Properties

Label 384.4.f.a.191.3
Level $384$
Weight $4$
Character 384.191
Analytic conductor $22.657$
Analytic rank $0$
Dimension $4$
CM discriminant -24
Inner twists $8$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [384,4,Mod(191,384)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(384, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([1, 1, 1]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("384.191");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 384 = 2^{7} \cdot 3 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 384.f (of order \(2\), degree \(1\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(22.6567334422\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: \(\Q(\sqrt{2}, \sqrt{-3})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} + 2x^{2} + 4 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2^{4}\cdot 3^{2} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{U}(1)[D_{2}]$

Embedding invariants

Embedding label 191.3
Root \(-0.707107 - 1.22474i\) of defining polynomial
Character \(\chi\) \(=\) 384.191
Dual form 384.4.f.a.191.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+5.19615i q^{3} -19.7990 q^{5} +14.6969i q^{7} -27.0000 q^{9} +O(q^{10})\) \(q+5.19615i q^{3} -19.7990 q^{5} +14.6969i q^{7} -27.0000 q^{9} +72.7461i q^{11} -102.879i q^{15} -76.3675 q^{21} +267.000 q^{25} -140.296i q^{27} -223.446 q^{29} -338.030i q^{31} -378.000 q^{33} -290.985i q^{35} +534.573 q^{45} +127.000 q^{49} +579.828 q^{53} -1440.30i q^{55} +717.069i q^{59} -396.817i q^{63} -322.000 q^{73} +1387.37i q^{75} -1069.15 q^{77} +308.636i q^{79} +729.000 q^{81} -883.346i q^{83} -1161.06i q^{87} +1756.45 q^{93} -574.000 q^{97} -1964.15i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q - 108 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 4 q - 108 q^{9} + 1068 q^{25} - 1512 q^{33} + 508 q^{49} - 1288 q^{73} + 2916 q^{81} - 2296 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/384\mathbb{Z}\right)^\times\).

\(n\) \(127\) \(133\) \(257\)
\(\chi(n)\) \(-1\) \(-1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 5.19615i 1.00000i
\(4\) 0 0
\(5\) −19.7990 −1.77088 −0.885438 0.464758i \(-0.846141\pi\)
−0.885438 + 0.464758i \(0.846141\pi\)
\(6\) 0 0
\(7\) 14.6969i 0.793560i 0.917914 + 0.396780i \(0.129872\pi\)
−0.917914 + 0.396780i \(0.870128\pi\)
\(8\) 0 0
\(9\) −27.0000 −1.00000
\(10\) 0 0
\(11\) 72.7461i 1.99398i 0.0775275 + 0.996990i \(0.475297\pi\)
−0.0775275 + 0.996990i \(0.524703\pi\)
\(12\) 0 0
\(13\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(14\) 0 0
\(15\) − 102.879i − 1.77088i
\(16\) 0 0
\(17\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(18\) 0 0
\(19\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(20\) 0 0
\(21\) −76.3675 −0.793560
\(22\) 0 0
\(23\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(24\) 0 0
\(25\) 267.000 2.13600
\(26\) 0 0
\(27\) − 140.296i − 1.00000i
\(28\) 0 0
\(29\) −223.446 −1.43079 −0.715394 0.698722i \(-0.753753\pi\)
−0.715394 + 0.698722i \(0.753753\pi\)
\(30\) 0 0
\(31\) − 338.030i − 1.95845i −0.202780 0.979224i \(-0.564998\pi\)
0.202780 0.979224i \(-0.435002\pi\)
\(32\) 0 0
\(33\) −378.000 −1.99398
\(34\) 0 0
\(35\) − 290.985i − 1.40530i
\(36\) 0 0
\(37\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(42\) 0 0
\(43\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(44\) 0 0
