Properties

Label 384.3.i.c.353.2
Level $384$
Weight $3$
Character 384.353
Analytic conductor $10.463$
Analytic rank $0$
Dimension $20$
CM no
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [384,3,Mod(161,384)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(384, base_ring=CyclotomicField(4))
 
chi = DirichletCharacter(H, H._module([0, 3, 2]))
 
N = Newforms(chi, 3, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("384.161");
 
S:= CuspForms(chi, 3);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 384 = 2^{7} \cdot 3 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 384.i (of order \(4\), degree \(2\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(10.4632421514\)
Analytic rank: \(0\)
Dimension: \(20\)
Relative dimension: \(10\) over \(\Q(i)\)
Coefficient field: \(\mathbb{Q}[x]/(x^{20} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{20} - 2 x^{18} + 6 x^{16} - 24 x^{14} - 24 x^{12} + 1216 x^{10} - 384 x^{8} - 6144 x^{6} + 24576 x^{4} - 131072 x^{2} + 1048576 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 2^{23} \)
Twist minimal: no (minimal twist has level 48)
Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

Embedding invariants

Embedding label 353.2
Root \(1.85381 + 0.750590i\) of defining polynomial
Character \(\chi\) \(=\) 384.353
Dual form 384.3.i.c.161.2

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-2.59524 - 1.50491i) q^{3} +(-2.59897 + 2.59897i) q^{5} -7.30027i q^{7} +(4.47050 + 7.81118i) q^{9} +O(q^{10})\) \(q+(-2.59524 - 1.50491i) q^{3} +(-2.59897 + 2.59897i) q^{5} -7.30027i q^{7} +(4.47050 + 7.81118i) q^{9} +(-11.3161 + 11.3161i) q^{11} +(0.746462 - 0.746462i) q^{13} +(10.6561 - 2.83373i) q^{15} +6.67452i q^{17} +(22.1936 - 22.1936i) q^{19} +(-10.9862 + 18.9459i) q^{21} +21.4389 q^{23} +11.4908i q^{25} +(0.153096 - 26.9996i) q^{27} +(1.54272 + 1.54272i) q^{29} +14.6082 q^{31} +(46.3976 - 12.3382i) q^{33} +(18.9732 + 18.9732i) q^{35} +(50.1010 + 50.1010i) q^{37} +(-3.06060 + 0.813888i) q^{39} +15.0731 q^{41} +(26.3634 + 26.3634i) q^{43} +(-31.9197 - 8.68231i) q^{45} +36.6067i q^{47} -4.29399 q^{49} +(10.0445 - 17.3220i) q^{51} +(50.9270 - 50.9270i) q^{53} -58.8202i q^{55} +(-90.9971 + 24.1983i) q^{57} +(12.1683 - 12.1683i) q^{59} +(27.5789 - 27.5789i) q^{61} +(57.0238 - 32.6359i) q^{63} +3.88006i q^{65} +(-4.84214 + 4.84214i) q^{67} +(-55.6391 - 32.2636i) q^{69} -74.9072 q^{71} -3.47110i q^{73} +(17.2925 - 29.8212i) q^{75} +(82.6105 + 82.6105i) q^{77} -103.463 q^{79} +(-41.0292 + 69.8399i) q^{81} +(31.7254 + 31.7254i) q^{83} +(-17.3469 - 17.3469i) q^{85} +(-1.68207 - 6.32538i) q^{87} +78.2605 q^{89} +(-5.44937 - 5.44937i) q^{91} +(-37.9118 - 21.9840i) q^{93} +115.361i q^{95} -61.5651 q^{97} +(-138.981 - 37.8034i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 20 q - 6 q^{3}+O(q^{10}) \) Copy content Toggle raw display \( 20 q - 6 q^{3} - 92 q^{13} + 116 q^{15} - 52 q^{19} - 48 q^{21} + 18 q^{27} + 80 q^{31} + 60 q^{33} + 116 q^{37} + 172 q^{43} - 60 q^{45} - 364 q^{49} + 128 q^{51} + 244 q^{61} - 296 q^{63} + 356 q^{67} + 20 q^{69} - 146 q^{75} - 384 q^{79} - 188 q^{81} - 48 q^{85} + 136 q^{91} + 132 q^{93} + 472 q^{97} - 452 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/384\mathbb{Z}\right)^\times\).

\(n\) \(127\) \(133\) \(257\)
\(\chi(n)\) \(1\) \(e\left(\frac{1}{4}\right)\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −2.59524 1.50491i −0.865079 0.501636i
\(4\) 0 0
\(5\) −2.59897 + 2.59897i −0.519793 + 0.519793i −0.917509 0.397716i \(-0.869803\pi\)
0.397716 + 0.917509i \(0.369803\pi\)
\(6\) 0 0
\(7\) 7.30027i 1.04290i −0.853283 0.521448i \(-0.825392\pi\)
0.853283 0.521448i \(-0.174608\pi\)
\(8\) 0 0
\(9\) 4.47050 + 7.81118i 0.496723 + 0.867909i
\(10\) 0 0
\(11\) −11.3161 + 11.3161i −1.02873 + 1.02873i −0.0291601 + 0.999575i \(0.509283\pi\)
−0.999575 + 0.0291601i \(0.990717\pi\)
\(12\) 0 0
\(13\) 0.746462 0.746462i 0.0574201 0.0574201i −0.677814 0.735234i \(-0.737072\pi\)
0.735234 + 0.677814i \(0.237072\pi\)
\(14\) 0 0
\(15\) 10.6561 2.83373i 0.710409 0.188915i
\(16\) 0 0
\(17\) 6.67452i 0.392619i 0.980542 + 0.196310i \(0.0628957\pi\)
−0.980542 + 0.196310i \(0.937104\pi\)
\(18\) 0 0
\(19\) 22.1936 22.1936i 1.16809 1.16809i 0.185428 0.982658i \(-0.440633\pi\)
0.982658 0.185428i \(-0.0593670\pi\)
\(20\) 0 0
\(21\) −10.9862 + 18.9459i −0.523154 + 0.902187i
\(22\) 0 0
\(23\) 21.4389 0.932128 0.466064 0.884751i \(-0.345672\pi\)
0.466064 + 0.884751i \(0.345672\pi\)
\(24\) 0 0
\(25\) 11.4908i 0.459630i
\(26\) 0 0
\(27\) 0.153096 26.9996i 0.00567024 0.999984i
\(28\) 0 0
\(29\) 1.54272 + 1.54272i 0.0531973 + 0.0531973i 0.733205 0.680008i \(-0.238024\pi\)
−0.680008 + 0.733205i \(0.738024\pi\)
\(30\) 0 0
\(31\) 14.6082 0.471233 0.235616 0.971846i \(-0.424289\pi\)
0.235616 + 0.971846i \(0.424289\pi\)
\(32\) 0 0
\(33\) 46.3976 12.3382i 1.40599 0.373886i
\(34\) 0 0
\(35\) 18.9732 + 18.9732i 0.542090 + 0.542090i
\(36\) 0 0
\(37\) 50.1010 + 50.1010i 1.35408 + 1.35408i 0.881041 + 0.473039i \(0.156843\pi\)
0.473039 + 0.881041i \(0.343157\pi\)
\(38\) 0 0
\(39\) −3.06060 + 0.813888i −0.0784769 + 0.0208689i
\(40\) 0 0
\(41\) 15.0731 0.367637 0.183819 0.982960i \(-0.441154\pi\)
0.183819 + 0.982960i \(0.441154\pi\)
\(42\) 0 0
\(43\) 26.3634 + 26.3634i 0.613102 + 0.613102i 0.943753 0.330651i \(-0.107268\pi\)
−0.330651 + 0.943753i \(0.607268\pi\)
\(44\) 0 0
\(45\) −31.9197 8.68231i −0.709326 0.192940i
