Properties

Label 384.3.i.a.161.4
Level $384$
Weight $3$
Character 384.161
Analytic conductor $10.463$
Analytic rank $0$
Dimension $8$
CM no
Inner twists $4$

Related objects

Downloads

Learn more

Newspace parameters

Level: \( N \) \(=\) \( 384 = 2^{7} \cdot 3 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 384.i (of order \(4\), degree \(2\), not minimal)

Newform invariants

Self dual: no
Analytic conductor: \(10.4632421514\)
Analytic rank: \(0\)
Dimension: \(8\)
Relative dimension: \(4\) over \(\Q(i)\)
Coefficient field: 8.0.629407744.1
Defining polynomial: \(x^{8} - 2 x^{6} + 2 x^{4} - 8 x^{2} + 16\)
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2^{4} \)
Twist minimal: no (minimal twist has level 48)
Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

Embedding invariants

Embedding label 161.4
Root \(0.767178 - 1.18804i\) of defining polynomial
Character \(\chi\) \(=\) 384.161
Dual form 384.3.i.a.353.4

$q$-expansion

\(f(q)\) \(=\) \(q+(2.77809 - 1.13234i) q^{3} +(6.28651 + 6.28651i) q^{5} -1.64575i q^{7} +(6.43560 - 6.29150i) q^{9} +O(q^{10})\) \(q+(2.77809 - 1.13234i) q^{3} +(6.28651 + 6.28651i) q^{5} -1.64575i q^{7} +(6.43560 - 6.29150i) q^{9} +(-4.75216 - 4.75216i) q^{11} +(9.35425 + 9.35425i) q^{13} +(24.5830 + 10.3460i) q^{15} -11.4859i q^{17} +(8.58301 + 8.58301i) q^{19} +(-1.86355 - 4.57205i) q^{21} -16.2381 q^{23} +54.0405i q^{25} +(10.7546 - 24.7657i) q^{27} +(-10.7405 + 10.7405i) q^{29} +6.35425 q^{31} +(-18.5830 - 7.82087i) q^{33} +(10.3460 - 10.3460i) q^{35} +(-27.2288 + 27.2288i) q^{37} +(36.5792 + 15.3948i) q^{39} -1.98162 q^{41} +(19.4170 - 19.4170i) q^{43} +(80.0091 + 0.905893i) q^{45} -74.9474i q^{47} +46.2915 q^{49} +(-13.0060 - 31.9090i) q^{51} +(4.00671 + 4.00671i) q^{53} -59.7490i q^{55} +(33.5633 + 14.1255i) q^{57} +(-27.9694 - 27.9694i) q^{59} +(-39.2288 - 39.2288i) q^{61} +(-10.3542 - 10.5914i) q^{63} +117.611i q^{65} +(68.6863 + 68.6863i) q^{67} +(-45.1110 + 18.3871i) q^{69} -40.6822 q^{71} -59.0405i q^{73} +(61.1923 + 150.130i) q^{75} +(-7.82087 + 7.82087i) q^{77} +17.3948 q^{79} +(1.83399 - 80.9792i) q^{81} +(-75.1400 + 75.1400i) q^{83} +(72.2065 - 72.2065i) q^{85} +(-17.6762 + 42.0000i) q^{87} -78.8051 q^{89} +(15.3948 - 15.3948i) q^{91} +(17.6527 - 7.19518i) q^{93} +107.914i q^{95} -38.8340 q^{97} +(-60.4812 - 0.684791i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8q - 4q^{3} + O(q^{10}) \) \( 8q - 4q^{3} + 96q^{13} + 112q^{15} - 16q^{19} + 32q^{21} + 68q^{27} + 72q^{31} - 64q^{33} - 112q^{37} + 240q^{43} + 112q^{45} + 328q^{49} + 32q^{51} - 208q^{61} - 104q^{63} + 232q^{67} - 324q^{75} - 136q^{79} + 184q^{81} + 112q^{85} - 152q^{91} - 64q^{93} - 480q^{97} - 160q^{99} + O(q^{100}) \)

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/384\mathbb{Z}\right)^\times\).