\(45\) 534.573 1.77088
\(46\) 0 0
\(47\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(48\) 0 0
\(49\) 127.000 0.370262
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) 579.828 1.50274 0.751372 0.659879i \(-0.229392\pi\)
0.751372 + 0.659879i \(0.229392\pi\)
\(54\) 0 0
\(55\) − 1440.30i − 3.53109i
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) 717.069i 1.58228i 0.611636 + 0.791139i \(0.290512\pi\)
−0.611636 + 0.791139i \(0.709488\pi\)
\(60\) 0 0
\(61\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(62\) 0 0
\(63\) − 396.817i − 0.793560i
\(64\) 0 0
\(65\) 0 0
\(66\) 0 0
\(67\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(72\) 0 0
\(73\) −322.000 −0.516264 −0.258132 0.966110i \(-0.583107\pi\)
−0.258132 + 0.966110i \(0.583107\pi\)
\(74\) 0 0
\(75\) 1387.37i 2.13600i
\(76\) 0 0
\(77\) −1069.15 −1.58234
\(78\) 0 0
\(79\) 308.636i 0.439547i 0.975551 + 0.219774i \(0.0705319\pi\)
−0.975551 + 0.219774i \(0.929468\pi\)
\(80\) 0 0
\(81\) 729.000 1.00000
\(82\) 0 0
\(83\) − 883.346i − 1.16819i −0.811685 0.584095i \(-0.801449\pi\)
0.811685 0.584095i \(-0.198551\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) 0 0
\(87\) − 1161.06i − 1.43079i
\(88\) 0 0
\(89\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(90\) 0 0
\(91\) 0 0
\(92\) 0 0
\(93\) 1756.45 1.95845
\(94\) 0 0
\(95\) 0 0
\(96\) 0 0
\(97\) −574.000 −0.600834 −0.300417 0.953808i \(-0.597126\pi\)
−0.300417 + 0.953808i \(0.597126\pi\)
\(98\) 0 0
\(99\) − 1964.15i − 1.99398i
\(100\) 0 0
\(101\) −1762.11 −1.73601 −0.868003 0.496560i \(-0.834596\pi\)
−0.868003 + 0.496560i \(0.834596\pi\)
\(102\) 0 0
\(103\) 1366.82i 1.30754i 0.756695 + 0.653768i \(0.226813\pi\)
−0.756695 + 0.653768i \(0.773187\pi\)
\(104\) 0 0
\(105\) 1512.00 1.40530
\(106\) 0 0
\(107\) − 363.731i − 0.328628i −0.986408 0.164314i \(-0.947459\pi\)
0.986408 0.164314i \(-0.0525410\pi\)
\(108\) 0 0
\(109\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) 0 0
\(120\) 0 0
\(121\) −3961.00 −2.97596
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) −2811.46 −2.01171
\(126\) 0 0
\(127\) − 1748.94i − 1.22199i −0.791634 0.610996i \(-0.790769\pi\)
0.791634 0.610996i \(-0.209231\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) − 1319.82i − 0.880255i −0.897935 0.440128i \(-0.854933\pi\)
0.897935 0.440128i \(-0.145067\pi\)
\(132\) 0 0
\(133\) 0 0
\(134\) 0 0
\(135\) 2777.72i 1.77088i
\(136\) 0 0
\(137\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(138\) 0 0
\(139\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) 0 0
\(144\) 0 0
\(145\) 4424.00 2.53375
\(146\) 0 0
\(147\) 659.911i 0.370262i
\(148\) 0 0
\(149\) −1241.68 −0.682700 −0.341350 0.939936i \(-0.610884\pi\)
−0.341350 + 0.939936i \(0.610884\pi\)
\(150\) 0 0
\(151\) 3600.75i 1.94056i 0.241981 + 0.970281i \(0.422203\pi\)
−0.241981 + 0.970281i \(0.577797\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) 6692.64i 3.46817i
\(156\) 0 0
\(157\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(158\) 0 0
\(159\) 3012.87i 1.50274i
\(160\) 0 0
\(161\) 0 0
\(162\) 0 0
\(163\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(164\) 0 0
\(165\) 7484.02 3.53109
\(166\) 0 0
\(167\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(168\) 0 0
\(169\) 2197.00 1.00000
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) 2514.47 1.10504 0.552519 0.833500i \(-0.313666\pi\)
