Properties

Label 384.4.f.b.191.2
Level 384384
Weight 44
Character 384.191
Analytic conductor 22.65722.657
Analytic rank 00
Dimension 44
CM discriminant -8
Inner twists 88

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [384,4,Mod(191,384)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("384.191"); S:= CuspForms(chi, 4); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(384, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([1, 1, 1])) N = Newforms(chi, 4, names="a")
 
Level: N N == 384=273 384 = 2^{7} \cdot 3
Weight: k k == 4 4
Character orbit: [χ][\chi] == 384.f (of order 22, degree 11, minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [4,0,0,0,0,0,0,0,-92,0,0,0,0,0,0] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(15)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: 22.656733442222.6567334422
Analytic rank: 00
Dimension: 44
Coefficient field: Q(ζ8)\Q(\zeta_{8})
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: x4+1 x^{4} + 1 Copy content Toggle raw display
Coefficient ring: Z[a1,,a11]\Z[a_1, \ldots, a_{11}]
Coefficient ring index: 2332 2^{3}\cdot 3^{2}
Twist minimal: yes
Sato-Tate group: U(1)[D2]\mathrm{U}(1)[D_{2}]

Embedding invariants

Embedding label 191.2
Root 0.707107+0.707107i0.707107 + 0.707107i of defining polynomial
Character χ\chi == 384.191
Dual form 384.4.f.b.191.1

qq-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
f(q)f(q) == q+(1.41421+5.00000i)q3+(23.000014.1421i)q918.0000iq11107.480iq17+127.279q19125.000q25+(103.23895.0000i)q27+(90.0000+25.4558i)q33+56.5685iq41+483.661q43+343.000q49+(537.401+152.000i)q51+(180.000+636.396i)q57846.000iq59+1094.60q67+430.000q73+(176.777625.000i)q75+(329.000+650.538i)q81+1350.00iq831329.36iq891910.00q97+(254.558+414.000i)q99+O(q100)q+(-1.41421 + 5.00000i) q^{3} +(-23.0000 - 14.1421i) q^{9} -18.0000i q^{11} -107.480i q^{17} +127.279 q^{19} -125.000 q^{25} +(103.238 - 95.0000i) q^{27} +(90.0000 + 25.4558i) q^{33} +56.5685i q^{41} +483.661 q^{43} +343.000 q^{49} +(537.401 + 152.000i) q^{51} +(-180.000 + 636.396i) q^{57} -846.000i q^{59} +1094.60 q^{67} +430.000 q^{73} +(176.777 - 625.000i) q^{75} +(329.000 + 650.538i) q^{81} +1350.00i q^{83} -1329.36i q^{89} -1910.00 q^{97} +(-254.558 + 414.000i) q^{99} +O(q^{100})
Tr(f)(q)\operatorname{Tr}(f)(q) == 4q92q9500q25+360q33+1372q49720q57+1720q73+1316q817640q97+O(q100) 4 q - 92 q^{9} - 500 q^{25} + 360 q^{33} + 1372 q^{49} - 720 q^{57} + 1720 q^{73} + 1316 q^{81} - 7640 q^{97}+O(q^{100}) Copy content Toggle raw display

Character values

We give the values of χ\chi on generators for (Z/384Z)×\left(\mathbb{Z}/384\mathbb{Z}\right)^\times.

nn 127127 133133 257257
χ(n)\chi(n) 1-1 1-1 1-1

Coefficient data

For each nn we display the coefficients of the qq-expansion ana_n, the Satake parameters αp\alpha_p, and the Satake angles θp=Arg(αp)\theta_p = \textrm{Arg}(\alpha_p).



