Properties

Label 384.3.l
Level $384$
Weight $3$
Character orbit 384.l
Rep. character $\chi_{384}(31,\cdot)$
Character field $\Q(\zeta_{4})$
Dimension $32$
Newform subspaces $2$
Sturm bound $192$
Trace bound $11$

Related objects

Downloads

Learn more about

Defining parameters

Level: \( N \) \(=\) \( 384 = 2^{7} \cdot 3 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 384.l (of order \(4\) and degree \(2\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 16 \)
Character field: \(\Q(i)\)
Newform subspaces: \( 2 \)
Sturm bound: \(192\)
Trace bound: \(11\)
Distinguishing \(T_p\): \(7\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{3}(384, [\chi])\).

Total New Old
Modular forms 288 32 256
Cusp forms 224 32 192
Eisenstein series 64 0 64

Trace form

\( 32q + O(q^{10}) \) \( 32q - 64q^{29} + 192q^{37} + 224q^{49} + 320q^{53} + 64q^{61} - 64q^{65} - 192q^{69} - 448q^{77} - 288q^{81} - 320q^{85} + O(q^{100}) \)

Decomposition of \(S_{3}^{\mathrm{new}}(384, [\chi])\) into newform subspaces

Label Dim. \(A\) Field CM Traces $q$-expansion
\(a_2\) \(a_3\) \(a_5\) \(a_7\)
384.3.l.a \(16\) \(10.463\) \(\mathbb{Q}[x]/(x^{16} - \cdots)\) None \(0\) \(0\) \(0\) \(0\) \(q-\beta _{2}q^{3}+\beta _{9}q^{5}-\beta _{5}q^{7}-3\beta _{4}q^{9}+\cdots\)
384.3.l.b \(16\) \(10.463\) \(\mathbb{Q}[x]/(x^{16} - \cdots)\) None \(0\) \(0\) \(0\) \(0\) \(q+\beta _{2}q^{3}+\beta _{9}q^{5}+\beta _{5}q^{7}-3\beta _{4}q^{9}+\cdots\)

Decomposition of \(S_{3}^{\mathrm{old}}(384, [\chi])\) into lower level spaces

\( S_{3}^{\mathrm{old}}(384, [\chi]) \cong \) \(S_{3}^{\mathrm{new}}(16, [\chi])\)\(^{\oplus 8}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(48, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(64, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(128, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(192, [\chi])\)\(^{\oplus 2}\)