0.552519 + 0.833500i \(0.313666\pi\)
\(174\) 0 0
\(175\) 3924.08i 1.69504i
\(176\) 0 0
\(177\) −3726.00 −1.58228
\(178\) 0 0
\(179\) − 1236.68i − 0.516392i −0.966093 0.258196i \(-0.916872\pi\)
0.966093 0.258196i \(-0.0831280\pi\)
\(180\) 0 0
\(181\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) 0 0
\(186\) 0 0
\(187\) 0 0
\(188\) 0 0
\(189\) 2061.92 0.793560
\(190\) 0 0
\(191\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(192\) 0 0
\(193\) −2522.00 −0.940609 −0.470304 0.882504i \(-0.655856\pi\)
−0.470304 + 0.882504i \(0.655856\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) −5529.58 −1.99983 −0.999913 0.0131547i \(-0.995813\pi\)
−0.999913 + 0.0131547i \(0.995813\pi\)
\(198\) 0 0
\(199\) 73.4847i 0.0261768i 0.999914 + 0.0130884i \(0.00416629\pi\)
−0.999914 + 0.0130884i \(0.995834\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) − 3283.97i − 1.13542i
\(204\) 0 0
\(205\) 0 0
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) 0 0
\(210\) 0 0
\(211\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) 0 0
\(216\) 0 0
\(217\) 4968.00 1.55415
\(218\) 0 0
\(219\) − 1673.16i − 0.516264i
\(220\) 0 0
\(221\) 0 0
\(222\) 0 0
\(223\) 6657.71i 1.99925i 0.0273265 + 0.999627i \(0.491301\pi\)
−0.0273265 + 0.999627i \(0.508699\pi\)
\(224\) 0 0
\(225\) −7209.00 −2.13600
\(226\) 0 0
\(227\) − 5954.79i − 1.74112i −0.492066 0.870558i \(-0.663758\pi\)
0.492066 0.870558i \(-0.336242\pi\)
\(228\) 0 0
\(229\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(230\) 0 0
\(231\) − 5555.44i − 1.58234i
\(232\) 0 0
\(233\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(234\) 0 0
\(235\) 0 0
\(236\) 0 0
\(237\) −1603.72 −0.439547
\(238\) 0 0
\(239\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(240\) 0 0
\(241\) 6230.00 1.66518 0.832592 0.553886i \(-0.186856\pi\)
0.832592 + 0.553886i \(0.186856\pi\)
\(242\) 0 0
\(243\) 3788.00i 1.00000i
\(244\) 0 0
\(245\) −2514.47 −0.655689
\(246\) 0 0
\(247\) 0 0
\(248\) 0 0
\(249\) 4590.00 1.16819
\(250\) 0 0
\(251\) − 6827.74i − 1.71699i −0.512826 0.858493i \(-0.671401\pi\)
0.512826 0.858493i \(-0.328599\pi\)
\(252\) 0 0
\(253\) 0 0
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(258\) 0 0
\(259\) 0 0
\(260\) 0 0
\(261\) 6033.04 1.43079
\(262\) 0 0
\(263\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(264\) 0 0
\(265\) −11480.0 −2.66117
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) −5009.14 −1.13536 −0.567682 0.823248i \(-0.692160\pi\)
−0.567682 + 0.823248i \(0.692160\pi\)
\(270\) 0 0
\(271\) − 5217.41i − 1.16950i −0.811213 0.584751i \(-0.801192\pi\)
0.811213 0.584751i \(-0.198808\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) 19423.2i 4.25914i
\(276\) 0 0
\(277\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(278\) 0 0
\(279\) 9126.80i 1.95845i
\(280\) 0 0
\(281\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(282\) 0 0
\(283\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 0 0
\(288\) 0 0
\(289\) 4913.00 1.00000
\(290\) 0 0
\(291\) − 2982.59i − 0.600834i
\(292\) 0 0
\(293\) −9602.51 −1.91462 −0.957312 0.289058i \(-0.906658\pi\)
−0.957312 + 0.289058i \(0.906658\pi\)
\(294\) 0 0
\(295\) − 14197.2i − 2.80202i
\(296\) 0 0
\(297\) 10206.0 1.99398
\(298\) 0 0
\(299\) 0 0
\(300\) 0 0
\(301\) 0 0
\(302\) 0 0
\(303\) − 9156.19i − 1.73601i
\(304\) 0 0