Display apa_p with pp up to: 50 250 1000 (See ana_n instead) (See ana_n instead) (See ana_n instead) Display ana_n with nn up to: 50 250 1000 (See only apa_p) (See only apa_p) (See only apa_p)
Significant digits:
nn ana_n an/n(k1)/2a_n / n^{(k-1)/2} αn \alpha_n θn \theta_n
pp apa_p ap/p(k1)/2a_p / p^{(k-1)/2} αp \alpha_p θp \theta_p
22 0 0
33 −1.41421 + 5.00000i −0.272166 + 0.962250i
44 0 0
55 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
66 0 0
77 0 0 1.00000 00
−1.00000 π\pi
88 0 0
99 −23.0000 14.1421i −0.851852 0.523783i
1010 0 0
1111 18.0000i 0.493382i −0.969094 0.246691i 0.920657π-0.920657\pi
0.969094 0.246691i 0.0793433π-0.0793433\pi
1212 0 0
1313 0 0 1.00000 00
−1.00000 π\pi
1414 0 0
1515 0 0
1616 0 0
1717 107.480i 1.53340i −0.642006 0.766700i 0.721898π-0.721898\pi
0.642006 0.766700i 0.278102π-0.278102\pi
1818 0 0
1919 127.279 1.53683 0.768417 0.639949i 0.221045π-0.221045\pi
0.768417 + 0.639949i 0.221045π0.221045\pi
2020 0 0
2121 0 0
2222 0 0
2323 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
2424 0 0
2525 −125.000 −1.00000
2626 0 0
2727 103.238 95.0000i 0.735855 0.677139i
2828 0 0
2929 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
3030 0 0
3131 0 0 1.00000 00
−1.00000 π\pi
3232 0 0
3333 90.0000 + 25.4558i 0.474757 + 0.134282i
3434 0 0
3535 0 0
3636 0 0
3737 0 0 1.00000 00
−1.00000 π\pi
3838 0 0
3939 0 0
4040 0 0
4141 56.5685i 0.215476i 0.994179 + 0.107738i 0.0343608π0.0343608\pi
−0.994179 + 0.107738i 0.965639π0.965639\pi
4242 0 0
4343 483.661 1.71529 0.857647 0.514239i 0.171926π-0.171926\pi
0.857647 + 0.514239i 0.171926π0.171926\pi
4444 0 0
4545 0 0
4646 0 0
4747 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
4848 0 0
4949 343.000 1.00000
5050 0 0
5151 537.401 + 152.000i 1.47551 + 0.417338i
5252 0 0
5353 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
5454 0 0
5555 0 0
5656 0 0
5757 −180.000 + 636.396i −0.418273 + 1.47882i
5858 0 0
5959 846.000i 1.86678i −0.358868 0.933388i 0.616837π-0.616837\pi
0.358868 0.933388i 0.383163π-0.383163\pi
6060 0 0
6161 0 0 1.00000 00
−1.00000 π\pi
6262 0 0
6363 0 0
6464 0 0
6565 0 0
6666 0 0
6767 1094.60 1.99592 0.997961 0.0638199i 0.0203283π-0.0203283\pi
0.997961 + 0.0638199i 0.0203283π0.0203283\pi
6868 0 0
6969 0 0
7070 0 0
7171 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
7272 0 0
7373 430.000 0.689420 0.344710 0.938709i 0.387977π-0.387977\pi
0.344710 + 0.938709i 0.387977π0.387977\pi
7474 0 0
7575 176.777 625.000i 0.272166 0.962250i
7676 0 0
7777 0 0
7878 0 0
7979 0 0 1.00000 00
−1.00000 π\pi
8080 0 0
8181 329.000 + 650.538i 0.451303 + 0.892371i
8282 0 0
8383 1350.00i 1.78532i 0.450728 + 0.892661i 0.351164π0.351164\pi
−0.450728 + 0.892661i 0.648836π0.648836\pi
8484 0 0
8585 0 0
8686 0 0
8787 0 0
8888 0 0
8989 1329.36i 1.58328i −0.610988 0.791640i 0.709227π-0.709227\pi
0.610988 0.791640i 0.290773π-0.290773\pi
9090 0 0
9191 0 0
9292 0 0
9393 0 0
9494 0 0
9595 0 0
9696 0 0
9797 −1910.00 −1.99929 −0.999645 0.0266459i 0.991517π-0.991517\pi
−0.999645 + 0.0266459i 0.991517π0.991517\pi
9898 0 0
9999 −254.558 + 414.000i −0.258425 + 0.420289i
100100 0 0
101101 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
102102 0 0
103103 0 0 1.00000 00
−1.00000 π\pi
104104 0 0
105105 0 0
106106 0 0
107107 1710.00i 1.54497i −0.635032 0.772486i 0.719013π-0.719013\pi
0.635032 0.772486i 0.280987π-0.280987\pi
108108 0 0
109109 0 0 1.00000 00
−1.00000 π\pi
110110 0 0
111111 0 0
112112 0 0
113113 2387.19i 1.98733i −0.112387 0.993665i 0.535850π-0.535850\pi
0.112387 0.993665i 0.464150π-0.464150\pi
114114 0 0
115115 0 0
116116 0 0
117117 0 0
118118 0 0
119119 0 0
120120 0 0
121121 1007.00 0.756574
122122 0 0
123123 −282.843 80.0000i −0.207342 0.0586452i
124124 0 0
125125 0 0
126126 0 0
127127 0 0 1.00000 00