\(46\) 0 0
\(47\) 36.6067i 0.778866i 0.921055 + 0.389433i \(0.127329\pi\)
−0.921055 + 0.389433i \(0.872671\pi\)
\(48\) 0 0
\(49\) −4.29399 −0.0876325
\(50\) 0 0
\(51\) 10.0445 17.3220i 0.196952 0.339646i
\(52\) 0 0
\(53\) 50.9270 50.9270i 0.960887 0.960887i −0.0383765 0.999263i \(-0.512219\pi\)
0.999263 + 0.0383765i \(0.0122186\pi\)
\(54\) 0 0
\(55\) 58.8202i 1.06946i
\(56\) 0 0
\(57\) −90.9971 + 24.1983i −1.59644 + 0.424532i
\(58\) 0 0
\(59\) 12.1683 12.1683i 0.206242 0.206242i −0.596426 0.802668i \(-0.703413\pi\)
0.802668 + 0.596426i \(0.203413\pi\)
\(60\) 0 0
\(61\) 27.5789 27.5789i 0.452113 0.452113i −0.443943 0.896055i \(-0.646421\pi\)
0.896055 + 0.443943i \(0.146421\pi\)
\(62\) 0 0
\(63\) 57.0238 32.6359i 0.905139 0.518030i
\(64\) 0 0
\(65\) 3.88006i 0.0596932i
\(66\) 0 0
\(67\) −4.84214 + 4.84214i −0.0722707 + 0.0722707i −0.742318 0.670047i \(-0.766274\pi\)
0.670047 + 0.742318i \(0.266274\pi\)
\(68\) 0 0
\(69\) −55.6391 32.2636i −0.806364 0.467589i
\(70\) 0 0
\(71\) −74.9072 −1.05503 −0.527515 0.849546i \(-0.676876\pi\)
−0.527515 + 0.849546i \(0.676876\pi\)
\(72\) 0 0
\(73\) 3.47110i 0.0475494i −0.999717 0.0237747i \(-0.992432\pi\)
0.999717 0.0237747i \(-0.00756843\pi\)
\(74\) 0 0
\(75\) 17.2925 29.8212i 0.230567 0.397616i
\(76\) 0 0
\(77\) 82.6105 + 82.6105i 1.07286 + 1.07286i
\(78\) 0 0
\(79\) −103.463 −1.30966 −0.654831 0.755775i \(-0.727260\pi\)
−0.654831 + 0.755775i \(0.727260\pi\)
\(80\) 0 0
\(81\) −41.0292 + 69.8399i −0.506533 + 0.862221i
\(82\) 0 0
\(83\) 31.7254 + 31.7254i 0.382233 + 0.382233i 0.871906 0.489673i \(-0.162884\pi\)
−0.489673 + 0.871906i \(0.662884\pi\)
\(84\) 0 0
\(85\) −17.3469 17.3469i −0.204081 0.204081i
\(86\) 0 0
\(87\) −1.68207 6.32538i −0.0193342 0.0727056i
\(88\) 0 0
\(89\) 78.2605 0.879331 0.439666 0.898162i \(-0.355097\pi\)
0.439666 + 0.898162i \(0.355097\pi\)
\(90\) 0 0
\(91\) −5.44937 5.44937i −0.0598832 0.0598832i
\(92\) 0 0
\(93\) −37.9118 21.9840i −0.407653 0.236387i
\(94\) 0 0
\(95\) 115.361i 1.21433i
\(96\) 0 0
\(97\) −61.5651 −0.634692 −0.317346 0.948310i \(-0.602792\pi\)
−0.317346 + 0.948310i \(0.602792\pi\)
\(98\) 0 0
\(99\) −138.981 37.8034i −1.40384 0.381853i
\(100\) 0 0
\(101\) −56.9675 + 56.9675i −0.564034 + 0.564034i −0.930451 0.366417i \(-0.880585\pi\)
0.366417 + 0.930451i \(0.380585\pi\)
\(102\) 0 0
\(103\) 153.944i 1.49460i 0.664485 + 0.747301i \(0.268651\pi\)
−0.664485 + 0.747301i \(0.731349\pi\)
\(104\) 0 0
\(105\) −20.6870 77.7927i −0.197019 0.740883i
\(106\) 0 0
\(107\) −76.9344 + 76.9344i −0.719013 + 0.719013i −0.968403 0.249390i \(-0.919770\pi\)
0.249390 + 0.968403i \(0.419770\pi\)
\(108\) 0 0
\(109\) −74.1271 + 74.1271i −0.680065 + 0.680065i −0.960015 0.279949i \(-0.909682\pi\)
0.279949 + 0.960015i \(0.409682\pi\)
\(110\) 0 0
\(111\) −54.6265 205.421i −0.492131 1.85064i
\(112\) 0 0
\(113\) 38.3909i 0.339742i −0.985466 0.169871i \(-0.945665\pi\)
0.985466 0.169871i \(-0.0543352\pi\)
\(114\) 0 0
\(115\) −55.7191 + 55.7191i −0.484514 + 0.484514i
\(116\) 0 0
\(117\) 9.16781 + 2.49369i 0.0783573 + 0.0213136i
\(118\) 0 0
\(119\) 48.7259 0.409461
\(120\) 0 0
\(121\) 135.108i 1.11659i
\(122\) 0 0
\(123\) −39.1184 22.6837i −0.318035 0.184420i
\(124\) 0 0
\(125\) −94.8382 94.8382i −0.758706 0.758706i
\(126\) 0 0
\(127\) 43.3417 0.341273 0.170636 0.985334i \(-0.445418\pi\)
0.170636 + 0.985334i \(0.445418\pi\)
\(128\) 0 0
\(129\) −28.7447 108.094i −0.222827 0.837935i
\(130\) 0 0
\(131\) −1.21414 1.21414i −0.00926827 0.00926827i 0.702457 0.711726i \(-0.252086\pi\)
−0.711726 + 0.702457i \(0.752086\pi\)
\(132\) 0 0
\(133\) −162.020 162.020i −1.21819 1.21819i
\(134\) 0 0
\(135\) 69.7730 + 70.5688i 0.516837 + 0.522732i
\(136\) 0 0
\(137\) 238.227 1.73889 0.869443 0.494033i \(-0.164478\pi\)
0.869443 + 0.494033i \(0.164478\pi\)
\(138\) 0 0
\(139\) −26.5704 26.5704i −0.191154 0.191154i 0.605041 0.796195i \(-0.293157\pi\)
−0.796195 + 0.605041i \(0.793157\pi\)
\(140\) 0 0
\(141\) 55.0897 95.0030i 0.390707 0.673780i
\(142\) 0 0
\(143\) 16.8940i 0.118140i
\(144\) 0 0
\(145\) −8.01896 −0.0553032
\(146\) 0 0
\(147\) 11.1439 + 6.46207i 0.0758090 + 0.0439596i
\(148\) 0 0
\(149\) 133.254 133.254i 0.894321 0.894321i −0.100605 0.994926i \(-0.532078\pi\)
0.994926 + 0.100605i \(0.0320779\pi\)
\(150\) 0 0
\(151\) 23.3716i 0.154779i 0.997001 + 0.0773895i \(0.0246585\pi\)
−0.997001 + 0.0773895i \(0.975342\pi\)
\(152\) 0 0
\(153\) −52.1359 + 29.8385i −0.340758 + 0.195023i
\(154\) 0 0
\(155\) −37.9662 + 37.9662i −0.244943 + 0.244943i
\(156\) 0 0
\(157\) 95.8780 95.8780i 0.610688 0.610688i −0.332438 0.943125i \(-0.607871\pi\)
0.943125 + 0.332438i \(0.107871\pi\)
\(158\) 0 0
\(159\) −208.808 + 55.5272i −1.31326 + 0.349227i
\(160\) 0 0
\(161\) 156.510i 0.972113i
\(162\) 0 0
\(163\) −103.379 + 103.379i −0.634230 + 0.634230i −0.949126 0.314896i \(-0.898030\pi\)
0.314896 + 0.949126i \(0.398030\pi\)
\(164\) 0 0
\(165\) −88.5190 + 152.652i −0.536479 + 0.925166i
\(166\) 0 0
\(167\) 113.980 0.682515 0.341258 0.939970i \(-0.389147\pi\)
0.341258 + 0.939970i \(0.389147\pi\)
\(168\) 0 0
\(169\) 167.886i 0.993406i
\(170\) 0 0
\(171\) 272.575 + 74.1418i 1.59401 + 0.433578i
\(172\) 0 0
\(173\) 144.265 + 144.265i 0.833901 + 0.833901i 0.988048 0.154147i \(-0.0492630\pi\)
−0.154147 + 0.988048i \(0.549263\pi\)
\(174\) 0 0
\(175\) 83.8857 0.479347
\(176\) 0 0
\(177\) −49.8918 + 13.2674i −0.281875 + 0.0749573i
\(178\) 0 0