\(305\) 0 0
\(306\) 0 0
\(307\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(308\) 0 0
\(309\) −7102.18 −1.30754
\(310\) 0 0
\(311\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(312\) 0 0
\(313\) −7378.00 −1.33236 −0.666181 0.745790i \(-0.732072\pi\)
−0.666181 + 0.745790i \(0.732072\pi\)
\(314\) 0 0
\(315\) 7856.58i 1.40530i
\(316\) 0 0
\(317\) −528.916 −0.0937125 −0.0468563 0.998902i \(-0.514920\pi\)
−0.0468563 + 0.998902i \(0.514920\pi\)
\(318\) 0 0
\(319\) − 16254.8i − 2.85296i
\(320\) 0 0
\(321\) 1890.00 0.328628
\(322\) 0 0
\(323\) 0 0
\(324\) 0 0
\(325\) 0 0
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) 0 0
\(330\) 0 0
\(331\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) 0 0
\(336\) 0 0
\(337\) −11594.0 −1.87408 −0.937041 0.349220i \(-0.886447\pi\)
−0.937041 + 0.349220i \(0.886447\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) 24590.3 3.90511
\(342\) 0 0
\(343\) 6907.56i 1.08739i
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) − 10984.7i − 1.69939i −0.527276 0.849694i \(-0.676787\pi\)
0.527276 0.849694i \(-0.323213\pi\)
\(348\) 0 0
\(349\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(360\) 0 0
\(361\) −6859.00 −1.00000
\(362\) 0 0
\(363\) − 20582.0i − 2.97596i
\(364\) 0 0
\(365\) 6375.27 0.914239
\(366\) 0 0
\(367\) − 5276.20i − 0.750451i −0.926934 0.375225i \(-0.877565\pi\)
0.926934 0.375225i \(-0.122435\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) 8521.69i 1.19252i
\(372\) 0 0
\(373\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(374\) 0 0
\(375\) − 14608.8i − 2.01171i
\(376\) 0 0
\(377\) 0 0
\(378\) 0 0
\(379\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(380\) 0 0
\(381\) 9087.74 1.22199
\(382\) 0 0
\(383\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(384\) 0 0
\(385\) 21168.0 2.80213
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) 6191.43 0.806987 0.403493 0.914983i \(-0.367796\pi\)
0.403493 + 0.914983i \(0.367796\pi\)
\(390\) 0 0
\(391\) 0 0
\(392\) 0 0
\(393\) 6858.00 0.880255
\(394\) 0 0
\(395\) − 6110.68i − 0.778383i
\(396\) 0 0
\(397\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(402\) 0 0
\(403\) 0 0
\(404\) 0 0
\(405\) −14433.5 −1.77088
\(406\) 0 0
\(407\) 0 0
\(408\) 0 0
\(409\) −11270.0 −1.36251 −0.681254 0.732047i \(-0.738565\pi\)
−0.681254 + 0.732047i \(0.738565\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) −10538.7 −1.25563
\(414\) 0 0
\(415\) 17489.4i 2.06872i
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) − 11940.8i − 1.39223i −0.717930 0.696115i \(-0.754910\pi\)
0.717930 0.696115i \(-0.245090\pi\)
\(420\) 0 0
\(421\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) 0 0
\(426\) 0 0
\(427\) 0 0
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(432\) 0 0
\(433\) 15442.0 1.71385 0.856923 0.515445i \(-0.172373\pi\)
0.856923 + 0.515445i \(0.172373\pi\)
\(434\) 0 0
\(435\) 22987.8i 2.53375i
\(436\) 0 0
\(437\) 0 0
\(438\) 0 0
\(439\) − 17562.8i − 1.90940i −0.297562 0.954702i \(-0.596174\pi\)
0.297562 0.954702i \(-0.403826\pi\)
\(440\) 0 0
\(441\) −3429.00 −0.370262
\(442\) 0 0
\(443\) 11130.2i 1.19370i 0.802352 + 0.596851i \(0.203582\pi\)
−0.802352 + 0.596851i \(0.796418\pi\)
\(444\) 0 0
\(445\) 0 0
\(446\) 0 0
\(447\) − 6451.96i − 0.682700i
\(448\) 0 0
\(449\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(450\) 0 0