−1.00000 π\pi
128128 0 0
129129 −684.000 + 2418.31i −0.466844 + 1.65054i
130130 0 0
131131 1242.00i 0.828351i 0.910197 + 0.414176i 0.135930π0.135930\pi
−0.910197 + 0.414176i 0.864070π0.864070\pi
132132 0 0
133133 0 0
134134 0 0
135135 0 0
136136 0 0
137137 2285.37i 1.42520i −0.701571 0.712599i 0.747518π-0.747518\pi
0.701571 0.712599i 0.252482π-0.252482\pi
138138 0 0
139139 −2927.42 −1.78634 −0.893168 0.449723i 0.851523π-0.851523\pi
−0.893168 + 0.449723i 0.851523π0.851523\pi
140140 0 0
141141 0 0
142142 0 0
143143 0 0
144144 0 0
145145 0 0
146146 0 0
147147 −485.075 + 1715.00i −0.272166 + 0.962250i
148148 0 0
149149 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
150150 0 0
151151 0 0 1.00000 00
−1.00000 π\pi
152152 0 0
153153 −1520.00 + 2472.05i −0.803168 + 1.30623i
154154 0 0
155155 0 0
156156 0 0
157157 0 0 1.00000 00
−1.00000 π\pi
158158 0 0
159159 0 0
160160 0 0
161161 0 0
162162 0 0
163163 −4047.48 −1.94493 −0.972463 0.233056i 0.925127π-0.925127\pi
−0.972463 + 0.233056i 0.925127π0.925127\pi
164164 0 0
165165 0 0
166166 0 0
167167 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
168168 0 0
169169 2197.00 1.00000
170170 0 0
171171 −2927.42 1800.00i −1.30916 0.804967i
172172 0 0
173173 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
174174 0 0
175175 0 0
176176 0 0
177177 4230.00 + 1196.42i 1.79631 + 0.508072i
178178 0 0
179179 3834.00i 1.60093i 0.599379 + 0.800465i 0.295414π0.295414\pi
−0.599379 + 0.800465i 0.704586π0.704586\pi
180180 0 0
181181 0 0 1.00000 00
−1.00000 π\pi
182182 0 0
183183 0 0
184184 0 0
185185 0 0
186186 0 0
187187 −1934.64 −0.756552
188188 0 0
189189 0 0
190190 0 0
191191 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
192192 0 0
193193 −2090.00 −0.779490 −0.389745 0.920923i 0.627437π-0.627437\pi
−0.389745 + 0.920923i 0.627437π0.627437\pi
194194 0 0
195195 0 0
196196 0 0
197197 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
198198 0 0
199199 0 0 1.00000 00
−1.00000 π\pi
200200 0 0
201201 −1548.00 + 5473.01i −0.543221 + 1.92058i
202202 0 0
203203 0 0
204204 0 0
205205 0 0
206206 0 0
207207 0 0
208208 0 0
209209 2291.03i 0.758247i
210210 0 0
211211 381.838 0.124582 0.0622910 0.998058i 0.480159π-0.480159\pi
0.0622910 + 0.998058i 0.480159π0.480159\pi
212212 0 0
213213 0 0
214214 0 0
215215 0 0
216216 0 0
217217 0 0
218218 0 0
219219 −608.112 + 2150.00i −0.187636 + 0.663395i
220220 0 0
221221 0 0
222222 0 0
223223 0 0 1.00000 00
−1.00000 π\pi
224224 0 0
225225 2875.00 + 1767.77i 0.851852 + 0.523783i
226226 0 0
227227 6570.00i 1.92100i −0.278286 0.960498i 0.589766π-0.589766\pi
0.278286 0.960498i 0.410234π-0.410234\pi
228228 0 0
229229 0 0 1.00000 00
−1.00000 π\pi
230230 0 0
231231 0 0
232232 0 0
233233 3773.12i 1.06088i −0.847722 0.530441i 0.822026π-0.822026\pi
0.847722 0.530441i 0.177974π-0.177974\pi
234234 0 0
235235 0 0
236236 0 0
237237 0 0
238238 0 0
239239 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
240240 0 0
241241 1222.00 0.326622 0.163311 0.986575i 0.447783π-0.447783\pi
0.163311 + 0.986575i 0.447783π0.447783\pi
242242 0 0
243243 −3717.97 + 725.000i −0.981513 + 0.191394i
244244 0 0
245245 0 0
246246 0 0
247247 0 0
248248 0 0
249249 −6750.00 1909.19i −1.71793 0.485903i
250250 0 0
251251 4302.00i 1.08183i 0.841077 + 0.540916i 0.181922π0.181922\pi
−0.841077 + 0.540916i 0.818078π0.818078\pi
252252 0 0
253253 0 0
254254 0 0
255255 0 0
256256 0 0
257257 7274.71i 1.76570i −0.469658 0.882849i 0.655623π-0.655623\pi
0.469658 0.882849i 0.344377π-0.344377\pi
258258 0 0
259259 0 0
260260 0 0
261261 0 0
262262 0 0
263263 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
264264 0 0
265265 0 0
266266 0 0
267267 6646.80 + 1880.00i 1.52351 + 0.430914i
268268 0 0
269269 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