\(n\) \(127\) \(133\) \(257\)
\(\chi(n)\) \(1\) \(e\left(\frac{3}{4}\right)\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 2.77809 1.13234i 0.926031 0.377447i
\(4\) 0 0
\(5\) 6.28651 + 6.28651i 1.25730 + 1.25730i 0.952376 + 0.304927i \(0.0986321\pi\)
0.304927 + 0.952376i \(0.401368\pi\)
\(6\) 0 0
\(7\) 1.64575i 0.235107i −0.993067 0.117554i \(-0.962495\pi\)
0.993067 0.117554i \(-0.0375052\pi\)
\(8\) 0 0
\(9\) 6.43560 6.29150i 0.715067 0.699056i
\(10\) 0 0
\(11\) −4.75216 4.75216i −0.432014 0.432014i 0.457299 0.889313i \(-0.348817\pi\)
−0.889313 + 0.457299i \(0.848817\pi\)
\(12\) 0 0
\(13\) 9.35425 + 9.35425i 0.719558 + 0.719558i 0.968515 0.248957i \(-0.0800878\pi\)
−0.248957 + 0.968515i \(0.580088\pi\)
\(14\) 0 0
\(15\) 24.5830 + 10.3460i 1.63887 + 0.689736i
\(16\) 0 0
\(17\) 11.4859i 0.675644i −0.941210 0.337822i \(-0.890310\pi\)
0.941210 0.337822i \(-0.109690\pi\)
\(18\) 0 0
\(19\) 8.58301 + 8.58301i 0.451737 + 0.451737i 0.895931 0.444194i \(-0.146510\pi\)
−0.444194 + 0.895931i \(0.646510\pi\)
\(20\) 0 0
\(21\) −1.86355 4.57205i −0.0887406 0.217717i
\(22\) 0 0
\(23\) −16.2381 −0.706004 −0.353002 0.935623i \(-0.614839\pi\)
−0.353002 + 0.935623i \(0.614839\pi\)
\(24\) 0 0
\(25\) 54.0405i 2.16162i
\(26\) 0 0
\(27\) 10.7546 24.7657i 0.398318 0.917248i
\(28\) 0 0
\(29\) −10.7405 + 10.7405i −0.370362 + 0.370362i −0.867609 0.497247i \(-0.834344\pi\)
0.497247 + 0.867609i \(0.334344\pi\)
\(30\) 0 0
\(31\) 6.35425 0.204976 0.102488 0.994734i \(-0.467320\pi\)
0.102488 + 0.994734i \(0.467320\pi\)
\(32\) 0 0
\(33\) −18.5830 7.82087i −0.563121 0.236996i
\(34\) 0 0
\(35\) 10.3460 10.3460i 0.295601 0.295601i
\(36\) 0 0
\(37\) −27.2288 + 27.2288i −0.735912 + 0.735912i −0.971784 0.235872i \(-0.924205\pi\)
0.235872 + 0.971784i \(0.424205\pi\)
\(38\) 0 0
\(39\) 36.5792 + 15.3948i 0.937928 + 0.394738i
\(40\) 0 0
\(41\) −1.98162 −0.0483323 −0.0241662 0.999708i \(-0.507693\pi\)
−0.0241662 + 0.999708i \(0.507693\pi\)
\(42\) 0 0
\(43\) 19.4170 19.4170i 0.451558 0.451558i −0.444313 0.895871i \(-0.646552\pi\)
0.895871 + 0.444313i \(0.146552\pi\)
\(44\) 0 0
\(45\) 80.0091 + 0.905893i 1.77798 + 0.0201310i
\(46\) 0 0
\(47\) 74.9474i 1.59463i −0.603566 0.797313i \(-0.706254\pi\)
0.603566 0.797313i \(-0.293746\pi\)
\(48\) 0 0
\(49\) 46.2915 0.944725
\(50\) 0 0
\(51\) −13.0060 31.9090i −0.255020 0.625667i
\(52\) 0 0
\(53\) 4.00671 + 4.00671i 0.0755983 + 0.0755983i 0.743895 0.668297i \(-0.232976\pi\)