\(451\) 0 0
\(452\) 0 0
\(453\) −18710.0 −1.94056
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) −2774.00 −0.283944 −0.141972 0.989871i \(-0.545344\pi\)
−0.141972 + 0.989871i \(0.545344\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) 19620.8 1.98228 0.991141 0.132816i \(-0.0424020\pi\)
0.991141 + 0.132816i \(0.0424020\pi\)
\(462\) 0 0
\(463\) 7304.38i 0.733182i 0.930382 + 0.366591i \(0.119475\pi\)
−0.930382 + 0.366591i \(0.880525\pi\)
\(464\) 0 0
\(465\) −34776.0 −3.46817
\(466\) 0 0
\(467\) 19069.9i 1.88961i 0.327630 + 0.944806i \(0.393750\pi\)
−0.327630 + 0.944806i \(0.606250\pi\)
\(468\) 0 0
\(469\) 0 0
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) 0 0
\(474\) 0 0
\(475\) 0 0
\(476\) 0 0
\(477\) −15655.3 −1.50274
\(478\) 0 0
\(479\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(480\) 0 0
\(481\) 0 0
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) 11364.6 1.06400
\(486\) 0 0
\(487\) 21295.9i 1.98154i 0.135571 + 0.990768i \(0.456713\pi\)
−0.135571 + 0.990768i \(0.543287\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) 800.207i 0.0735496i 0.999324 + 0.0367748i \(0.0117084\pi\)
−0.999324 + 0.0367748i \(0.988292\pi\)
\(492\) 0 0
\(493\) 0 0
\(494\) 0 0
\(495\) 38888.1i 3.53109i
\(496\) 0 0
\(497\) 0 0
\(498\) 0 0
\(499\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(504\) 0 0
\(505\) 34888.0 3.07425
\(506\) 0 0
\(507\) 11415.9i 1.00000i
\(508\) 0 0
\(509\) −4296.38 −0.374133 −0.187067 0.982347i \(-0.559898\pi\)
−0.187067 + 0.982347i \(0.559898\pi\)
\(510\) 0 0
\(511\) − 4732.41i − 0.409686i
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) − 27061.6i − 2.31549i
\(516\) 0 0
\(517\) 0 0
\(518\) 0 0
\(519\) 13065.6i 1.10504i
\(520\) 0 0
\(521\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(522\) 0 0
\(523\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(524\) 0 0
\(525\) −20390.1 −1.69504
\(526\) 0 0
\(527\) 0 0
\(528\) 0 0
\(529\) −12167.0 −1.00000
\(530\) 0 0
\(531\) − 19360.9i − 1.58228i
\(532\) 0 0
\(533\) 0 0
\(534\) 0 0
\(535\) 7201.50i 0.581959i
\(536\) 0 0
\(537\) 6426.00 0.516392
\(538\) 0 0
\(539\) 9238.76i 0.738296i
\(540\) 0 0
\(541\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) 0 0
\(546\) 0 0
\(547\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) 0 0
\(552\) 0 0
\(553\) −4536.00 −0.348807
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) −20803.1 −1.58250 −0.791252 0.611490i \(-0.790570\pi\)
−0.791252 + 0.611490i \(0.790570\pi\)
\(558\) 0 0
\(559\) 0 0
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) − 9030.91i − 0.676035i −0.941140 0.338017i \(-0.890244\pi\)
0.941140 0.338017i \(-0.109756\pi\)
\(564\) 0 0
\(565\) 0 0
\(566\) 0 0
\(567\) 10714.1i 0.793560i
\(568\) 0 0
\(569\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(570\) 0 0
\(571\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) 0 0
\(576\) 0 0
\(577\) −10906.0 −0.786868 −0.393434 0.919353i \(-0.628713\pi\)
−0.393434 + 0.919353i \(0.628713\pi\)
\(578\) 0 0
\(579\) − 13104.7i − 0.940609i
\(580\) 0 0
\(581\) 12982.5 0.927029
\(582\) 0 0
\(583\) 42180.2i 2.99644i
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) − 25305.3i − 1.77932i −0.456625 0.889659i \(-0.650942\pi\)
0.456625 0.889659i \(-0.349058\pi\)
\(588\) 0 0
\(589\) 0 0
\(590\) 0 0
\(591\) − 28732.5i − 1.99983i
\(592\) 0 0