\(179\) 16.8240 + 16.8240i 0.0939888 + 0.0939888i 0.752538 0.658549i \(-0.228829\pi\)
−0.658549 + 0.752538i \(0.728829\pi\)
\(180\) 0 0
\(181\) −34.2037 34.2037i −0.188971 0.188971i 0.606280 0.795251i \(-0.292661\pi\)
−0.795251 + 0.606280i \(0.792661\pi\)
\(182\) 0 0
\(183\) −113.077 + 30.0700i −0.617909 + 0.164317i
\(184\) 0 0
\(185\) −260.421 −1.40768
\(186\) 0 0
\(187\) −75.5295 75.5295i −0.403901 0.403901i
\(188\) 0 0
\(189\) −197.104 1.11765i −1.04288 0.00591347i
\(190\) 0 0
\(191\) 150.160i 0.786177i −0.919501 0.393088i \(-0.871407\pi\)
0.919501 0.393088i \(-0.128593\pi\)
\(192\) 0 0
\(193\) 117.637 0.609518 0.304759 0.952429i \(-0.401424\pi\)
0.304759 + 0.952429i \(0.401424\pi\)
\(194\) 0 0
\(195\) 5.83913 10.0697i 0.0299442 0.0516393i
\(196\) 0 0
\(197\) 31.8524 31.8524i 0.161688 0.161688i −0.621626 0.783314i \(-0.713528\pi\)
0.783314 + 0.621626i \(0.213528\pi\)
\(198\) 0 0
\(199\) 128.347i 0.644959i −0.946576 0.322480i \(-0.895484\pi\)
0.946576 0.322480i \(-0.104516\pi\)
\(200\) 0 0
\(201\) 19.8535 5.27952i 0.0987735 0.0262663i
\(202\) 0 0
\(203\) 11.2623 11.2623i 0.0554793 0.0554793i
\(204\) 0 0
\(205\) −39.1746 + 39.1746i −0.191095 + 0.191095i
\(206\) 0 0
\(207\) 95.8429 + 167.464i 0.463009 + 0.809003i
\(208\) 0 0
\(209\) 502.290i 2.40330i
\(210\) 0 0
\(211\) 78.8045 78.8045i 0.373481 0.373481i −0.495262 0.868743i \(-0.664928\pi\)
0.868743 + 0.495262i \(0.164928\pi\)
\(212\) 0 0
\(213\) 194.402 + 112.728i 0.912685 + 0.529241i
\(214\) 0 0
\(215\) −137.035 −0.637372
\(216\) 0 0
\(217\) 106.644i 0.491447i
\(218\) 0 0
\(219\) −5.22369 + 9.00834i −0.0238525 + 0.0411340i
\(220\) 0 0
\(221\) 4.98228 + 4.98228i 0.0225442 + 0.0225442i
\(222\) 0 0
\(223\) 153.748 0.689455 0.344727 0.938703i \(-0.387971\pi\)
0.344727 + 0.938703i \(0.387971\pi\)
\(224\) 0 0
\(225\) −89.7564 + 51.3695i −0.398917 + 0.228309i
\(226\) 0 0
\(227\) 43.6518 + 43.6518i 0.192299 + 0.192299i 0.796689 0.604390i \(-0.206583\pi\)
−0.604390 + 0.796689i \(0.706583\pi\)
\(228\) 0 0
\(229\) 111.882 + 111.882i 0.488566 + 0.488566i 0.907853 0.419288i \(-0.137720\pi\)
−0.419288 + 0.907853i \(0.637720\pi\)
\(230\) 0 0
\(231\) −90.0726 338.715i −0.389925 1.46630i
\(232\) 0 0
\(233\) 32.4793 0.139396 0.0696980 0.997568i \(-0.477796\pi\)
0.0696980 + 0.997568i \(0.477796\pi\)
\(234\) 0 0
\(235\) −95.1395 95.1395i −0.404849 0.404849i
\(236\) 0 0
\(237\) 268.512 + 155.703i 1.13296 + 0.656974i
\(238\) 0 0
\(239\) 133.305i 0.557762i 0.960326 + 0.278881i \(0.0899636\pi\)
−0.960326 + 0.278881i \(0.910036\pi\)
\(240\) 0 0
\(241\) 159.670 0.662532 0.331266 0.943537i \(-0.392524\pi\)
0.331266 + 0.943537i \(0.392524\pi\)
\(242\) 0 0
\(243\) 211.583 119.506i 0.870712 0.491793i
\(244\) 0 0
\(245\) 11.1599 11.1599i 0.0455508 0.0455508i
\(246\) 0 0
\(247\) 33.1334i 0.134143i
\(248\) 0 0
\(249\) −34.5911 130.079i −0.138920 0.522404i
\(250\) 0 0
\(251\) 106.711 106.711i 0.425141 0.425141i −0.461828 0.886969i \(-0.652806\pi\)
0.886969 + 0.461828i \(0.152806\pi\)
\(252\) 0 0
\(253\) −242.605 + 242.605i −0.958913 + 0.958913i
\(254\) 0 0
\(255\) 18.9138 + 71.1246i 0.0741717 + 0.278920i
\(256\) 0 0
\(257\) 343.816i 1.33781i −0.743350 0.668903i \(-0.766764\pi\)
0.743350 0.668903i \(-0.233236\pi\)
\(258\) 0 0
\(259\) 365.751 365.751i 1.41217 1.41217i
\(260\) 0 0
\(261\) −5.15374 + 18.9472i −0.0197461 + 0.0725948i
\(262\) 0 0
\(263\) −266.255 −1.01238 −0.506188 0.862423i \(-0.668946\pi\)
−0.506188 + 0.862423i \(0.668946\pi\)
\(264\) 0 0
\(265\) 264.715i 0.998925i
\(266\) 0 0
\(267\) −203.104 117.775i −0.760691 0.441104i
\(268\) 0 0
\(269\) −102.194 102.194i −0.379904 0.379904i 0.491164 0.871067i \(-0.336572\pi\)
−0.871067 + 0.491164i \(0.836572\pi\)
\(270\) 0 0
\(271\) 38.5636 0.142301 0.0711505 0.997466i \(-0.477333\pi\)
0.0711505 + 0.997466i \(0.477333\pi\)
\(272\) 0 0
\(273\) 5.94161 + 22.3432i 0.0217641 + 0.0818433i
\(274\) 0 0
\(275\) −130.030 130.030i −0.472838 0.472838i
\(276\) 0 0
\(277\) 277.306 + 277.306i 1.00111 + 1.00111i 0.999999 + 0.00110593i \(0.000352027\pi\)
0.00110593 + 0.999999i \(0.499648\pi\)
\(278\) 0 0
\(279\) 65.3061 + 114.107i 0.234072 + 0.408987i
\(280\) 0 0
\(281\) −458.765 −1.63262 −0.816308 0.577617i \(-0.803983\pi\)
−0.816308 + 0.577617i \(0.803983\pi\)
\(282\) 0 0
\(283\) 276.746 + 276.746i 0.977900 + 0.977900i 0.999761 0.0218614i \(-0.00695927\pi\)
−0.0218614 + 0.999761i \(0.506959\pi\)
\(284\) 0 0
\(285\) 173.608 299.389i 0.609149 1.05049i
\(286\) 0 0
\(287\) 110.038i 0.383408i
\(288\) 0 0
\(289\) 244.451 0.845850
\(290\) 0 0
\(291\) 159.776 + 92.6499i 0.549059 + 0.318384i
\(292\) 0 0
\(293\) −306.513 + 306.513i −1.04612 + 1.04612i −0.0472370 + 0.998884i \(0.515042\pi\)
−0.998884 + 0.0472370i \(0.984958\pi\)
\(294\) 0 0
\(295\) 63.2500i 0.214407i
\(296\) 0 0
\(297\) 303.797 + 307.262i 1.02289 + 1.03455i
\(298\) 0 0
\(299\) 16.0033 16.0033i 0.0535229 0.0535229i
\(300\) 0 0
\(301\) 192.460 192.460i 0.639401 0.639401i
\(302\) 0 0
\(303\) 233.575 62.1133i 0.770874 0.204994i
\(304\) 0 0
\(305\) 143.353i 0.470010i
\(306\) 0 0
\(307\) −359.692 + 359.692i −1.17163 + 1.17163i −0.189814 + 0.981820i \(0.560789\pi\)
−0.981820 + 0.189814i \(0.939211\pi\)
\(308\) 0 0
\(309\) 231.672 399.521i 0.749746 1.29295i
\(310\) 0 0
\(311\) 572.008 1.83925 0.919626 0.392794i \(-0.128492\pi\)
0.919626 + 0.392794i \(0.128492\pi\)
\(312\) 0 0
\(313\) 333.314i 1.06490i 0.846461 + 0.532450i \(0.178729\pi\)
−0.846461 + 0.532450i \(0.821271\pi\)