−0.668297 + 0.743895i \(0.732976\pi\)
\(54\) 0 0
\(55\) 59.7490i 1.08635i
\(56\) 0 0
\(57\) 33.5633 + 14.1255i 0.588830 + 0.247816i
\(58\) 0 0
\(59\) −27.9694 27.9694i −0.474058 0.474058i 0.429167 0.903225i \(-0.358807\pi\)
−0.903225 + 0.429167i \(0.858807\pi\)
\(60\) 0 0
\(61\) −39.2288 39.2288i −0.643094 0.643094i 0.308221 0.951315i \(-0.400267\pi\)
−0.951315 + 0.308221i \(0.900267\pi\)
\(62\) 0 0
\(63\) −10.3542 10.5914i −0.164353 0.168118i
\(64\) 0 0
\(65\) 117.611i 1.80940i
\(66\) 0 0
\(67\) 68.6863 + 68.6863i 1.02517 + 1.02517i 0.999675 + 0.0254932i \(0.00811562\pi\)
0.0254932 + 0.999675i \(0.491884\pi\)
\(68\) 0 0
\(69\) −45.1110 + 18.3871i −0.653782 + 0.266479i
\(70\) 0 0
\(71\) −40.6822 −0.572988 −0.286494 0.958082i \(-0.592490\pi\)
−0.286494 + 0.958082i \(0.592490\pi\)
\(72\) 0 0
\(73\) 59.0405i 0.808774i −0.914588 0.404387i \(-0.867485\pi\)
0.914588 0.404387i \(-0.132515\pi\)
\(74\) 0 0
\(75\) 61.1923 + 150.130i 0.815898 + 2.00173i
\(76\) 0 0
\(77\) −7.82087 + 7.82087i −0.101570 + 0.101570i
\(78\) 0 0
\(79\) 17.3948 0.220187 0.110093 0.993921i \(-0.464885\pi\)
0.110093 + 0.993921i \(0.464885\pi\)
\(80\) 0 0
\(81\) 1.83399 80.9792i 0.0226418 0.999744i
\(82\) 0 0
\(83\) −75.1400 + 75.1400i −0.905301 + 0.905301i −0.995889 0.0905874i \(-0.971126\pi\)
0.0905874 + 0.995889i \(0.471126\pi\)
\(84\) 0 0
\(85\) 72.2065 72.2065i 0.849489 0.849489i
\(86\) 0 0
\(87\) −17.6762 + 42.0000i −0.203174 + 0.482759i
\(88\) 0 0
\(89\) −78.8051 −0.885450 −0.442725 0.896657i \(-0.645988\pi\)
−0.442725 + 0.896657i \(0.645988\pi\)
\(90\) 0 0
\(91\) 15.3948 15.3948i 0.169173 0.169173i
\(92\) 0 0
\(93\) 17.6527 7.19518i 0.189814 0.0773675i
\(94\) 0 0
\(95\) 107.914i 1.13594i
\(96\) 0 0
\(97\) −38.8340 −0.400350 −0.200175 0.979760i \(-0.564151\pi\)
−0.200175 + 0.979760i \(0.564151\pi\)
\(98\) 0 0
\(99\) −60.4812 0.684791i −0.610921 0.00691708i
\(100\) 0 0
\(101\) −41.5332 41.5332i −0.411220 0.411220i 0.470943 0.882164i \(-0.343914\pi\)
−0.882164 + 0.470943i \(0.843914\pi\)
\(102\) 0 0
\(103\) 98.8118i 0.959337i 0.877450 + 0.479669i \(0.159243\pi\)
−0.877450 + 0.479669i \(0.840757\pi\)
\(104\) 0 0
\(105\) 17.0270 40.4575i 0.162162 0.385310i
\(106\) 0 0
\(107\) −98.8480 98.8480i −0.923813 0.923813i 0.0734837 0.997296i \(-0.476588\pi\)
−0.997296 + 0.0734837i \(0.976588\pi\)
\(108\) 0 0
\(109\) −68.8523 68.8523i −0.631672 0.631672i 0.316815 0.948487i \(-0.397387\pi\)