\(593\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0 0
\(597\) −381.838 −0.0261768
\(598\) 0 0
\(599\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(600\) 0 0
\(601\) 3598.00 0.244202 0.122101 0.992518i \(-0.461037\pi\)
0.122101 + 0.992518i \(0.461037\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) 78423.8 5.27005
\(606\) 0 0
\(607\) 5423.17i 0.362635i 0.983425 + 0.181318i \(0.0580362\pi\)
−0.983425 + 0.181318i \(0.941964\pi\)
\(608\) 0 0
\(609\) 17064.0 1.13542
\(610\) 0 0
\(611\) 0 0
\(612\) 0 0
\(613\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(618\) 0 0
\(619\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) 0 0
\(624\) 0 0
\(625\) 22289.0 1.42650
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) 0 0
\(630\) 0 0
\(631\) − 9156.19i − 0.577658i −0.957381 0.288829i \(-0.906734\pi\)
0.957381 0.288829i \(-0.0932659\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) 34627.2i 2.16400i
\(636\) 0 0
\(637\) 0 0
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(642\) 0 0
\(643\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(648\) 0 0
\(649\) −52164.0 −3.15503
\(650\) 0 0
\(651\) 25814.5i 1.55415i
\(652\) 0 0
\(653\) 16973.4 1.01718 0.508591 0.861008i \(-0.330166\pi\)
0.508591 + 0.861008i \(0.330166\pi\)
\(654\) 0 0
\(655\) 26131.2i 1.55882i
\(656\) 0 0
\(657\) 8694.00 0.516264
\(658\) 0 0
\(659\) 33681.5i 1.99096i 0.0949654 + 0.995481i \(0.469726\pi\)
−0.0949654 + 0.995481i \(0.530274\pi\)
\(660\) 0 0
\(661\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) 0 0
\(666\) 0 0
\(667\) 0 0
\(668\) 0 0
\(669\) −34594.5 −1.99925
\(670\) 0 0
\(671\) 0 0
\(672\) 0 0
\(673\) −29342.0 −1.68061 −0.840305 0.542113i \(-0.817624\pi\)
−0.840305 + 0.542113i \(0.817624\pi\)
\(674\) 0 0
\(675\) − 37459.1i − 2.13600i
\(676\) 0 0
\(677\) −5721.91 −0.324831 −0.162416 0.986722i \(-0.551929\pi\)
−0.162416 + 0.986722i \(0.551929\pi\)
\(678\) 0 0
\(679\) − 8436.04i − 0.476798i
\(680\) 0 0
\(681\) 30942.0 1.74112
\(682\) 0 0
\(683\) 33827.0i 1.89510i 0.319610 + 0.947549i \(0.396448\pi\)
−0.319610 + 0.947549i \(0.603552\pi\)
\(684\) 0 0
\(685\) 0 0
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) 0 0
\(690\) 0 0
\(691\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(692\) 0 0
\(693\) 28866.9 1.58234
\(694\) 0 0
\(695\) 0 0
\(696\) 0 0
\(697\) 0 0
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) −27613.9 −1.48782 −0.743911 0.668278i \(-0.767032\pi\)
−0.743911 + 0.668278i \(0.767032\pi\)
\(702\) 0 0
\(703\) 0 0
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) − 25897.6i − 1.37762i
\(708\) 0 0
\(709\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(710\) 0 0
\(711\) − 8333.16i − 0.439547i
\(712\) 0 0
\(713\) 0 0
\(714\) 0 0
\(715\) 0 0
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(720\) 0 0
\(721\) −20088.0 −1.03761
\(722\) 0 0
\(723\) 32372.0i 1.66518i
\(724\) 0 0
\(725\) −59660.0 −3.05616
\(726\) 0 0
\(727\) − 38961.6i − 1.98763i −0.111060 0.993814i \(-0.535425\pi\)
0.111060 0.993814i \(-0.464575\pi\)
\(728\) 0 0
\(729\) −19683.0 −1.00000
\(730\) 0 0
\(731\) 0 0
\(732\) 0 0
\(733\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(734\) 0 0
\(735\) − 13065.6i − 0.655689i
\(736\) 0 0
\(737\) 0 0
\(738\) 0 0
\(739\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(744\) 0 0
\(745\) 24584.0 1.20898
\(746\) 0 0
\(747\) 23850.3i 1.16819i