\(314\) 0 0
\(315\) −63.3832 + 233.022i −0.201217 + 0.739754i
\(316\) 0 0
\(317\) −266.382 266.382i −0.840322 0.840322i 0.148578 0.988901i \(-0.452530\pi\)
−0.988901 + 0.148578i \(0.952530\pi\)
\(318\) 0 0
\(319\) −34.9151 −0.109452
\(320\) 0 0
\(321\) 315.442 83.8838i 0.982686 0.261320i
\(322\) 0 0
\(323\) 148.132 + 148.132i 0.458613 + 0.458613i
\(324\) 0 0
\(325\) 8.57741 + 8.57741i 0.0263920 + 0.0263920i
\(326\) 0 0
\(327\) 303.932 80.8229i 0.929455 0.247165i
\(328\) 0 0
\(329\) 267.239 0.812276
\(330\) 0 0
\(331\) −212.431 212.431i −0.641787 0.641787i 0.309208 0.950995i \(-0.399936\pi\)
−0.950995 + 0.309208i \(0.899936\pi\)
\(332\) 0 0
\(333\) −167.371 + 615.325i −0.502617 + 1.84782i
\(334\) 0 0
\(335\) 25.1691i 0.0751317i
\(336\) 0 0
\(337\) −207.477 −0.615658 −0.307829 0.951442i \(-0.599602\pi\)
−0.307829 + 0.951442i \(0.599602\pi\)
\(338\) 0 0
\(339\) −57.7748 + 99.6335i −0.170427 + 0.293904i
\(340\) 0 0
\(341\) −165.308 + 165.308i −0.484773 + 0.484773i
\(342\) 0 0
\(343\) 326.366i 0.951505i
\(344\) 0 0
\(345\) 228.456 60.7521i 0.662192 0.176093i
\(346\) 0 0
\(347\) 98.4692 98.4692i 0.283773 0.283773i −0.550839 0.834612i \(-0.685692\pi\)
0.834612 + 0.550839i \(0.185692\pi\)
\(348\) 0 0
\(349\) 337.382 337.382i 0.966711 0.966711i −0.0327527 0.999463i \(-0.510427\pi\)
0.999463 + 0.0327527i \(0.0104274\pi\)
\(350\) 0 0
\(351\) −20.0399 20.2684i −0.0570936 0.0577448i
\(352\) 0 0
\(353\) 293.330i 0.830964i −0.909601 0.415482i \(-0.863613\pi\)
0.909601 0.415482i \(-0.136387\pi\)
\(354\) 0 0
\(355\) 194.681 194.681i 0.548398 0.548398i
\(356\) 0 0
\(357\) −126.455 73.3279i −0.354216 0.205400i
\(358\) 0 0
\(359\) 305.954 0.852239 0.426119 0.904667i \(-0.359880\pi\)
0.426119 + 0.904667i \(0.359880\pi\)
\(360\) 0 0
\(361\) 624.114i 1.72885i
\(362\) 0 0
\(363\) −203.324 + 350.636i −0.560122 + 0.965939i
\(364\) 0 0
\(365\) 9.02128 + 9.02128i 0.0247158 + 0.0247158i
\(366\) 0 0
\(367\) −221.149 −0.602585 −0.301292 0.953532i \(-0.597418\pi\)
−0.301292 + 0.953532i \(0.597418\pi\)
\(368\) 0 0
\(369\) 67.3845 + 117.739i 0.182614 + 0.319076i
\(370\) 0 0
\(371\) −371.781 371.781i −1.00211 1.00211i
\(372\) 0 0
\(373\) −147.216 147.216i −0.394682 0.394682i 0.481671 0.876352i \(-0.340030\pi\)
−0.876352 + 0.481671i \(0.840030\pi\)
\(374\) 0 0
\(375\) 103.405 + 388.850i 0.275746 + 1.03693i
\(376\) 0 0
\(377\) 2.30317 0.00610919
\(378\) 0 0
\(379\) 298.572 + 298.572i 0.787790 + 0.787790i 0.981131 0.193342i \(-0.0619326\pi\)
−0.193342 + 0.981131i \(0.561933\pi\)
\(380\) 0 0
\(381\) −112.482 65.2252i −0.295228 0.171195i
\(382\) 0 0
\(383\) 427.326i 1.11573i −0.829931 0.557866i \(-0.811620\pi\)
0.829931 0.557866i \(-0.188380\pi\)
\(384\) 0 0
\(385\) −429.404 −1.11533
\(386\) 0 0
\(387\) −88.0716 + 323.787i −0.227575 + 0.836658i
\(388\) 0 0
\(389\) −314.075 + 314.075i −0.807391 + 0.807391i −0.984238 0.176847i \(-0.943410\pi\)
0.176847 + 0.984238i \(0.443410\pi\)
\(390\) 0 0
\(391\) 143.095i 0.365971i
\(392\) 0 0
\(393\) 1.32382 + 4.97816i 0.00336849 + 0.0126671i
\(394\) 0 0
\(395\) 268.898 268.898i 0.680753 0.680753i
\(396\) 0 0
\(397\) −189.839 + 189.839i −0.478185 + 0.478185i −0.904551 0.426366i \(-0.859794\pi\)
0.426366 + 0.904551i \(0.359794\pi\)
\(398\) 0 0
\(399\) 176.655 + 664.304i 0.442743 + 1.66492i
\(400\) 0 0
\(401\) 268.223i 0.668886i −0.942416 0.334443i \(-0.891452\pi\)
0.942416 0.334443i \(-0.108548\pi\)
\(402\) 0 0
\(403\) 10.9045 10.9045i 0.0270582 0.0270582i
\(404\) 0 0
\(405\) −74.8780 288.145i −0.184884 0.711469i
\(406\) 0 0
\(407\) −1133.89 −2.78598
\(408\) 0 0
\(409\) 25.8478i 0.0631976i −0.999501 0.0315988i \(-0.989940\pi\)
0.999501 0.0315988i \(-0.0100599\pi\)
\(410\) 0 0
\(411\) −618.257 358.510i −1.50427 0.872288i
\(412\) 0 0
\(413\) −88.8319 88.8319i −0.215089 0.215089i
\(414\) 0 0
\(415\) −164.906 −0.397365
\(416\) 0 0
\(417\) 28.9705 + 108.942i 0.0694735 + 0.261253i
\(418\) 0 0
\(419\) −243.361 243.361i −0.580813 0.580813i 0.354313 0.935127i \(-0.384715\pi\)
−0.935127 + 0.354313i \(0.884715\pi\)
\(420\) 0 0
\(421\) −115.847 115.847i −0.275171 0.275171i 0.556007 0.831178i \(-0.312333\pi\)
−0.831178 + 0.556007i \(0.812333\pi\)
\(422\) 0 0
\(423\) −285.942 + 163.650i −0.675985 + 0.386880i
\(424\) 0 0
\(425\) −76.6953 −0.180460
\(426\) 0 0
\(427\) −201.333 201.333i −0.471507 0.471507i
\(428\) 0 0
\(429\) 25.4240 43.8440i 0.0592634 0.102201i
\(430\) 0 0
\(431\) 568.037i 1.31795i −0.752165 0.658975i \(-0.770990\pi\)
0.752165 0.658975i \(-0.229010\pi\)
\(432\) 0 0
\(433\) −647.222 −1.49474 −0.747370 0.664408i \(-0.768684\pi\)
−0.747370 + 0.664408i \(0.768684\pi\)
\(434\) 0 0
\(435\) 20.8111 + 12.0678i 0.0478416 + 0.0277421i
\(436\) 0 0
\(437\) 475.808 475.808i 1.08881 1.08881i
\(438\) 0 0
\(439\) 486.389i 1.10795i 0.832534 + 0.553973i \(0.186889\pi\)
−0.832534 + 0.553973i \(0.813111\pi\)
\(440\) 0 0
\(441\) −19.1963 33.5412i −0.0435291 0.0760571i
\(442\) 0 0
\(443\) −258.469 + 258.469i −0.583451 + 0.583451i −0.935850 0.352399i \(-0.885366\pi\)
0.352399 + 0.935850i \(0.385366\pi\)
\(444\) 0 0
\(445\) −203.396 + 203.396i −0.457070 + 0.457070i
\(446\) 0 0
\(447\) −546.360 + 145.290i −1.22228 + 0.325035i
\(448\) 0 0
\(449\) 498.015i 1.10916i 0.832129 + 0.554582i \(0.187122\pi\)
−0.832129 + 0.554582i \(0.812878\pi\)
\(450\) 0 0
\(451\) −170.569 + 170.569i −0.378201 + 0.378201i
\(452\) 0 0
\(453\) 35.1721 60.6549i 0.0776427 0.133896i
\(454\) 0 0