−0.948487 + 0.316815i \(0.897387\pi\)
\(110\) 0 0
\(111\) −44.8118 + 106.476i −0.403710 + 0.959246i
\(112\) 0 0
\(113\) 8.31160i 0.0735540i −0.999323 0.0367770i \(-0.988291\pi\)
0.999323 0.0367770i \(-0.0117091\pi\)
\(114\) 0 0
\(115\) −102.081 102.081i −0.887661 0.887661i
\(116\) 0 0
\(117\) 119.053 + 1.34796i 1.01754 + 0.0115210i
\(118\) 0 0
\(119\) −18.9030 −0.158849
\(120\) 0 0
\(121\) 75.8340i 0.626727i
\(122\) 0 0
\(123\) −5.50514 + 2.24388i −0.0447572 + 0.0182429i
\(124\) 0 0
\(125\) −182.564 + 182.564i −1.46051 + 1.46051i
\(126\) 0 0
\(127\) −195.933 −1.54278 −0.771391 0.636361i \(-0.780439\pi\)
−0.771391 + 0.636361i \(0.780439\pi\)
\(128\) 0 0
\(129\) 31.9555 75.9289i 0.247717 0.588596i
\(130\) 0 0
\(131\) 142.127 142.127i 1.08494 1.08494i 0.0888967 0.996041i \(-0.471666\pi\)
0.996041 0.0888967i \(-0.0283341\pi\)
\(132\) 0 0
\(133\) 14.1255 14.1255i 0.106207 0.106207i
\(134\) 0 0
\(135\) 223.299 88.0810i 1.65406 0.652452i
\(136\) 0 0
\(137\) 50.4847 0.368501 0.184251 0.982879i \(-0.441014\pi\)
0.184251 + 0.982879i \(0.441014\pi\)
\(138\) 0 0
\(139\) −171.727 + 171.727i −1.23544 + 1.23544i −0.273601 + 0.961843i \(0.588215\pi\)
−0.961843 + 0.273601i \(0.911785\pi\)
\(140\) 0 0
\(141\) −84.8661 208.211i −0.601887 1.47667i
\(142\) 0 0
\(143\) 88.9057i 0.621718i
\(144\) 0 0
\(145\) −135.041 −0.931314
\(146\) 0 0
\(147\) 128.602 52.4178i 0.874844 0.356584i
\(148\) 0 0
\(149\) 84.4952 + 84.4952i 0.567082 + 0.567082i 0.931310 0.364228i \(-0.118667\pi\)
−0.364228 + 0.931310i \(0.618667\pi\)
\(150\) 0 0
\(151\) 30.1033i 0.199359i −0.995020 0.0996797i \(-0.968218\pi\)
0.995020 0.0996797i \(-0.0317818\pi\)
\(152\) 0 0
\(153\) −72.2638 73.9190i −0.472313 0.483130i
\(154\) 0 0
\(155\) 39.9461 + 39.9461i 0.257717 + 0.257717i
\(156\) 0 0
\(157\) 181.265 + 181.265i 1.15456 + 1.15456i 0.985628 + 0.168928i \(0.0540305\pi\)
0.168928 + 0.985628i \(0.445970\pi\)
\(158\) 0 0
\(159\) 15.6680 + 6.59405i 0.0985407 + 0.0414720i
\(160\) 0 0
\(161\) 26.7239i 0.165987i
\(162\) 0 0
\(163\) −200.081 200.081i −1.22749 1.22749i −0.964910 0.262581i \(-0.915426\pi\)
−0.262581 0.964910i \(-0.584574\pi\)
\(164\) 0 0
\(165\) −67.6563 165.988i −0.410038 1.00599i
\(166\) 0 0
\(167\) −172.656 −1.03387 −0.516933 0.856026i \(-0.672926\pi\)
−0.516933 + 0.856026i \(0.672926\pi\)
\(168\) 0 0
\(169\) 6.00394i 0.0355263i
\(170\) 0 0
\(171\) 109.237 + 1.23682i 0.638812 + 0.00723287i
\(172\) 0 0