270270 0 0
271271 0 0 1.00000 00
−1.00000 π\pi
272272 0 0
273273 0 0
274274 0 0
275275 2250.00i 0.493382i
276276 0 0
277277 0 0 1.00000 00
−1.00000 π\pi
278278 0 0
279279 0 0
280280 0 0
281281 1216.22i 0.258199i 0.991632 + 0.129099i 0.0412086π0.0412086\pi
−0.991632 + 0.129099i 0.958791π0.958791\pi
282282 0 0
283283 5116.62 1.07474 0.537371 0.843346i 0.319418π-0.319418\pi
0.537371 + 0.843346i 0.319418π0.319418\pi
284284 0 0
285285 0 0
286286 0 0
287287 0 0
288288 0 0
289289 −6639.00 −1.35131
290290 0 0
291291 2701.15 9550.00i 0.544138 1.92382i
292292 0 0
293293 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
294294 0 0
295295 0 0
296296 0 0
297297 −1710.00 1858.28i −0.334088 0.363058i
298298 0 0
299299 0 0
300300 0 0
301301 0 0
302302 0 0
303303 0 0
304304 0 0
305305 0 0
306306 0 0
307307 7204.00 1.33926 0.669632 0.742693i 0.266452π-0.266452\pi
0.669632 + 0.742693i 0.266452π0.266452\pi
308308 0 0
309309 0 0
310310 0 0
311311 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
312312 0 0
313313 8390.00 1.51511 0.757557 0.652769i 0.226393π-0.226393\pi
0.757557 + 0.652769i 0.226393π0.226393\pi
314314 0 0
315315 0 0
316316 0 0
317317 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
318318 0 0
319319 0 0
320320 0 0
321321 8550.00 + 2418.31i 1.48665 + 0.420488i
322322 0 0
323323 13680.0i 2.35658i
324324 0 0
325325 0 0
326326 0 0
327327 0 0
328328 0 0
329329 0 0
330330 0 0
331331 8782.27 1.45836 0.729180 0.684322i 0.239902π-0.239902\pi
0.729180 + 0.684322i 0.239902π0.239902\pi
332332 0 0
333333 0 0
334334 0 0
335335 0 0
336336 0 0
337337 −11410.0 −1.84434 −0.922170 0.386786i 0.873585π-0.873585\pi
−0.922170 + 0.386786i 0.873585π0.873585\pi
338338 0 0
339339 11936.0 + 3376.00i 1.91231 + 0.540882i
340340 0 0
341341 0 0
342342 0 0
343343 0 0
344344 0 0
345345 0 0
346346 0 0
347347 6030.00i 0.932874i 0.884554 + 0.466437i 0.154463π0.154463\pi
−0.884554 + 0.466437i 0.845537π0.845537\pi
348348 0 0
349349 0 0 1.00000 00
−1.00000 π\pi
350350 0 0
351351 0 0
352352 0 0
353353 12377.2i 1.86621i 0.359605 + 0.933104i 0.382911π0.382911\pi
−0.359605 + 0.933104i 0.617089π0.617089\pi
354354 0 0
355355 0 0
356356 0 0
357357 0 0
358358 0 0
359359 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
360360 0 0
361361 9341.00 1.36186
362362 0 0
363363 −1424.11 + 5035.00i −0.205913 + 0.728014i
364364 0 0
365365 0 0
366366 0 0
367367 0 0 1.00000 00
−1.00000 π\pi
368368 0 0
369369 800.000 1301.08i 0.112863 0.183554i
370370 0 0
371371 0 0
372372 0 0
373373 0 0 1.00000 00
−1.00000 π\pi
374374 0 0
375375 0 0
376376 0 0
377377 0 0
378378 0 0
379379 9036.82 1.22478 0.612389 0.790557i 0.290209π-0.290209\pi
0.612389 + 0.790557i 0.290209π0.290209\pi
380380 0 0
381381 0 0
382382 0 0
383383 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
384384 0 0
385385 0 0
386386 0 0
387387 −11124.2 6840.00i −1.46118 0.898441i
388388 0 0
389389 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
390390 0 0
391391 0 0
392392 0 0
393393 −6210.00 1756.45i −0.797082 0.225449i
394394 0 0
395395 0 0
396396 0 0
397397 0 0 1.00000 00
−1.00000 π\pi
398398 0 0
399399 0 0
400400 0 0
401401 14453.3i 1.79990i 0.435989 + 0.899952i 0.356399π0.356399\pi
−0.435989 + 0.899952i 0.643601π0.643601\pi
402402 0 0
403403 0 0
404404 0 0
405405 0 0
406406 0 0
407407 0 0
408408 0 0
409409 16346.0 1.97618 0.988090 0.153877i 0.0491758π-0.0491758\pi
0.988090 + 0.153877i 0.0491758π0.0491758\pi
410410 0 0
411411 11426.8 + 3232.00i 1.37140 + 0.387890i
412412 0 0
413413 0 0
414414 0 0
415415 0 0
416416 0 0
417417 4140.00 14637.1i 0.486179 1.71890i
418418 0 0
419419 16794.0i 1.95809i −0.203639 0.979046i 0.565277π-0.565277\pi
0.203639 0.979046i 0.434723π-0.434723\pi
420420 0 0
421421 0 0 1.00000 00
−1.00000 π\pi
422422 0 0
423423 0 0
424424 0 0