\(455\) 28.3255 0.0622538
\(456\) 0 0
\(457\) 466.468i 1.02072i −0.859961 0.510359i \(-0.829513\pi\)
0.859961 0.510359i \(-0.170487\pi\)
\(458\) 0 0
\(459\) 180.209 + 1.02185i 0.392613 + 0.00222624i
\(460\) 0 0
\(461\) 389.251 + 389.251i 0.844362 + 0.844362i 0.989423 0.145061i \(-0.0463378\pi\)
−0.145061 + 0.989423i \(0.546338\pi\)
\(462\) 0 0
\(463\) −500.857 −1.08177 −0.540883 0.841098i \(-0.681910\pi\)
−0.540883 + 0.841098i \(0.681910\pi\)
\(464\) 0 0
\(465\) 155.667 41.3957i 0.334768 0.0890229i
\(466\) 0 0
\(467\) 188.836 + 188.836i 0.404359 + 0.404359i 0.879766 0.475407i \(-0.157699\pi\)
−0.475407 + 0.879766i \(0.657699\pi\)
\(468\) 0 0
\(469\) 35.3489 + 35.3489i 0.0753709 + 0.0753709i
\(470\) 0 0
\(471\) −393.113 + 104.538i −0.834636 + 0.221950i
\(472\) 0 0
\(473\) −596.660 −1.26144
\(474\) 0 0
\(475\) 255.022 + 255.022i 0.536888 + 0.536888i
\(476\) 0 0
\(477\) 625.470 + 170.131i 1.31126 + 0.356668i
\(478\) 0 0
\(479\) 326.344i 0.681303i 0.940190 + 0.340652i \(0.110648\pi\)
−0.940190 + 0.340652i \(0.889352\pi\)
\(480\) 0 0
\(481\) 74.7969 0.155503
\(482\) 0 0
\(483\) −235.533 + 406.181i −0.487647 + 0.840954i
\(484\) 0 0
\(485\) 160.006 160.006i 0.329909 0.329909i
\(486\) 0 0
\(487\) 196.238i 0.402952i −0.979493 0.201476i \(-0.935426\pi\)
0.979493 0.201476i \(-0.0645739\pi\)
\(488\) 0 0
\(489\) 423.871 112.718i 0.866812 0.230506i
\(490\) 0 0
\(491\) 349.172 349.172i 0.711144 0.711144i −0.255631 0.966774i \(-0.582283\pi\)
0.966774 + 0.255631i \(0.0822831\pi\)
\(492\) 0 0
\(493\) −10.2969 + 10.2969i −0.0208863 + 0.0208863i
\(494\) 0 0
\(495\) 459.456 262.956i 0.928193 0.531224i
\(496\) 0 0
\(497\) 546.843i 1.10029i
\(498\) 0 0
\(499\) −321.326 + 321.326i −0.643940 + 0.643940i −0.951522 0.307582i \(-0.900480\pi\)
0.307582 + 0.951522i \(0.400480\pi\)
\(500\) 0 0
\(501\) −295.805 171.530i −0.590430 0.342374i
\(502\) 0 0
\(503\) 623.698 1.23996 0.619978 0.784619i \(-0.287142\pi\)
0.619978 + 0.784619i \(0.287142\pi\)
\(504\) 0 0
\(505\) 296.113i 0.586362i
\(506\) 0 0
\(507\) 252.652 435.703i 0.498328 0.859374i
\(508\) 0 0
\(509\) −452.448 452.448i −0.888897 0.888897i 0.105520 0.994417i \(-0.466349\pi\)
−0.994417 + 0.105520i \(0.966349\pi\)
\(510\) 0 0
\(511\) −25.3400 −0.0495891
\(512\) 0 0
\(513\) −595.821 602.616i −1.16144 1.17469i
\(514\) 0 0
\(515\) −400.095 400.095i −0.776884 0.776884i
\(516\) 0 0
\(517\) −414.244 414.244i −0.801247 0.801247i
\(518\) 0 0
\(519\) −157.296 591.506i −0.303075 1.13970i
\(520\) 0 0
\(521\) −444.986 −0.854100 −0.427050 0.904228i \(-0.640447\pi\)
−0.427050 + 0.904228i \(0.640447\pi\)
\(522\) 0 0
\(523\) 399.942 + 399.942i 0.764707 + 0.764707i 0.977169 0.212462i \(-0.0681483\pi\)
−0.212462 + 0.977169i \(0.568148\pi\)
\(524\) 0 0
\(525\) −217.703 126.240i −0.414673 0.240458i
\(526\) 0 0
\(527\) 97.5029i 0.185015i
\(528\) 0 0
\(529\) −69.3715 −0.131137
\(530\) 0 0
\(531\) 149.447 + 40.6504i 0.281445 + 0.0765544i
\(532\) 0 0
\(533\) 11.2515 11.2515i 0.0211098 0.0211098i
\(534\) 0 0
\(535\) 399.900i 0.747476i
\(536\) 0 0
\(537\) −18.3437 68.9808i −0.0341595 0.128456i
\(538\) 0 0
\(539\) 48.5912 48.5912i 0.0901506 0.0901506i
\(540\) 0 0
\(541\) 116.940 116.940i 0.216155 0.216155i −0.590721 0.806876i \(-0.701156\pi\)
0.806876 + 0.590721i \(0.201156\pi\)
\(542\) 0 0
\(543\) 37.2932 + 140.240i 0.0686800 + 0.258269i
\(544\) 0 0
\(545\) 385.308i 0.706987i
\(546\) 0 0
\(547\) 85.6914 85.6914i 0.156657 0.156657i −0.624427 0.781084i \(-0.714667\pi\)
0.781084 + 0.624427i \(0.214667\pi\)
\(548\) 0 0
\(549\) 338.715 + 92.1322i 0.616968 + 0.167818i
\(550\) 0 0
\(551\) 68.4772 0.124278
\(552\) 0 0
\(553\) 755.311i 1.36584i
\(554\) 0 0
\(555\) 675.855 + 391.910i 1.21776 + 0.706145i
\(556\) 0 0
\(557\) −104.194 104.194i −0.187062 0.187062i 0.607363 0.794425i \(-0.292228\pi\)
−0.794425 + 0.607363i \(0.792228\pi\)
\(558\) 0 0
\(559\) 39.3585 0.0704087
\(560\) 0 0
\(561\) 82.3519 + 309.682i 0.146795 + 0.552017i
\(562\) 0 0
\(563\) 776.673 + 776.673i 1.37953 + 1.37953i 0.845414 + 0.534111i \(0.179354\pi\)
0.534111 + 0.845414i \(0.320646\pi\)
\(564\) 0 0
\(565\) 99.7766 + 99.7766i 0.176596 + 0.176596i
\(566\) 0 0
\(567\) 509.850 + 299.524i 0.899207 + 0.528261i
\(568\) 0 0
\(569\) 456.546 0.802366 0.401183 0.915998i \(-0.368599\pi\)
0.401183 + 0.915998i \(0.368599\pi\)
\(570\) 0 0
\(571\) −475.108 475.108i −0.832062 0.832062i 0.155736 0.987799i \(-0.450225\pi\)
−0.987799 + 0.155736i \(0.950225\pi\)
\(572\) 0 0
\(573\) −225.977 + 389.700i −0.394375 + 0.680105i
\(574\) 0 0
\(575\) 246.350i 0.428434i
\(576\) 0 0
\(577\) 1127.70 1.95443 0.977213 0.212262i \(-0.0680832\pi\)
0.977213 + 0.212262i \(0.0680832\pi\)
\(578\) 0 0
\(579\) −305.296 177.033i −0.527281 0.305756i
\(580\) 0 0
\(581\) 231.604 231.604i 0.398630 0.398630i
\(582\) 0 0
\(583\) 1152.59i 1.97700i
\(584\) 0 0
\(585\) −30.3078 + 17.3458i −0.0518082 + 0.0296509i
\(586\) 0 0
\(587\) −584.236 + 584.236i −0.995292 + 0.995292i −0.999989 0.00469688i \(-0.998505\pi\)
0.00469688 + 0.999989i \(0.498505\pi\)
\(588\) 0 0
\(589\) 324.209 324.209i 0.550440 0.550440i
\(590\) 0 0
\(591\) −130.600 + 34.7296i −0.220981 + 0.0587642i
\(592\) 0 0
\(593\) 870.906i 1.46864i −0.678801 0.734322i \(-0.737500\pi\)
0.678801 0.734322i \(-0.262500\pi\)
\(594\) 0 0
\(595\) −126.637 + 126.637i −0.212835 + 0.212835i
\(596\) 0 0
\(597\) −193.150 + 333.090i −0.323535 + 0.557940i
\(598\) 0 0
\(599\) −224.305 −0.374466 −0.187233 0.982316i \(-0.559952\pi\)