\(173\) 40.8313 40.8313i 0.236019 0.236019i −0.579181 0.815199i \(-0.696627\pi\)
0.815199 + 0.579181i \(0.196627\pi\)
\(174\) 0 0
\(175\) 88.9373 0.508213
\(176\) 0 0
\(177\) −109.373 46.0307i −0.617924 0.260060i
\(178\) 0 0
\(179\) −152.613 + 152.613i −0.852584 + 0.852584i −0.990451 0.137866i \(-0.955976\pi\)
0.137866 + 0.990451i \(0.455976\pi\)
\(180\) 0 0
\(181\) −166.601 + 166.601i −0.920449 + 0.920449i −0.997061 0.0766118i \(-0.975590\pi\)
0.0766118 + 0.997061i \(0.475590\pi\)
\(182\) 0 0
\(183\) −153.402 64.5608i −0.838260 0.352791i
\(184\) 0 0
\(185\) −342.348 −1.85053
\(186\) 0 0
\(187\) −54.5830 + 54.5830i −0.291888 + 0.291888i
\(188\) 0 0
\(189\) −40.7582 17.6994i −0.215652 0.0936474i
\(190\) 0 0
\(191\) 14.3434i 0.0750963i 0.999295 + 0.0375482i \(0.0119548\pi\)
−0.999295 + 0.0375482i \(0.988045\pi\)
\(192\) 0 0
\(193\) 207.373 1.07447 0.537235 0.843433i \(-0.319469\pi\)
0.537235 + 0.843433i \(0.319469\pi\)
\(194\) 0 0
\(195\) 133.176 + 326.735i 0.682954 + 1.67556i
\(196\) 0 0
\(197\) −97.2608 97.2608i −0.493710 0.493710i 0.415763 0.909473i \(-0.363514\pi\)
−0.909473 + 0.415763i \(0.863514\pi\)
\(198\) 0 0
\(199\) 82.7673i 0.415916i 0.978138 + 0.207958i \(0.0666818\pi\)
−0.978138 + 0.207958i \(0.933318\pi\)
\(200\) 0 0
\(201\) 268.593 + 113.041i 1.33628 + 0.562391i
\(202\) 0 0
\(203\) 17.6762 + 17.6762i 0.0870748 + 0.0870748i
\(204\) 0 0
\(205\) −12.4575 12.4575i −0.0607684 0.0607684i
\(206\) 0 0
\(207\) −104.502 + 102.162i −0.504840 + 0.493536i
\(208\) 0 0
\(209\) 81.5756i 0.390314i
\(210\) 0 0
\(211\) 201.646 + 201.646i 0.955667 + 0.955667i 0.999058 0.0433911i \(-0.0138162\pi\)
−0.0433911 + 0.999058i \(0.513816\pi\)
\(212\) 0 0
\(213\) −113.019 + 46.0661i −0.530605 + 0.216273i
\(214\) 0 0
\(215\) 244.130 1.13549
\(216\) 0 0
\(217\) 10.4575i 0.0481913i
\(218\) 0 0
\(219\) −66.8541 164.020i −0.305270 0.748950i
\(220\) 0 0
\(221\) 107.442 107.442i 0.486164 0.486164i
\(222\) 0 0
\(223\) 233.261 1.04602 0.523008 0.852328i \(-0.324810\pi\)
0.523008 + 0.852328i \(0.324810\pi\)
\(224\) 0 0
\(225\) 339.996 + 347.783i 1.51109 + 1.54570i
\(226\) 0 0
\(227\) −94.3599 + 94.3599i −0.415682 + 0.415682i −0.883712 0.468030i \(-0.844964\pi\)
0.468030 + 0.883712i \(0.344964\pi\)
\(228\) 0 0
\(229\) 138.063 138.063i 0.602894 0.602894i −0.338185 0.941080i \(-0.609813\pi\)
0.941080 + 0.338185i \(0.109813\pi\)
\(230\) 0 0
\(231\) −12.8712 + 30.5830i −0.0557195 + 0.132394i