\(748\) 0 0
\(749\) 5345.73 0.260786
\(750\) 0 0
\(751\) − 35081.6i − 1.70459i −0.523063 0.852294i \(-0.675211\pi\)
0.523063 0.852294i \(-0.324789\pi\)
\(752\) 0 0
\(753\) 35478.0 1.71699
\(754\) 0 0
\(755\) − 71291.2i − 3.43649i
\(756\) 0 0
\(757\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(762\) 0 0
\(763\) 0 0
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) 0 0
\(768\) 0 0
\(769\) 42406.0 1.98856 0.994278 0.106824i \(-0.0340682\pi\)
0.994278 + 0.106824i \(0.0340682\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) 38152.7 1.77523 0.887617 0.460583i \(-0.152360\pi\)
0.887617 + 0.460583i \(0.152360\pi\)
\(774\) 0 0
\(775\) − 90253.9i − 4.18325i
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) 0 0
\(780\) 0 0
\(781\) 0 0
\(782\) 0 0
\(783\) 31348.6i 1.43079i
\(784\) 0 0
\(785\) 0 0
\(786\) 0 0
\(787\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) 0 0
\(792\) 0 0
\(793\) 0 0
\(794\) 0 0
\(795\) − 59651.8i − 2.66117i
\(796\) 0 0
\(797\) −26708.8 −1.18705 −0.593523 0.804817i \(-0.702263\pi\)
−0.593523 + 0.804817i \(0.702263\pi\)
\(798\) 0 0
\(799\) 0 0
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) − 23424.3i − 1.02942i
\(804\) 0 0
\(805\) 0 0
\(806\) 0 0
\(807\) − 26028.3i − 1.13536i
\(808\) 0 0
\(809\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(810\) 0 0
\(811\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(812\) 0 0
\(813\) 27110.5 1.16950
\(814\) 0 0
\(815\) 0 0
\(816\) 0 0
\(817\) 0 0
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) −7260.57 −0.308643 −0.154321 0.988021i \(-0.549319\pi\)
−0.154321 + 0.988021i \(0.549319\pi\)
\(822\) 0 0
\(823\) 44340.7i 1.87803i 0.343877 + 0.939015i \(0.388260\pi\)
−0.343877 + 0.939015i \(0.611740\pi\)
\(824\) 0 0
\(825\) −100926. −4.25914
\(826\) 0 0
\(827\) 24660.9i 1.03693i 0.855097 + 0.518467i \(0.173497\pi\)
−0.855097 + 0.518467i \(0.826503\pi\)
\(828\) 0 0
\(829\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) 0 0
\(834\) 0 0
\(835\) 0 0
\(836\) 0 0
\(837\) −47424.2 −1.95845
\(838\) 0 0
\(839\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(840\) 0 0
\(841\) 25539.0 1.04715
\(842\) 0 0
\(843\) 0 0
\(844\) 0 0
\(845\) −43498.4 −1.77088
\(846\) 0 0
\(847\) − 58214.6i − 2.36160i
\(848\) 0 0
\(849\) 0 0
\(850\) 0 0
\(851\) 0 0
\(852\) 0 0
\(853\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(858\) 0 0
\(859\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(864\) 0 0
\(865\) −49784.0 −1.95689
\(866\) 0 0
\(867\) 25528.7i 1.00000i
\(868\) 0 0
\(869\) −22452.1 −0.876449
\(870\) 0 0
\(871\) 0 0
\(872\) 0 0
\(873\) 15498.0 0.600834
\(874\) 0 0
\(875\) − 41319.8i − 1.59642i
\(876\) 0 0
\(877\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(878\) 0 0
\(879\) − 49896.1i − 1.91462i
\(880\) 0 0
\(881\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(882\) 0 0
\(883\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(884\) 0 0
\(885\) 73771.0 2.80202
\(886\) 0 0
\(887\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(888\) 0 0
\(889\) 25704.0 0.969724
\(890\) 0 0
\(891\) 53031.9i 1.99398i
\(892\) 0 0
\(893\) 0 0
\(894\) 0 0
\(895\) 24485.1i 0.914465i
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) 75531.3i 2.80212i
\(900\) 0 0
\(901\) 0 0
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) 0 0
\(906\) 0 0