425425 13435.0i 1.53340i
426426 0 0
427427 0 0
428428 0 0
429429 0 0
430430 0 0
431431 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
432432 0 0
433433 −5510.00 −0.611533 −0.305766 0.952107i 0.598913π-0.598913\pi
−0.305766 + 0.952107i 0.598913π0.598913\pi
434434 0 0
435435 0 0
436436 0 0
437437 0 0
438438 0 0
439439 0 0 1.00000 00
−1.00000 π\pi
440440 0 0
441441 −7889.00 4850.75i −0.851852 0.523783i
442442 0 0
443443 18270.0i 1.95944i 0.200361 + 0.979722i 0.435789π0.435789\pi
−0.200361 + 0.979722i 0.564211π0.564211\pi
444444 0 0
445445 0 0
446446 0 0
447447 0 0
448448 0 0
449449 7438.76i 0.781864i −0.920420 0.390932i 0.872153π-0.872153\pi
0.920420 0.390932i 0.127847π-0.127847\pi
450450 0 0
451451 1018.23 0.106312
452452 0 0
453453 0 0
454454 0 0
455455 0 0
456456 0 0
457457 −18070.0 −1.84963 −0.924813 0.380422i 0.875779π-0.875779\pi
−0.924813 + 0.380422i 0.875779π0.875779\pi
458458 0 0
459459 −10210.6 11096.0i −1.03832 1.12836i
460460 0 0
461461 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
462462 0 0
463463 0 0 1.00000 00
−1.00000 π\pi
464464 0 0
465465 0 0
466466 0 0
467467 15030.0i 1.48931i 0.667452 + 0.744653i 0.267385π0.267385\pi
−0.667452 + 0.744653i 0.732615π0.732615\pi
468468 0 0
469469 0 0
470470 0 0
471471 0 0
472472 0 0
473473 8705.90i 0.846295i
474474 0 0
475475 −15909.9 −1.53683
476476 0 0
477477 0 0
478478 0 0
479479 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
480480 0 0
481481 0 0
482482 0 0
483483 0 0
484484 0 0
485485 0 0
486486 0 0
487487 0 0 1.00000 00
−1.00000 π\pi
488488 0 0
489489 5724.00 20237.4i 0.529342 1.87151i
490490 0 0
491491 12222.0i 1.12336i −0.827354 0.561681i 0.810155π-0.810155\pi
0.827354 0.561681i 0.189845π-0.189845\pi
492492 0 0
493493 0 0
494494 0 0
495495 0 0
496496 0 0
497497 0 0
498498 0 0
499499 −12855.2 −1.15326 −0.576631 0.817005i 0.695633π-0.695633\pi
−0.576631 + 0.817005i 0.695633π0.695633\pi
500500 0 0
501501 0 0
502502 0 0
503503 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
504504 0 0
505505 0 0
506506 0 0
507507 −3107.03 + 10985.0i −0.272166 + 0.962250i
508508 0 0
509509 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
510510 0 0
511511 0 0
512512 0 0
513513 13140.0 12091.5i 1.13089 1.04065i
514514 0 0
515515 0 0
516516 0 0
517517 0 0
518518 0 0
519519 0 0
520520 0 0
521521 21948.6i 1.84565i 0.385215 + 0.922827i 0.374127π0.374127\pi
−0.385215 + 0.922827i 0.625873π0.625873\pi
522522 0 0
523523 −23444.8 −1.96017 −0.980087 0.198569i 0.936371π-0.936371\pi
−0.980087 + 0.198569i 0.936371π0.936371\pi
524524 0 0
525525 0 0
526526 0 0
527527 0 0
528528 0 0
529529 −12167.0 −1.00000
530530 0 0
531531 −11964.2 + 19458.0i −0.977785 + 1.59022i
532532 0 0
533533 0 0
534534 0 0
535535 0 0
536536 0 0
537537 −19170.0 5422.09i −1.54050 0.435718i
538538 0 0
539539 6174.00i 0.493382i
540540 0 0
541541 0 0 1.00000 00
−1.00000 π\pi
542542 0 0
543543 0 0
544544 0 0
545545 0 0
546546 0 0
547547 −13313.4 −1.04066 −0.520329 0.853966i 0.674191π-0.674191\pi
−0.520329 + 0.853966i 0.674191π0.674191\pi
548548 0 0
549549 0 0
550550 0 0
551551 0 0
552552 0 0
553553 0 0
554554 0 0
555555 0 0
556556 0 0
557557 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
558558 0 0
559559 0 0
560560 0 0
561561 2736.00 9673.22i 0.205907 0.727992i
562562 0 0
563563 23670.0i 1.77189i 0.463795 + 0.885943i 0.346488π0.346488\pi
−0.463795 + 0.885943i 0.653512π0.653512\pi
564564 0 0
565565 0 0
566566 0 0
567567 0 0
568568 0 0
569569 27039.8i 1.99221i 0.0881913 + 0.996104i 0.471891π0.471891\pi
−0.0881913 + 0.996104i 0.528109π0.528109\pi
570570 0 0
571571 3691.10 0.270521 0.135261 0.990810i 0.456813π-0.456813\pi
0.135261 + 0.990810i 0.456813π0.456813\pi
572572 0 0
573573 0 0
574574 0 0
575575 0 0
576576 0 0
577577 19550.0 1.41053 0.705266 0.708943i 0.250827π-0.250827\pi