\(232\) 0 0
\(233\) 396.796 1.70299 0.851493 0.524366i \(-0.175697\pi\)
0.851493 + 0.524366i \(0.175697\pi\)
\(234\) 0 0
\(235\) 471.158 471.158i 2.00493 2.00493i
\(236\) 0 0
\(237\) 48.3243 19.6968i 0.203900 0.0831090i
\(238\) 0 0
\(239\) 284.813i 1.19168i −0.803102 0.595842i \(-0.796818\pi\)
0.803102 0.595842i \(-0.203182\pi\)
\(240\) 0 0
\(241\) −266.531 −1.10594 −0.552968 0.833202i \(-0.686505\pi\)
−0.552968 + 0.833202i \(0.686505\pi\)
\(242\) 0 0
\(243\) −86.6012 227.045i −0.356383 0.934340i
\(244\) 0 0
\(245\) 291.012 + 291.012i 1.18780 + 1.18780i
\(246\) 0 0
\(247\) 160.575i 0.650102i
\(248\) 0 0
\(249\) −123.662 + 293.830i −0.496633 + 1.18004i
\(250\) 0 0
\(251\) 153.945 + 153.945i 0.613327 + 0.613327i 0.943811 0.330485i \(-0.107212\pi\)
−0.330485 + 0.943811i \(0.607212\pi\)
\(252\) 0 0
\(253\) 77.1660 + 77.1660i 0.305004 + 0.305004i
\(254\) 0 0
\(255\) 118.834 282.359i 0.466016 1.10729i
\(256\) 0 0
\(257\) 240.167i 0.934503i 0.884125 + 0.467251i \(0.154756\pi\)
−0.884125 + 0.467251i \(0.845244\pi\)
\(258\) 0 0
\(259\) 44.8118 + 44.8118i 0.173018 + 0.173018i
\(260\) 0 0
\(261\) −1.54772 + 136.695i −0.00592995 + 0.523737i
\(262\) 0 0
\(263\) −140.707 −0.535009 −0.267505 0.963557i \(-0.586199\pi\)
−0.267505 + 0.963557i \(0.586199\pi\)
\(264\) 0 0
\(265\) 50.3765i 0.190100i
\(266\) 0 0
\(267\) −218.928 + 89.2343i −0.819954 + 0.334211i
\(268\) 0 0
\(269\) 229.830 229.830i 0.854388 0.854388i −0.136282 0.990670i \(-0.543515\pi\)
0.990670 + 0.136282i \(0.0435152\pi\)
\(270\) 0 0
\(271\) 228.731 0.844025 0.422012 0.906590i \(-0.361324\pi\)
0.422012 + 0.906590i \(0.361324\pi\)
\(272\) 0 0
\(273\) 25.3360 60.2002i 0.0928057 0.220514i
\(274\) 0 0
\(275\) 256.809 256.809i 0.933851 0.933851i
\(276\) 0 0
\(277\) 103.265 103.265i 0.372799 0.372799i −0.495697 0.868496i \(-0.665087\pi\)
0.868496 + 0.495697i \(0.165087\pi\)
\(278\) 0 0
\(279\) 40.8934 39.9778i 0.146571 0.143290i
\(280\) 0 0
\(281\) 283.552 1.00908 0.504540 0.863388i \(-0.331662\pi\)
0.504540 + 0.863388i \(0.331662\pi\)
\(282\) 0 0
\(283\) −23.4758 + 23.4758i −0.0829534 + 0.0829534i −0.747366 0.664413i \(-0.768682\pi\)
0.664413 + 0.747366i \(0.268682\pi\)
\(284\) 0 0
\(285\) 122.196 + 299.796i 0.428758 + 1.05192i
\(286\) 0 0
\(287\) 3.26126i 0.0113633i
\(288\) 0 0
\(289\) 157.073 0.543506
\(290\) 0 0
\(291\) −107.884 + 43.9734i −0.370737 + 0.151111i
\(292\) 0 0
\(293\) −381.409 381.409i −1.30174 1.30174i −0.927220 0.374516i \(-0.877809\pi\)