−0.187233 + 0.982316i \(0.559952\pi\)
\(600\) 0 0
\(601\) 234.358i 0.389946i 0.980809 + 0.194973i \(0.0624620\pi\)
−0.980809 + 0.194973i \(0.937538\pi\)
\(602\) 0 0
\(603\) −59.4697 16.1760i −0.0986230 0.0268259i
\(604\) 0 0
\(605\) 351.140 + 351.140i 0.580396 + 0.580396i
\(606\) 0 0
\(607\) 620.755 1.02266 0.511330 0.859384i \(-0.329153\pi\)
0.511330 + 0.859384i \(0.329153\pi\)
\(608\) 0 0
\(609\) −46.1770 + 12.2796i −0.0758244 + 0.0201635i
\(610\) 0 0
\(611\) 27.3255 + 27.3255i 0.0447226 + 0.0447226i
\(612\) 0 0
\(613\) 645.945 + 645.945i 1.05374 + 1.05374i 0.998471 + 0.0552724i \(0.0176027\pi\)
0.0552724 + 0.998471i \(0.482397\pi\)
\(614\) 0 0
\(615\) 160.621 42.7131i 0.261173 0.0694523i
\(616\) 0 0
\(617\) 169.883 0.275337 0.137669 0.990478i \(-0.456039\pi\)
0.137669 + 0.990478i \(0.456039\pi\)
\(618\) 0 0
\(619\) −647.603 647.603i −1.04621 1.04621i −0.998879 0.0473286i \(-0.984929\pi\)
−0.0473286 0.998879i \(-0.515071\pi\)
\(620\) 0 0
\(621\) 3.28222 578.842i 0.00528539 0.932113i
\(622\) 0 0
\(623\) 571.323i 0.917051i
\(624\) 0 0
\(625\) 205.694 0.329110
\(626\) 0 0
\(627\) 755.900 1303.56i 1.20558 2.07904i
\(628\) 0 0
\(629\) −334.400 + 334.400i −0.531638 + 0.531638i
\(630\) 0 0
\(631\) 975.374i 1.54576i −0.634553 0.772880i \(-0.718816\pi\)
0.634553 0.772880i \(-0.281184\pi\)
\(632\) 0 0
\(633\) −323.110 + 85.9228i −0.510442 + 0.135739i
\(634\) 0 0
\(635\) −112.643 + 112.643i −0.177391 + 0.177391i
\(636\) 0 0
\(637\) −3.20530 + 3.20530i −0.00503187 + 0.00503187i
\(638\) 0 0
\(639\) −334.873 585.114i −0.524058 0.915671i
\(640\) 0 0
\(641\) 771.555i 1.20367i 0.798619 + 0.601837i \(0.205564\pi\)
−0.798619 + 0.601837i \(0.794436\pi\)
\(642\) 0 0
\(643\) 319.214 319.214i 0.496445 0.496445i −0.413884 0.910330i \(-0.635828\pi\)
0.910330 + 0.413884i \(0.135828\pi\)
\(644\) 0 0
\(645\) 355.638 + 206.225i 0.551377 + 0.319729i
\(646\) 0 0
\(647\) 360.720 0.557527 0.278764 0.960360i \(-0.410075\pi\)
0.278764 + 0.960360i \(0.410075\pi\)
\(648\) 0 0
\(649\) 275.395i 0.424338i
\(650\) 0 0
\(651\) −160.489 + 276.766i −0.246527 + 0.425140i
\(652\) 0 0
\(653\) −415.043 415.043i −0.635595 0.635595i 0.313871 0.949466i \(-0.398374\pi\)
−0.949466 + 0.313871i \(0.898374\pi\)
\(654\) 0 0
\(655\) 6.31104 0.00963517
\(656\) 0 0
\(657\) 27.1134 15.5176i 0.0412685 0.0236189i
\(658\) 0 0
\(659\) −363.535 363.535i −0.551646 0.551646i 0.375269 0.926916i \(-0.377550\pi\)
−0.926916 + 0.375269i \(0.877550\pi\)
\(660\) 0 0
\(661\) 151.997 + 151.997i 0.229951 + 0.229951i 0.812672 0.582721i \(-0.198012\pi\)
−0.582721 + 0.812672i \(0.698012\pi\)
\(662\) 0 0
\(663\) −5.43232 20.4280i −0.00819354 0.0308115i
\(664\) 0 0
\(665\) 842.166 1.26642
\(666\) 0 0
\(667\) 33.0743 + 33.0743i 0.0495867 + 0.0495867i
\(668\) 0 0
\(669\) −399.013 231.377i −0.596433 0.345855i
\(670\) 0 0
\(671\) 624.170i 0.930208i
\(672\) 0 0
\(673\) −271.149 −0.402896 −0.201448 0.979499i \(-0.564565\pi\)
−0.201448 + 0.979499i \(0.564565\pi\)
\(674\) 0 0
\(675\) 310.245 + 1.75919i 0.459623 + 0.00260621i
\(676\) 0 0
\(677\) −639.750 + 639.750i −0.944978 + 0.944978i −0.998563 0.0535849i \(-0.982935\pi\)
0.0535849 + 0.998563i \(0.482935\pi\)
\(678\) 0 0
\(679\) 449.442i 0.661918i
\(680\) 0 0
\(681\) −47.5948 178.979i −0.0698895 0.262817i
\(682\) 0 0
\(683\) −93.1730 + 93.1730i −0.136417 + 0.136417i −0.772018 0.635601i \(-0.780752\pi\)
0.635601 + 0.772018i \(0.280752\pi\)
\(684\) 0 0
\(685\) −619.145 + 619.145i −0.903861 + 0.903861i
\(686\) 0 0
\(687\) −121.988 458.731i −0.177566 0.667730i
\(688\) 0 0
\(689\) 76.0301i 0.110348i
\(690\) 0 0
\(691\) 303.844 303.844i 0.439716 0.439716i −0.452200 0.891916i \(-0.649361\pi\)
0.891916 + 0.452200i \(0.149361\pi\)
\(692\) 0 0
\(693\) −275.975 + 1014.60i −0.398233 + 1.46406i
\(694\) 0 0
\(695\) 138.111 0.198721
\(696\) 0 0
\(697\) 100.606i 0.144341i
\(698\) 0 0
\(699\) −84.2914 48.8783i −0.120589 0.0699261i
\(700\) 0 0
\(701\) 797.170 + 797.170i 1.13719 + 1.13719i 0.988952 + 0.148238i \(0.0473601\pi\)
0.148238 + 0.988952i \(0.452640\pi\)
\(702\) 0 0
\(703\) 2223.85 3.16336
\(704\) 0 0
\(705\) 103.733 + 390.086i 0.147140 + 0.553313i
\(706\) 0 0
\(707\) 415.878 + 415.878i 0.588229 + 0.588229i
\(708\) 0 0
\(709\) −592.848 592.848i −0.836176 0.836176i 0.152178 0.988353i \(-0.451371\pi\)
−0.988353 + 0.152178i \(0.951371\pi\)
\(710\) 0 0
\(711\) −462.533 808.171i −0.650539 1.13667i
\(712\) 0 0
\(713\) 313.185 0.439249
\(714\) 0 0
\(715\) −43.9070 43.9070i −0.0614084 0.0614084i
\(716\) 0 0
\(717\) 200.612 345.959i 0.279794 0.482508i
\(718\) 0 0
\(719\) 1252.89i 1.74255i 0.490799 + 0.871273i \(0.336705\pi\)
−0.490799 + 0.871273i \(0.663295\pi\)
\(720\) 0 0
\(721\) 1123.83 1.55872
\(722\) 0 0
\(723\) −414.382 240.289i −0.573142 0.332350i
\(724\) 0 0
\(725\) −17.7270 + 17.7270i −0.0244511 + 0.0244511i
\(726\) 0 0
\(727\) 1182.91i 1.62711i −0.581490 0.813553i \(-0.697530\pi\)
0.581490 0.813553i \(-0.302470\pi\)
\(728\) 0 0
\(729\) −728.953 8.26707i −0.999936 0.0113403i
\(730\) 0 0
\(731\) −175.963 + 175.963i −0.240715 + 0.240715i
\(732\) 0 0
\(733\) −679.023 + 679.023i −0.926361 + 0.926361i −0.997469 0.0711072i \(-0.977347\pi\)
0.0711072 + 0.997469i \(0.477347\pi\)
\(734\) 0 0
\(735\) −45.7574 + 12.1680i −0.0622549 + 0.0165551i
\(736\) 0 0
\(737\) 109.588i 0.148695i
\(738\) 0 0
\(739\) 408.587 408.587i 0.552892 0.552892i −0.374383 0.927274i \(-0.622145\pi\)