0.705266 + 0.708943i 0.250827π0.250827\pi
578578 0 0
579579 2955.71 10450.0i 0.212150 0.750064i
580580 0 0
581581 0 0
582582 0 0
583583 0 0
584584 0 0
585585 0 0
586586 0 0
587587 10350.0i 0.727752i −0.931447 0.363876i 0.881453π-0.881453\pi
0.931447 0.363876i 0.118547π-0.118547\pi
588588 0 0
589589 0 0
590590 0 0
591591 0 0
592592 0 0
593593 12173.6i 0.843015i 0.906825 + 0.421507i 0.138499π0.138499\pi
−0.906825 + 0.421507i 0.861501π0.861501\pi
594594 0 0
595595 0 0
596596 0 0
597597 0 0
598598 0 0
599599 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
600600 0 0
601601 14398.0 0.977216 0.488608 0.872503i 0.337505π-0.337505\pi
0.488608 + 0.872503i 0.337505π0.337505\pi
602602 0 0
603603 −25175.8 15480.0i −1.70023 1.04543i
604604 0 0
605605 0 0
606606 0 0
607607 0 0 1.00000 00
−1.00000 π\pi
608608 0 0
609609 0 0
610610 0 0
611611 0 0
612612 0 0
613613 0 0 1.00000 00
−1.00000 π\pi
614614 0 0
615615 0 0
616616 0 0
617617 11206.2i 0.731192i −0.930774 0.365596i 0.880865π-0.880865\pi
0.930774 0.365596i 0.119135π-0.119135\pi
618618 0 0
619619 −2418.31 −0.157027 −0.0785136 0.996913i 0.525017π-0.525017\pi
−0.0785136 + 0.996913i 0.525017π0.525017\pi
620620 0 0
621621 0 0
622622 0 0
623623 0 0
624624 0 0
625625 15625.0 1.00000
626626 0 0
627627 11455.1 + 3240.00i 0.729623 + 0.206369i
628628 0 0
629629 0 0
630630 0 0
631631 0 0 1.00000 00
−1.00000 π\pi
632632 0 0
633633 −540.000 + 1909.19i −0.0339069 + 0.119879i
634634 0 0
635635 0 0
636636 0 0
637637 0 0
638638 0 0
639639 0 0
640640 0 0
641641 31763.2i 1.95721i 0.205745 + 0.978606i 0.434038π0.434038\pi
−0.205745 + 0.978606i 0.565962π0.565962\pi
642642 0 0
643643 −15757.2 −0.966411 −0.483205 0.875507i 0.660528π-0.660528\pi
−0.483205 + 0.875507i 0.660528π0.660528\pi
644644 0 0
645645 0 0
646646 0 0
647647 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
648648 0 0
649649 −15228.0 −0.921034
650650 0 0
651651 0 0
652652 0 0
653653 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
654654 0 0
655655 0 0
656656 0 0
657657 −9890.00 6081.12i −0.587284 0.361107i
658658 0 0
659659 29754.0i 1.75880i 0.476081 + 0.879402i 0.342057π0.342057\pi
−0.476081 + 0.879402i 0.657943π0.657943\pi
660660 0 0
661661 0 0 1.00000 00
−1.00000 π\pi
662662 0 0
663663 0 0
664664 0 0
665665 0 0
666666 0 0
667667 0 0
668668 0 0
669669 0 0
670670 0 0
671671 0 0
672672 0 0
673673 −19190.0 −1.09914 −0.549569 0.835448i 0.685208π-0.685208\pi
−0.549569 + 0.835448i 0.685208π0.685208\pi
674674 0 0
675675 −12904.7 + 11875.0i −0.735855 + 0.677139i
676676 0 0
677677 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
678678 0 0
679679 0 0
680680 0 0
681681 32850.0 + 9291.38i 1.84848 + 0.522829i
682682 0 0
683683 11970.0i 0.670599i −0.942112 0.335300i 0.891162π-0.891162\pi
0.942112 0.335300i 0.108838π-0.108838\pi
684684 0 0
685685 0 0
686686 0 0
687687 0 0
688688 0 0
689689 0 0
690690 0 0
691691 36274.6 1.99703 0.998517 0.0544477i 0.0173398π-0.0173398\pi
0.998517 + 0.0544477i 0.0173398π0.0173398\pi
692692 0 0
693693 0 0
694694 0 0
695695 0 0
696696 0 0
697697 6080.00 0.330411
698698 0 0
699699 18865.6 + 5336.00i 1.02083 + 0.288735i
700700 0 0
701701 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
702702 0 0
703703 0 0
704704 0 0
705705 0 0
706706 0 0
707707 0 0
708708 0 0
709709 0 0 1.00000 00
−1.00000 π\pi
710710 0 0
711711 0 0
712712 0 0
713713 0 0
714714 0 0
715715 0 0
716716 0 0
717717 0 0
718718 0 0
719719 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
720720 0 0
721721 0 0
722722 0 0
723723 −1728.17 + 6110.00i −0.0888953 + 0.314292i
724724 0 0
725725 0 0
726726 0 0
727727 0 0 1.00000 00
−1.00000 π\pi
728728 0 0
729729 1633.00 19615.1i 0.0829650 0.996552i
730730 0 0
731731 51984.0i 2.63023i
732732 0 0
733733 0 0 1.00000 00
