\) 0 0
\(518\) 0 0
\(519\) −141972. −0.527071
\(520\) 0 0
\(521\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(522\) 0 0
\(523\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(524\) 0 0
\(525\) 212518. 0.771039
\(526\) 0 0
\(527\) 0 0
\(528\) 0 0
\(529\) 279841. 1.00000
\(530\) 0 0
\(531\) −555822. −1.97127
\(532\) 0 0
\(533\) 0 0
\(534\) 0 0
\(535\) 303776. 1.06132
\(536\) 0 0
\(537\) −100638. −0.348990
\(538\) 0 0
\(539\) 1.02226e6 3.51871
\(540\) 0 0
\(541\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) 0 0
\(546\) 0 0
\(547\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) 0 0
\(552\) 0 0
\(553\) −835200. −2.73112
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) −582097. −1.87622 −0.938112 0.346331i \(-0.887427\pi\)
−0.938112 + 0.346331i \(0.887427\pi\)
\(558\) 0 0
\(559\) 0 0
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) 527662. 1.66471 0.832356 0.554242i \(-0.186992\pi\)
0.832356 + 0.554242i \(0.186992\pi\)
\(564\) 0 0
\(565\) 0 0
\(566\) 0 0
\(567\) −642844. −1.99958
\(568\) 0 0
\(569\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(570\) 0 0
\(571\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) 0 0
\(576\) 0 0
\(577\) 581758. 1.74739 0.873697 0.486471i \(-0.161716\pi\)
0.873697 + 0.486471i \(0.161716\pi\)
\(578\) 0 0
\(579\) −86418.0 −0.257779
\(580\) 0 0
\(581\) 409359. 1.21270
\(582\) 0 0
\(583\) 653916. 1.92391
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) 74738.0 0.216903 0.108451 0.994102i \(-0.465411\pi\)
0.108451 + 0.994102i \(0.465411\pi\)
\(588\) 0 0
\(589\) 0 0
\(590\) 0 0
\(591\) 598753. 1.71425
\(592\) 0 0
\(593\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0 0
\(597\) 623444. 1.74924
\(598\) 0 0
\(599\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(600\) 0 0
\(601\) −712802. −1.97342 −0.986711 0.162485i \(-0.948049\pi\)
−0.986711 + 0.162485i \(0.948049\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) −108228. −0.295685
\(606\) 0 0
\(607\) 708098. 1.92184 0.960918 0.276833i \(-0.0892850\pi\)
0.960918 + 0.276833i \(0.0892850\pi\)
\(608\) 0 0
\(609\) −1.29600e6 −3.49438
\(610\) 0 0
\(611\) 0 0
\(612\) 0 0
\(613\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(618\) 0 0
\(619\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) 0 0
\(624\) 0 0
\(625\) −181919. −0.465713
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) 0 0
\(630\) 0 0
\(631\) 303247. 0.761619 0.380809 0.924654i \(-0.375645\pi\)
0.380809 + 0.924654i \(0.375645\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) 485760. 1.20469
\(636\) 0 0
\(637\) 0 0
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(642\) 0 0
\(643\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(648\) 0 0
\(649\) −974404. −2.31339
\(650\) 0 0
\(651\) −1.64160e6 −3.87352
\(652\) 0 0
\(653\) 837823. 1.96484 0.982418 0.186696i \(-0.0597780\pi\)
0.982418 + 0.186696i \(0.0597780\pi\)
\(654\) 0 0
\(655\) −552174. −1.28704
\(656\) 0 0
\(657\) 660798. 1.53087
\(658\) 0 0
\(659\) −335662. −0.772914 −0.386457 0.922307i \(-0.626301\pi\)
−0.386457 + 0.922307i \(0.626301\pi\)
\(660\) 0 0
\(661\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) 0 0
\(666\) 0 0
\(667\) 0 0
\(668\) 0 0
\(669\) −790989. −1.76733
\(670\) 0 0
\(671\) 0 0
\(672\) 0 0
\(673\) −869758. −1.92030 −0.960148 0.279491i \(-0.909834\pi\)
−0.960148 + 0.279491i \(0.909834\pi\)
\(674\) 0 0
\(675\) −175689. −0.385600
\(676\) 0 0
\(677\) 197821. 0.431613 0.215807 0.976436i \(-0.430762\pi\)
0.215807 + 0.976436i \(0.430762\pi\)
\(678\) 0 0
\(679\) −1.69328e6 −3.67274
\(680\) 0 0
\(681\) −149922. −0.323274
\(682\) 0 0
\(683\) −846578. −1.81479 −0.907393 0.420282i \(-0.861931\pi\)
−0.907393 + 0.420282i \(0.861931\pi\)
