Defining parameters
Level: | \( N \) | \(=\) | \( 384 = 2^{7} \cdot 3 \) |
Weight: | \( k \) | \(=\) | \( 5 \) |
Character orbit: | \([\chi]\) | \(=\) | 384.b (of order \(2\) and degree \(1\)) |
Character conductor: | \(\operatorname{cond}(\chi)\) | \(=\) | \( 8 \) |
Character field: | \(\Q\) | ||
Newform subspaces: | \( 4 \) | ||
Sturm bound: | \(320\) | ||
Trace bound: | \(17\) | ||
Distinguishing \(T_p\): | \(5\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{5}(384, [\chi])\).
Total | New | Old | |
---|---|---|---|
Modular forms | 272 | 32 | 240 |
Cusp forms | 240 | 32 | 208 |
Eisenstein series | 32 | 0 | 32 |
Trace form
Decomposition of \(S_{5}^{\mathrm{new}}(384, [\chi])\) into newform subspaces
Label | Dim | $A$ | Field | CM | Traces | $q$-expansion | |||
---|---|---|---|---|---|---|---|---|---|
$a_{2}$ | $a_{3}$ | $a_{5}$ | $a_{7}$ | ||||||
384.5.b.a | $4$ | $39.694$ | \(\Q(\sqrt{3}, \sqrt{-19})\) | None | \(0\) | \(0\) | \(0\) | \(0\) | \(q+3\beta _{1}q^{3}+\beta _{2}q^{5}+\beta _{3}q^{7}+3^{3}q^{9}+\cdots\) |
384.5.b.b | $4$ | $39.694$ | \(\Q(\zeta_{12})\) | None | \(0\) | \(0\) | \(0\) | \(0\) | \(q+\zeta_{12}q^{3}+\zeta_{12}^{2}q^{5}-\zeta_{12}^{3}q^{7}+3^{3}q^{9}+\cdots\) |
384.5.b.c | $8$ | $39.694$ | 8.0.49787136.1 | None | \(0\) | \(0\) | \(0\) | \(0\) | \(q-\beta _{2}q^{3}+(\beta _{1}-\beta _{3})q^{5}-\beta _{5}q^{7}+3^{3}q^{9}+\cdots\) |
384.5.b.d | $16$ | $39.694$ | \(\mathbb{Q}[x]/(x^{16} + \cdots)\) | None | \(0\) | \(0\) | \(0\) | \(0\) | \(q-\beta _{3}q^{3}+\beta _{11}q^{5}-\beta _{5}q^{7}+3^{3}q^{9}+\cdots\) |
Decomposition of \(S_{5}^{\mathrm{old}}(384, [\chi])\) into lower level spaces
\( S_{5}^{\mathrm{old}}(384, [\chi]) \cong \) \(S_{5}^{\mathrm{new}}(8, [\chi])\)\(^{\oplus 10}\)\(\oplus\)\(S_{5}^{\mathrm{new}}(24, [\chi])\)\(^{\oplus 5}\)\(\oplus\)\(S_{5}^{\mathrm{new}}(32, [\chi])\)\(^{\oplus 6}\)\(\oplus\)\(S_{5}^{\mathrm{new}}(64, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{5}^{\mathrm{new}}(96, [\chi])\)\(^{\oplus 3}\)\(\oplus\)\(S_{5}^{\mathrm{new}}(128, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{5}^{\mathrm{new}}(192, [\chi])\)\(^{\oplus 2}\)