−1.00000 π\pi
734734 0 0
735735 0 0
736736 0 0
737737 19702.8i 0.984753i
738738 0 0
739739 17691.8 0.880655 0.440327 0.897837i 0.354862π-0.354862\pi
0.440327 + 0.897837i 0.354862π0.354862\pi
740740 0 0
741741 0 0
742742 0 0
743743 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
744744 0 0
745745 0 0
746746 0 0
747747 19091.9 31050.0i 0.935121 1.52083i
748748 0 0
749749 0 0
750750 0 0
751751 0 0 1.00000 00
−1.00000 π\pi
752752 0 0
753753 −21510.0 6083.95i −1.04099 0.294437i
754754 0 0
755755 0 0
756756 0 0
757757 0 0 1.00000 00
−1.00000 π\pi
758758 0 0
759759 0 0
760760 0 0
761761 24381.0i 1.16138i −0.814124 0.580691i 0.802782π-0.802782\pi
0.814124 0.580691i 0.197218π-0.197218\pi
762762 0 0
763763 0 0
764764 0 0
765765 0 0
766766 0 0
767767 0 0
768768 0 0
769769 −40106.0 −1.88070 −0.940351 0.340207i 0.889503π-0.889503\pi
−0.940351 + 0.340207i 0.889503π0.889503\pi
770770 0 0
771771 36373.6 + 10288.0i 1.69904 + 0.480562i
772772 0 0
773773 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
774774 0 0
775775 0 0
776776 0 0
777777 0 0
778778 0 0
779779 7200.00i 0.331151i
780780 0 0
781781 0 0
782782 0 0
783783 0 0
784784 0 0
785785 0 0
786786 0 0
787787 43605.9 1.97507 0.987536 0.157396i 0.0503098π-0.0503098\pi
0.987536 + 0.157396i 0.0503098π0.0503098\pi
788788 0 0
789789 0 0
790790 0 0
791791 0 0
792792 0 0
793793 0 0
794794 0 0
795795 0 0
796796 0 0
797797 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
798798 0 0
799799 0 0
800800 0 0
801801 −18800.0 + 30575.3i −0.829295 + 1.34872i
802802 0 0
803803 7740.00i 0.340148i
804804 0 0
805805 0 0
806806 0 0
807807 0 0
808808 0 0
809809 43727.5i 1.90034i −0.311730 0.950171i 0.600908π-0.600908\pi
0.311730 0.950171i 0.399092π-0.399092\pi
810810 0 0
811811 26855.9 1.16281 0.581405 0.813614i 0.302503π-0.302503\pi
0.581405 + 0.813614i 0.302503π0.302503\pi
812812 0 0
813813 0 0
814814 0 0
815815 0 0
816816 0 0
817817 61560.0 2.63612
818818 0 0
819819 0 0
820820 0 0
821821 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
822822 0 0
823823 0 0 1.00000 00
−1.00000 π\pi
824824 0 0
825825 −11250.0 3181.98i −0.474757 0.134282i
826826 0 0
827827 23490.0i 0.987699i 0.869547 + 0.493850i 0.164411π0.164411\pi
−0.869547 + 0.493850i 0.835589π0.835589\pi
828828 0 0
829829 0 0 1.00000 00
−1.00000 π\pi
830830 0 0
831831 0 0
832832 0 0
833833 36865.7i 1.53340i
834834 0 0
835835 0 0
836836 0 0
837837 0 0
838838 0 0
839839 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
840840 0 0
841841 −24389.0 −1.00000
842842 0 0
843843 −6081.12 1720.00i −0.248452 0.0702728i
844844 0 0
845845 0 0
846846 0 0
847847 0 0
848848 0 0
849849 −7236.00 + 25583.1i −0.292508 + 1.03417i
850850 0 0
851851 0 0
852852 0 0
853853 0 0 1.00000 00
−1.00000 π\pi
854854 0 0
855855 0 0
856856 0 0
857857 46589.9i 1.85704i 0.371289 + 0.928518i 0.378916π0.378916\pi
−0.371289 + 0.928518i 0.621084π0.621084\pi
858858 0 0
859859 21255.6 0.844276 0.422138 0.906532i 0.361280π-0.361280\pi
0.422138 + 0.906532i 0.361280π0.361280\pi
860860 0 0
861861 0 0
862862 0 0
863863 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
864864 0 0
865865 0 0
866866 0 0
867867 9388.96 33195.0i 0.367781 1.30030i
868868 0 0
869869 0 0
870870 0 0
871871 0 0
872872 0 0
873873 43930.0 + 27011.5i 1.70310 + 1.04719i
874874 0 0
875875 0 0
876876 0 0
877877 0 0 1.00000 00
−1.00000 π\pi
878878 0 0
879879 0 0
880880 0 0
881881 31508.7i 1.20494i −0.798141 0.602471i 0.794183π-0.794183\pi
0.798141 0.602471i 0.205817π-0.205817\pi
882882 0 0
883883 −52209.9 −1.98981 −0.994906 0.100806i 0.967858π-0.967858\pi
−0.994906 + 0.100806i 0.967858π0.967858\pi
884884 0 0
885885 0 0
886886 0 0
887887 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
888888 0 0
889889 0 0
890890 0 0
891891 11709.7 5922.00i 0.440280 0.222665i