0.927274 + 0.374383i \(0.122145\pi\)
\(740\) 0 0
\(741\) −49.8627 + 85.9889i −0.0672911 + 0.116044i
\(742\) 0 0
\(743\) −228.202 −0.307137 −0.153568 0.988138i \(-0.549077\pi\)
−0.153568 + 0.988138i \(0.549077\pi\)
\(744\) 0 0
\(745\) 692.644i 0.929724i
\(746\) 0 0
\(747\) −105.984 + 389.641i −0.141880 + 0.521608i
\(748\) 0 0
\(749\) 561.642 + 561.642i 0.749856 + 0.749856i
\(750\) 0 0
\(751\) −835.943 −1.11311 −0.556553 0.830812i \(-0.687876\pi\)
−0.556553 + 0.830812i \(0.687876\pi\)
\(752\) 0 0
\(753\) −437.528 + 116.350i −0.581047 + 0.154515i
\(754\) 0 0
\(755\) −60.7421 60.7421i −0.0804530 0.0804530i
\(756\) 0 0
\(757\) −144.017 144.017i −0.190247 0.190247i 0.605556 0.795803i \(-0.292951\pi\)
−0.795803 + 0.605556i \(0.792951\pi\)
\(758\) 0 0
\(759\) 994.715 264.519i 1.31056 0.348510i
\(760\) 0 0
\(761\) 1238.49 1.62745 0.813727 0.581247i \(-0.197435\pi\)
0.813727 + 0.581247i \(0.197435\pi\)
\(762\) 0 0
\(763\) 541.148 + 541.148i 0.709238 + 0.709238i
\(764\) 0 0
\(765\) 57.9503 213.049i 0.0757520 0.278495i
\(766\) 0 0
\(767\) 18.1663i 0.0236849i
\(768\) 0 0
\(769\) −906.729 −1.17910 −0.589551 0.807732i \(-0.700695\pi\)
−0.589551 + 0.807732i \(0.700695\pi\)
\(770\) 0 0
\(771\) −517.411 + 892.284i −0.671091 + 1.15731i
\(772\) 0 0
\(773\) 989.152 989.152i 1.27963 1.27963i 0.338752 0.940876i \(-0.389995\pi\)
0.940876 0.338752i \(-0.110005\pi\)
\(774\) 0 0
\(775\) 167.859i 0.216593i
\(776\) 0 0
\(777\) −1499.63 + 398.789i −1.93003 + 0.513241i
\(778\) 0 0
\(779\) 334.528 334.528i 0.429432 0.429432i
\(780\) 0 0
\(781\) 847.656 847.656i 1.08535 1.08535i
\(782\) 0 0
\(783\) 41.8890 41.4166i 0.0534981 0.0528948i
\(784\) 0 0
\(785\) 498.367i 0.634862i
\(786\) 0 0
\(787\) 100.012 100.012i 0.127080 0.127080i −0.640706 0.767786i \(-0.721358\pi\)
0.767786 + 0.640706i \(0.221358\pi\)
\(788\) 0 0
\(789\) 690.994 + 400.689i 0.875785 + 0.507844i
\(790\) 0 0
\(791\) −280.264 −0.354316
\(792\) 0 0
\(793\) 41.1731i 0.0519207i
\(794\) 0 0
\(795\) 398.372 686.998i 0.501097 0.864149i
\(796\) 0 0
\(797\) −264.491 264.491i −0.331858 0.331858i 0.521433 0.853292i \(-0.325397\pi\)
−0.853292 + 0.521433i \(0.825397\pi\)
\(798\) 0 0
\(799\) −244.332 −0.305798
\(800\) 0 0
\(801\) 349.864 + 611.307i 0.436784 + 0.763180i
\(802\) 0 0
\(803\) 39.2793 + 39.2793i 0.0489157 + 0.0489157i
\(804\) 0 0
\(805\) 406.765 + 406.765i 0.505298 + 0.505298i
\(806\) 0 0
\(807\) 111.425 + 419.011i 0.138073 + 0.519220i
\(808\) 0 0
\(809\) −1041.53 −1.28743 −0.643717 0.765264i \(-0.722609\pi\)
−0.643717 + 0.765264i \(0.722609\pi\)
\(810\) 0 0
\(811\) −442.482 442.482i −0.545600 0.545600i 0.379565 0.925165i \(-0.376074\pi\)
−0.925165 + 0.379565i \(0.876074\pi\)
\(812\) 0 0
\(813\) −100.082 58.0346i −0.123102 0.0713833i
\(814\) 0 0
\(815\) 537.359i 0.659337i
\(816\) 0 0
\(817\) 1170.20 1.43231
\(818\) 0 0
\(819\) 18.2046 66.9275i 0.0222279 0.0817186i
\(820\) 0 0
\(821\) −104.027 + 104.027i −0.126708 + 0.126708i −0.767617 0.640909i \(-0.778558\pi\)
0.640909 + 0.767617i \(0.278558\pi\)
\(822\) 0 0
\(823\) 349.420i 0.424568i 0.977208 + 0.212284i \(0.0680902\pi\)
−0.977208 + 0.212284i \(0.931910\pi\)
\(824\) 0 0
\(825\) 141.776 + 533.143i 0.171850 + 0.646234i
\(826\) 0 0
\(827\) 554.122 554.122i 0.670038 0.670038i −0.287686 0.957725i \(-0.592886\pi\)
0.957725 + 0.287686i \(0.0928861\pi\)
\(828\) 0 0
\(829\) 583.639 583.639i 0.704027 0.704027i −0.261245 0.965272i \(-0.584133\pi\)
0.965272 + 0.261245i \(0.0841331\pi\)
\(830\) 0 0
\(831\) −302.355 1137.00i −0.363845 1.36823i
\(832\) 0 0
\(833\) 28.6604i 0.0344062i
\(834\) 0 0
\(835\) −296.230 + 296.230i −0.354767 + 0.354767i
\(836\) 0 0
\(837\) 2.23646 394.415i 0.00267200 0.471225i
\(838\) 0 0
\(839\) −1235.55 −1.47264 −0.736322 0.676632i \(-0.763439\pi\)
−0.736322 + 0.676632i \(0.763439\pi\)
\(840\) 0 0
\(841\) 836.240i 0.994340i
\(842\) 0 0
\(843\) 1190.60 + 690.399i 1.41234 + 0.818979i
\(844\) 0 0
\(845\) −436.329 436.329i −0.516365 0.516365i
\(846\) 0 0
\(847\) −986.322 −1.16449
\(848\) 0 0
\(849\) −301.744 1134.70i −0.355411 1.33651i
\(850\) 0 0
\(851\) 1074.11 + 1074.11i 1.26218 + 1.26218i
\(852\) 0 0
\(853\) −535.104 535.104i −0.627320 0.627320i 0.320073 0.947393i \(-0.396293\pi\)
−0.947393 + 0.320073i \(0.896293\pi\)
\(854\) 0 0
\(855\) −901.105 + 515.722i −1.05392 + 0.603183i
\(856\) 0 0
\(857\) −261.325 −0.304929 −0.152465 0.988309i \(-0.548721\pi\)
−0.152465 + 0.988309i \(0.548721\pi\)
\(858\) 0 0
\(859\) −81.4524 81.4524i −0.0948224 0.0948224i 0.658104 0.752927i \(-0.271359\pi\)
−0.752927 + 0.658104i \(0.771359\pi\)
\(860\) 0 0
\(861\) −165.597 + 285.575i −0.192331 + 0.331678i
\(862\) 0 0
\(863\) 1250.31i 1.44879i 0.689383 + 0.724397i \(0.257882\pi\)
−0.689383 + 0.724397i \(0.742118\pi\)
\(864\) 0 0
\(865\) −749.878 −0.866911
\(866\) 0 0
\(867\) −634.407 367.876i −0.731727 0.424309i
\(868\) 0 0
\(869\) 1170.80 1170.80i 1.34730 1.34730i
\(870\) 0 0
\(871\) 7.22894i 0.00829959i
\(872\) 0 0
\(873\) −275.227 480.897i −0.315266 0.550855i
\(874\) 0 0
\(875\) −692.345 + 692.345i −0.791251 + 0.791251i
\(876\) 0 0
\(877\) −288.263 + 288.263i −0.328692 + 0.328692i −0.852089 0.523397i \(-0.824664\pi\)
0.523397 + 0.852089i \(0.324664\pi\)
\(878\) 0 0
\(879\) 1256.75 334.200i 1.42975 0.380205i
\(880\) 0 0
\(881\) 1682.63i 1.90991i −0.296744 0.954957i \(-0.595901\pi\)
0.296744 0.954957i \(-0.404099\pi\)
\(882\) 0 0
\(883\) −477.885 + 477.885i −0.541206 + 0.541206i −0.923882 0.382676i \(-0.875002\pi\)