\(684\) 0 0
\(685\) 0 0
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) 0 0
\(690\) 0 0
\(691\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(692\) 0 0
\(693\) −1.12696e6 −2.34662
\(694\) 0 0
\(695\) 0 0
\(696\) 0 0
\(697\) 0 0
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) 70055.4 0.142563 0.0712813 0.997456i \(-0.477291\pi\)
0.0712813 + 0.997456i \(0.477291\pi\)
\(702\) 0 0
\(703\) 0 0
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) 1.27680e6 2.55437
\(708\) 0 0
\(709\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(710\) 0 0
\(711\) 690462. 1.36584
\(712\) 0 0
\(713\) 0 0
\(714\) 0 0
\(715\) 0 0
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(720\) 0 0
\(721\) 201600. 0.387811
\(722\) 0 0
\(723\) −267858. −0.512422
\(724\) 0 0
\(725\) −354196. −0.673857
\(726\) 0 0
\(727\) 156277. 0.295684 0.147842 0.989011i \(-0.452767\pi\)
0.147842 + 0.989011i \(0.452767\pi\)
\(728\) 0 0
\(729\) 531441. 1.00000
\(730\) 0 0
\(731\) 0 0
\(732\) 0 0
\(733\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(734\) 0 0
\(735\) −1.26964e6 −2.35020
\(736\) 0 0
\(737\) 0 0
\(738\) 0 0
\(739\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(744\) 0 0
\(745\) −389760. −0.702239
\(746\) 0 0
\(747\) −338418. −0.606474
\(748\) 0 0
\(749\) 1.51888e6 2.70745
\(750\) 0 0
\(751\) 755521. 1.33957 0.669787 0.742554i \(-0.266386\pi\)
0.669787 + 0.742554i \(0.266386\pi\)
\(752\) 0 0
\(753\) −854082. −1.50629
\(754\) 0 0
\(755\) 286080. 0.501873
\(756\) 0 0
\(757\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(762\) 0 0
\(763\) 0 0
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) 0 0
\(768\) 0 0
\(769\) 439678. 0.743502 0.371751 0.928333i \(-0.378758\pi\)
0.371751 + 0.928333i \(0.378758\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) −1.18722e6 −1.98688 −0.993440 0.114353i \(-0.963521\pi\)
−0.993440 + 0.114353i \(0.963521\pi\)
\(774\) 0 0
\(775\) −448649. −0.746969
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) 0 0
\(780\) 0 0
\(781\) 0 0
\(782\) 0 0
\(783\) 1.07141e6 1.74756
\(784\) 0 0
\(785\) 0 0
\(786\) 0 0
\(787\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) 0 0
\(792\) 0 0
\(793\) 0 0
\(794\) 0 0
\(795\) −812160. −1.28501
\(796\) 0 0
\(797\) −1.20446e6 −1.89617 −0.948084 0.318020i \(-0.896982\pi\)
−0.948084 + 0.318020i \(0.896982\pi\)
\(798\) 0 0
\(799\) 0 0
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) 1.15844e6 1.79656
\(804\) 0 0
\(805\) 0 0
\(806\) 0 0
\(807\) 1.25130e6 1.92138
\(808\) 0 0
\(809\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(810\) 0 0
\(811\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(812\) 0 0
\(813\) 281299. 0.425586
\(814\) 0 0
\(815\) 0 0
\(816\) 0 0
\(817\) 0 0
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) 1.00439e6 1.49010 0.745050 0.667008i \(-0.232425\pi\)
0.745050 + 0.667008i \(0.232425\pi\)
\(822\) 0 0
\(823\) 741412. 1.09461 0.547305 0.836933i \(-0.315654\pi\)
0.547305 + 0.836933i \(0.315654\pi\)
\(824\) 0 0
\(825\) −307998. −0.452522
\(826\) 0 0
\(827\) 1.02226e6 1.49468 0.747342 0.664439i \(-0.231330\pi\)
0.747342 + 0.664439i \(0.231330\pi\)
\(828\) 0 0
\(829\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) 0 0
\(834\) 0 0
\(835\) 0 0
\(836\) 0 0
\(837\) 1.35712e6 1.93716
\(838\) 0 0
\(839\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(840\) 0 0
\(841\) 1.45272e6 2.05395
\(842\) 0 0
\(843\) 0 0
\(844\) 0 0
\(845\) −559679. −0.783837
\(846\) 0 0
\(847\) −541141. −0.754300
\(848\) 0 0
\(849\) 0 0
\(850\) 0 0
\(851\) 0 0
\(852\) 0 0
\(853\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(858\) 0 0
\(859\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(864\) 0 0