892892 0 0
893893 0 0
894894 0 0
895895 0 0
896896 0 0
897897 0 0
898898 0 0
899899 0 0
900900 0 0
901901 0 0
902902 0 0
903903 0 0
904904 0 0
905905 0 0
906906 0 0
907907 47933.4 1.75480 0.877399 0.479762i 0.159277π-0.159277\pi
0.877399 + 0.479762i 0.159277π0.159277\pi
908908 0 0
909909 0 0
910910 0 0
911911 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
912912 0 0
913913 24300.0 0.880846
914914 0 0
915915 0 0
916916 0 0
917917 0 0
918918 0 0
919919 0 0 1.00000 00
−1.00000 π\pi
920920 0 0
921921 −10188.0 + 36020.0i −0.364502 + 1.28871i
922922 0 0
923923 0 0
924924 0 0
925925 0 0
926926 0 0
927927 0 0
928928 0 0
929929 56200.8i 1.98481i 0.123007 + 0.992406i 0.460746π0.460746\pi
−0.123007 + 0.992406i 0.539254π0.539254\pi
930930 0 0
931931 43656.8 1.53683
932932 0 0
933933 0 0
934934 0 0
935935 0 0
936936 0 0
937937 −56270.0 −1.96186 −0.980929 0.194367i 0.937735π-0.937735\pi
−0.980929 + 0.194367i 0.937735π0.937735\pi
938938 0 0
939939 −11865.3 + 41950.0i −0.412362 + 1.45792i
940940 0 0
941941 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
942942 0 0
943943 0 0
944944 0 0
945945 0 0
946946 0 0
947947 58230.0i 1.99812i −0.0433353 0.999061i 0.513798π-0.513798\pi
0.0433353 0.999061i 0.486202π-0.486202\pi
948948 0 0
949949 0 0
950950 0 0
951951 0 0
952952 0 0
953953 36701.7i 1.24752i −0.781617 0.623759i 0.785605π-0.785605\pi
0.781617 0.623759i 0.214395π-0.214395\pi
954954 0 0
955955 0 0
956956 0 0
957957 0 0
958958 0 0
959959 0 0
960960 0 0
961961 29791.0 1.00000
962962 0 0
963963 −24183.1 + 39330.0i −0.809229 + 1.31609i
964964 0 0
965965 0 0
966966 0 0
967967 0 0 1.00000 00
−1.00000 π\pi
968968 0 0
969969 68400.0 + 19346.4i 2.26762 + 0.641380i
970970 0 0
971971 162.000i 0.00535410i −0.999996 0.00267705i 0.999148π-0.999148\pi
0.999996 0.00267705i 0.000852132π-0.000852132\pi
972972 0 0
973973 0 0
974974 0 0
975975 0 0
976976 0 0
977977 58554.1i 1.91741i −0.284399 0.958706i 0.591794π-0.591794\pi
0.284399 0.958706i 0.408206π-0.408206\pi
978978 0 0
979979 −23928.5 −0.781162
980980 0 0
981981 0 0
982982 0 0
983983 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
984984 0 0
985985 0 0
986986 0 0
987987 0 0
988988 0 0
989989 0 0
990990 0 0
991991 0 0 1.00000 00
−1.00000 π\pi
992992 0 0
993993 −12420.0 + 43911.3i −0.396915 + 1.40331i
994994 0 0
995995 0 0
996996 0 0
997997 0 0 1.00000 00
−1.00000 π\pi
998998 0 0
999999 0 0
Display apa_p with pp up to: 50 250 1000 (See ana_n instead) (See ana_n instead) (See ana_n instead) Display ana_n with nn up to: 50 250 1000 (See only apa_p) (See only apa_p) (See only apa_p)

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 384.4.f.b.191.2 yes 4
3.2 odd 2 inner 384.4.f.b.191.1 4
4.3 odd 2 inner 384.4.f.b.191.3 yes 4
8.3 odd 2 CM 384.4.f.b.191.2 yes 4
8.5 even 2 inner 384.4.f.b.191.3 yes 4
12.11 even 2 inner 384.4.f.b.191.4 yes 4
16.3 odd 4 768.4.c.j.767.2 2
16.5 even 4 768.4.c.j.767.2 2
16.11 odd 4 768.4.c.a.767.1 2
16.13 even 4 768.4.c.a.767.1 2
24.5 odd 2 inner 384.4.f.b.191.4 yes 4
24.11 even 2 inner 384.4.f.b.191.1 4
48.5 odd 4 768.4.c.a.767.2 2
48.11 even 4 768.4.c.j.767.1 2
48.29 odd 4 768.4.c.j.767.1 2
48.35 even 4 768.4.c.a.767.2 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
384.4.f.b.191.1 4 3.2 odd 2 inner
384.4.f.b.191.1 4 24.11 even 2 inner
384.4.f.b.191.2 yes 4 1.1 even 1 trivial
384.4.f.b.191.2 yes 4 8.3 odd 2 CM
384.4.f.b.191.3 yes 4 4.3 odd 2 inner
384.4.f.b.191.3 yes 4 8.5 even 2 inner
384.4.f.b.191.4 yes 4 12.11 even 2 inner
384.4.f.b.191.4 yes 4 24.5 odd 2 inner
768.4.c.a.767.1 2 16.11 odd 4
768.4.c.a.767.1 2 16.13 even 4
768.4.c.a.767.2 2 48.5 odd 4
768.4.c.a.767.2 2 48.35 even 4
768.4.c.j.767.1 2 48.11 even 4
768.4.c.j.767.1 2 48.29 odd 4
768.4.c.j.767.2 2 16.3 odd 4
768.4.c.j.767.2 2 16.5 even 4