0.382676 + 0.923882i \(0.375002\pi\)
\(884\) 0 0
\(885\) 95.1854 164.149i 0.107554 0.185479i
\(886\) 0 0
\(887\) 1366.70 1.54081 0.770405 0.637555i \(-0.220054\pi\)
0.770405 + 0.637555i \(0.220054\pi\)
\(888\) 0 0
\(889\) 316.406i 0.355912i
\(890\) 0 0
\(891\) −326.024 1254.60i −0.365908 1.40808i
\(892\) 0 0
\(893\) 812.435 + 812.435i 0.909782 + 0.909782i
\(894\) 0 0
\(895\) −87.4499 −0.0977094
\(896\) 0 0
\(897\) −65.6160 + 17.4489i −0.0731506 + 0.0194525i
\(898\) 0 0
\(899\) 22.5364 + 22.5364i 0.0250683 + 0.0250683i
\(900\) 0 0
\(901\) 339.914 + 339.914i 0.377263 + 0.377263i
\(902\) 0 0
\(903\) −789.113 + 209.844i −0.873879 + 0.232386i
\(904\) 0 0
\(905\) 177.788 0.196451
\(906\) 0 0
\(907\) 330.495 + 330.495i 0.364383 + 0.364383i 0.865424 0.501041i \(-0.167049\pi\)
−0.501041 + 0.865424i \(0.667049\pi\)
\(908\) 0 0
\(909\) −699.657 190.310i −0.769699 0.209362i
\(910\) 0 0
\(911\) 1633.72i 1.79332i 0.442715 + 0.896662i \(0.354015\pi\)
−0.442715 + 0.896662i \(0.645985\pi\)
\(912\) 0 0
\(913\) −718.014 −0.786434
\(914\) 0 0
\(915\) 215.733 372.035i 0.235774 0.406596i
\(916\) 0 0
\(917\) −8.86358 + 8.86358i −0.00966585 + 0.00966585i
\(918\) 0 0
\(919\) 765.918i 0.833426i 0.909038 + 0.416713i \(0.136818\pi\)
−0.909038 + 0.416713i \(0.863182\pi\)
\(920\) 0 0
\(921\) 1474.79 392.182i 1.60129 0.425822i
\(922\) 0 0
\(923\) −55.9153 + 55.9153i −0.0605800 + 0.0605800i
\(924\) 0 0
\(925\) −575.698 + 575.698i −0.622377 + 0.622377i
\(926\) 0 0
\(927\) −1202.49 + 688.208i −1.29718 + 0.742403i
\(928\) 0 0
\(929\) 1283.88i 1.38200i 0.722855 + 0.691000i \(0.242830\pi\)
−0.722855 + 0.691000i \(0.757170\pi\)
\(930\) 0 0
\(931\) −95.2993 + 95.2993i −0.102362 + 0.102362i
\(932\) 0 0
\(933\) −1484.50 860.819i −1.59110 0.922635i
\(934\) 0 0
\(935\) 392.597 0.419890
\(936\) 0 0
\(937\) 1617.33i 1.72607i −0.505141 0.863037i \(-0.668560\pi\)
0.505141 0.863037i \(-0.331440\pi\)
\(938\) 0 0
\(939\) 501.607 865.029i 0.534193 0.921223i
\(940\) 0 0
\(941\) −721.542 721.542i −0.766782 0.766782i 0.210757 0.977539i \(-0.432407\pi\)
−0.977539 + 0.210757i \(0.932407\pi\)
\(942\) 0 0
\(943\) 323.152 0.342685
\(944\) 0 0
\(945\) 515.172 509.362i 0.545155 0.539008i
\(946\) 0 0
\(947\) −442.411 442.411i −0.467171 0.467171i 0.433826 0.900997i \(-0.357163\pi\)
−0.900997 + 0.433826i \(0.857163\pi\)
\(948\) 0 0
\(949\) −2.59105 2.59105i −0.00273029 0.00273029i
\(950\) 0 0
\(951\) 290.444 + 1092.21i 0.305409 + 1.14848i
\(952\) 0 0
\(953\) 66.7031 0.0699928 0.0349964 0.999387i \(-0.488858\pi\)
0.0349964 + 0.999387i \(0.488858\pi\)
\(954\) 0 0
\(955\) 390.260 + 390.260i 0.408649 + 0.408649i
\(956\) 0 0
\(957\) 90.6131 + 52.5441i 0.0946845 + 0.0549050i
\(958\) 0 0
\(959\) 1739.13i 1.81348i
\(960\) 0 0
\(961\) −747.600 −0.777940
\(962\) 0 0
\(963\) −944.885 257.013i −0.981189 0.266888i
\(964\) 0 0
\(965\) −305.735 + 305.735i −0.316823 + 0.316823i
\(966\) 0 0
\(967\) 81.7617i 0.0845519i −0.999106 0.0422759i \(-0.986539\pi\)
0.999106 0.0422759i \(-0.0134609\pi\)
\(968\) 0 0
\(969\) −161.512 607.362i −0.166679 0.626793i
\(970\) 0 0
\(971\) −558.759 + 558.759i −0.575447 + 0.575447i −0.933646 0.358198i \(-0.883391\pi\)
0.358198 + 0.933646i \(0.383391\pi\)
\(972\) 0 0
\(973\) −193.971 + 193.971i −0.199354 + 0.199354i
\(974\) 0 0
\(975\) −9.35219 35.1686i −0.00959199 0.0360704i
\(976\) 0 0
\(977\) 250.154i 0.256043i 0.991771 + 0.128021i \(0.0408626\pi\)
−0.991771 + 0.128021i \(0.959137\pi\)
\(978\) 0 0
\(979\) −885.602 + 885.602i −0.904599 + 0.904599i
\(980\) 0 0
\(981\) −910.406 247.635i −0.928039 0.252431i
\(982\) 0 0
\(983\) −1147.26 −1.16710 −0.583551 0.812077i \(-0.698337\pi\)
−0.583551 + 0.812077i \(0.698337\pi\)
\(984\) 0 0
\(985\) 165.567i 0.168088i
\(986\) 0 0
\(987\) −693.548 402.170i −0.702683 0.407467i
\(988\) 0 0
\(989\) 565.203 + 565.203i 0.571489 + 0.571489i
\(990\) 0 0
\(991\) −1364.34 −1.37673 −0.688364 0.725365i \(-0.741671\pi\)
−0.688364 + 0.725365i \(0.741671\pi\)
\(992\) 0 0
\(993\) 231.620 + 871.000i 0.233253 + 0.877140i
\(994\) 0 0
\(995\) 333.569 + 333.569i 0.335245 + 0.335245i
\(996\) 0 0
\(997\) 328.128 + 328.128i 0.329115 + 0.329115i 0.852250 0.523135i \(-0.175238\pi\)
−0.523135 + 0.852250i \(0.675238\pi\)
\(998\) 0 0
\(999\) 1360.38 1345.03i 1.36174 1.34638i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 384.3.i.c.353.2 20
3.2 odd 2 inner 384.3.i.c.353.8 20
4.3 odd 2 384.3.i.d.353.9 20
8.3 odd 2 48.3.i.b.5.9 yes 20
8.5 even 2 192.3.i.b.113.9 20
12.11 even 2 384.3.i.d.353.3 20
16.3 odd 4 384.3.i.d.161.3 20
16.5 even 4 192.3.i.b.17.3 20
16.11 odd 4 48.3.i.b.29.2 yes 20
16.13 even 4 inner 384.3.i.c.161.8 20
24.5 odd 2 192.3.i.b.113.3 20
24.11 even 2 48.3.i.b.5.2 20
48.5 odd 4 192.3.i.b.17.9 20
48.11 even 4 48.3.i.b.29.9 yes 20
48.29 odd 4 inner 384.3.i.c.161.2 20
48.35 even 4 384.3.i.d.161.9 20
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
48.3.i.b.5.2 20 24.11 even 2
48.3.i.b.5.9 yes 20 8.3 odd 2
48.3.i.b.29.2 yes 20 16.11 odd 4
48.3.i.b.29.9 yes 20 48.11 even 4
192.3.i.b.17.3 20 16.5 even 4
192.3.i.b.17.9 20 48.5 odd 4
192.3.i.b.113.3 20 24.5 odd 2
192.3.i.b.113.9 20 8.5 even 2
384.3.i.c.161.2 20 48.29 odd 4 inner
384.3.i.c.161.8 20 16.13 even 4 inner
384.3.i.c.353.2 20 1.1 even 1 trivial
384.3.i.c.353.8 20 3.2 odd 2 inner
384.3.i.d.161.3 20 16.3 odd 4
384.3.i.d.161.9 20 48.35 even 4
384.3.i.d.353.3 20 12.11 even 2
384.3.i.d.353.9 20 4.3 odd 2