\(865\) 309120. 0.413138
\(866\) 0 0
\(867\) 751689. 1.00000
\(868\) 0 0
\(869\) 1.21044e6 1.60289
\(870\) 0 0
\(871\) 0 0
\(872\) 0 0
\(873\) 1.39984e6 1.83675
\(874\) 0 0
\(875\) −1.66272e6 −2.17172
\(876\) 0 0
\(877\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(878\) 0 0
\(879\) −1.53171e6 −1.98244
\(880\) 0 0
\(881\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(882\) 0 0
\(883\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(884\) 0 0
\(885\) 1.21020e6 1.54516
\(886\) 0 0
\(887\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(888\) 0 0
\(889\) 2.42880e6 3.07318
\(890\) 0 0
\(891\) 931662. 1.17355
\(892\) 0 0
\(893\) 0 0
\(894\) 0 0
\(895\) 219122. 0.273551
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) 2.73600e6 3.38530
\(900\) 0 0
\(901\) 0 0
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) 0 0
\(906\) 0 0
\(907\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(908\) 0 0
\(909\) −1.05553e6 −1.27745
\(910\) 0 0
\(911\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(912\) 0 0
\(913\) −593276. −0.711730
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) −2.76087e6 −3.28327
\(918\) 0 0
\(919\) −1.13509e6 −1.34400 −0.672002 0.740549i \(-0.734565\pi\)
−0.672002 + 0.740549i \(0.734565\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) 0 0
\(924\) 0 0
\(925\) 0 0
\(926\) 0 0
\(927\) −166663. −0.193946
\(928\) 0 0
\(929\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(930\) 0 0
\(931\) 0 0
\(932\) 0 0
\(933\) 0 0
\(934\) 0 0
\(935\) 0 0
\(936\) 0 0
\(937\) 464162. 0.528677 0.264338 0.964430i \(-0.414846\pi\)
0.264338 + 0.964430i \(0.414846\pi\)
\(938\) 0 0
\(939\) −764658. −0.867234
\(940\) 0 0
\(941\) −787854. −0.889747 −0.444873 0.895593i \(-0.646751\pi\)
−0.444873 + 0.895593i \(0.646751\pi\)
\(942\) 0 0
\(943\) 0 0
\(944\) 0 0
\(945\) 1.39968e6 1.56735
\(946\) 0 0
\(947\) −87982.0 −0.0981056 −0.0490528 0.998796i \(-0.515620\pi\)
−0.0490528 + 0.998796i \(0.515620\pi\)
\(948\) 0 0
\(949\) 0 0
\(950\) 0 0
\(951\) −1.61990e6 −1.79113
\(952\) 0 0
\(953\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(954\) 0 0
\(955\) 0 0
\(956\) 0 0
\(957\) 1.87827e6 2.05085
\(958\) 0 0
\(959\) 0 0
\(960\) 0 0
\(961\) 2.54208e6 2.75259
\(962\) 0 0
\(963\) −1.25566e6 −1.35400
\(964\) 0 0
\(965\) 188160. 0.202056
\(966\) 0 0
\(967\) −580137. −0.620408 −0.310204 0.950670i \(-0.600397\pi\)
−0.310204 + 0.950670i \(0.600397\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) −1.83922e6 −1.95072 −0.975360 0.220621i \(-0.929192\pi\)
−0.975360 + 0.220621i \(0.929192\pi\)
\(972\) 0 0
\(973\) 0 0
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(978\) 0 0
\(979\) 0 0
\(980\) 0 0
\(981\) 0 0
\(982\) 0 0
\(983\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(984\) 0 0
\(985\) −1.30368e6 −1.34369
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) 0 0
\(990\) 0 0
\(991\) 1.96341e6 1.99924 0.999619 0.0276138i \(-0.00879087\pi\)
0.999619 + 0.0276138i \(0.00879087\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) −1.35744e6 −1.37112
\(996\) 0 0
\(997\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 384.5.h.d.65.1 yes 2
3.2 odd 2 384.5.h.a.65.2 yes 2
4.3 odd 2 384.5.h.a.65.1 2
8.3 odd 2 inner 384.5.h.d.65.2 yes 2
8.5 even 2 384.5.h.a.65.2 yes 2
12.11 even 2 inner 384.5.h.d.65.2 yes 2
24.5 odd 2 CM 384.5.h.d.65.1 yes 2
24.11 even 2 384.5.h.a.65.1 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
384.5.h.a.65.1 2 4.3 odd 2
384.5.h.a.65.1 2 24.11 even 2
384.5.h.a.65.2 yes 2 3.2 odd 2
384.5.h.a.65.2 yes 2 8.5 even 2
384.5.h.d.65.1 yes 2 1.1 even 1 trivial
384.5.h.d.65.1 yes 2 24.5 odd 2 CM
384.5.h.d.65.2 yes 2 8.3 odd 2 inner
384.5.h.d.65.2 yes 2 12.11 even 2 inner