\(907\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(908\) 0 0
\(909\) 47577.0 1.73601
\(910\) 0 0
\(911\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(912\) 0 0
\(913\) 64260.0 2.32935
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) 19397.4 0.698535
\(918\) 0 0
\(919\) 54217.0i 1.94609i 0.230622 + 0.973044i \(0.425924\pi\)
−0.230622 + 0.973044i \(0.574076\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) 0 0
\(924\) 0 0
\(925\) 0 0
\(926\) 0 0
\(927\) − 36904.0i − 1.30754i
\(928\) 0 0
\(929\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(930\) 0 0
\(931\) 0 0
\(932\) 0 0
\(933\) 0 0
\(934\) 0 0
\(935\) 0 0
\(936\) 0 0
\(937\) 32074.0 1.11826 0.559131 0.829079i \(-0.311135\pi\)
0.559131 + 0.829079i \(0.311135\pi\)
\(938\) 0 0
\(939\) − 38337.2i − 1.33236i
\(940\) 0 0
\(941\) −24570.5 −0.851198 −0.425599 0.904912i \(-0.639937\pi\)
−0.425599 + 0.904912i \(0.639937\pi\)
\(942\) 0 0
\(943\) 0 0
\(944\) 0 0
\(945\) −40824.0 −1.40530
\(946\) 0 0
\(947\) 54632.3i 1.87467i 0.348429 + 0.937335i \(0.386715\pi\)
−0.348429 + 0.937335i \(0.613285\pi\)
\(948\) 0 0
\(949\) 0 0
\(950\) 0 0
\(951\) − 2748.33i − 0.0937125i
\(952\) 0 0
\(953\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(954\) 0 0
\(955\) 0 0
\(956\) 0 0
\(957\) 84462.5 2.85296
\(958\) 0 0
\(959\) 0 0
\(960\) 0 0
\(961\) −84473.0 −2.83552
\(962\) 0 0
\(963\) 9820.73i 0.328628i
\(964\) 0 0
\(965\) 49933.1 1.66570
\(966\) 0 0
\(967\) − 14094.4i − 0.468712i −0.972151 0.234356i \(-0.924702\pi\)
0.972151 0.234356i \(-0.0752981\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) 10049.4i 0.332131i 0.986115 + 0.166066i \(0.0531063\pi\)
−0.986115 + 0.166066i \(0.946894\pi\)
\(972\) 0 0
\(973\) 0 0
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(978\) 0 0
\(979\) 0 0
\(980\) 0 0
\(981\) 0 0
\(982\) 0 0
\(983\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(984\) 0 0
\(985\) 109480. 3.54144
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) 0 0
\(990\) 0 0
\(991\) − 58126.4i − 1.86321i −0.363466 0.931607i \(-0.618407\pi\)
0.363466 0.931607i \(-0.381593\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) − 1454.92i − 0.0463559i
\(996\) 0 0
\(997\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 384.4.f.a.191.3 yes 4
3.2 odd 2 inner 384.4.f.a.191.2 yes 4
4.3 odd 2 inner 384.4.f.a.191.1 4
8.3 odd 2 inner 384.4.f.a.191.4 yes 4
8.5 even 2 inner 384.4.f.a.191.2 yes 4
12.11 even 2 inner 384.4.f.a.191.4 yes 4
16.3 odd 4 768.4.c.q.767.4 4
16.5 even 4 768.4.c.q.767.3 4
16.11 odd 4 768.4.c.q.767.1 4
16.13 even 4 768.4.c.q.767.2 4
24.5 odd 2 CM 384.4.f.a.191.3 yes 4
24.11 even 2 inner 384.4.f.a.191.1 4
48.5 odd 4 768.4.c.q.767.2 4
48.11 even 4 768.4.c.q.767.4 4
48.29 odd 4 768.4.c.q.767.3 4
48.35 even 4 768.4.c.q.767.1 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
384.4.f.a.191.1 4 4.3 odd 2 inner
384.4.f.a.191.1 4 24.11 even 2 inner
384.4.f.a.191.2 yes 4 3.2 odd 2 inner
384.4.f.a.191.2 yes 4 8.5 even 2 inner
384.4.f.a.191.3 yes 4 1.1 even 1 trivial
384.4.f.a.191.3 yes 4 24.5 odd 2 CM
384.4.f.a.191.4 yes 4 8.3 odd 2 inner
384.4.f.a.191.4 yes 4 12.11 even 2 inner
768.4.c.q.767.1 4 16.11 odd 4
768.4.c.q.767.1 4 48.35 even 4
768.4.c.q.767.2 4 16.13 even 4
768.4.c.q.767.2 4 48.5 odd 4
768.4.c.q.767.3 4 16.5 even 4
768.4.c.q.767.3 4 48.29 odd 4
768.4.c.q.767.4 4 16.3 odd 4
768.4.c.q.767.4 4 48.11 even 4