−0.374516 0.927220i \(-0.622191\pi\)
\(294\) 0 0
\(295\) 351.660i 1.19207i
\(296\) 0 0
\(297\) −168.798 + 66.5830i −0.568343 + 0.224185i
\(298\) 0 0
\(299\) −151.895 151.895i −0.508011 0.508011i
\(300\) 0 0
\(301\) −31.9555 31.9555i −0.106165 0.106165i
\(302\) 0 0
\(303\) −162.413 68.3534i −0.536017 0.225589i
\(304\) 0 0
\(305\) 493.224i 1.61713i
\(306\) 0 0
\(307\) 209.055 + 209.055i 0.680960 + 0.680960i 0.960217 0.279256i \(-0.0900879\pi\)
−0.279256 + 0.960217i \(0.590088\pi\)
\(308\) 0 0
\(309\) 111.889 + 274.508i 0.362099 + 0.888376i
\(310\) 0 0
\(311\) 111.176 0.357478 0.178739 0.983897i \(-0.442798\pi\)
0.178739 + 0.983897i \(0.442798\pi\)
\(312\) 0 0
\(313\) 282.280i 0.901852i 0.892561 + 0.450926i \(0.148906\pi\)
−0.892561 + 0.450926i \(0.851094\pi\)
\(314\) 0 0
\(315\) 1.49088 131.675i 0.00473294 0.418016i
\(316\) 0 0
\(317\) −206.983 + 206.983i −0.652943 + 0.652943i −0.953701 0.300758i \(-0.902760\pi\)
0.300758 + 0.953701i \(0.402760\pi\)
\(318\) 0 0
\(319\) 102.081 0.320003
\(320\) 0 0
\(321\) −386.539 162.679i −1.20417 0.506789i
\(322\) 0 0
\(323\) 98.5839 98.5839i 0.305213 0.305213i
\(324\) 0 0
\(325\) −505.508 + 505.508i −1.55541 + 1.55541i
\(326\) 0 0
\(327\) −269.242 113.314i −0.823371 0.346525i
\(328\) 0 0
\(329\) −123.345 −0.374908
\(330\) 0 0
\(331\) −127.431 + 127.431i −0.384989 + 0.384989i −0.872896 0.487907i \(-0.837761\pi\)
0.487907 + 0.872896i \(0.337761\pi\)
\(332\) 0 0
\(333\) −3.92369 + 346.543i −0.0117829 + 1.04067i
\(334\) 0 0
\(335\) 863.594i 2.57789i
\(336\) 0 0
\(337\) 68.9595 0.204628 0.102314 0.994752i \(-0.467375\pi\)
0.102314 + 0.994752i \(0.467375\pi\)
\(338\) 0 0
\(339\) −9.41157 23.0904i −0.0277627 0.0681133i
\(340\) 0 0
\(341\) −30.1964 30.1964i −0.0885525 0.0885525i
\(342\) 0 0
\(343\) 156.826i 0.457219i
\(344\) 0 0
\(345\) −399.181 168.000i −1.15705 0.486957i
\(346\) 0 0
\(347\) 54.0628 + 54.0628i 0.155801 + 0.155801i 0.780703 0.624902i \(-0.214861\pi\)
−0.624902 + 0.780703i \(0.714861\pi\)
\(348\) 0 0
\(349\) −0.107201 0.107201i −0.000307168 0.000307168i 0.706953 0.707260i \(-0.250069\pi\)
−0.707260 + 0.706953i \(0.750069\pi\)
\(350\) 0 0
\(351\) 332.265 131.063i 0.946625 0.373400i
\(352\) 0 0
\(353\) 194.223i 0.550208i −0.961414 0.275104i \(-0.911288\pi\)
0.961414 0.275104i \(-0.0887123\pi\)
\(354\) 0 0
\(355\) −255.749 255.749i −0.720420 0.720420i
\(356\) 0 0
\(357\) −52.5143 + 21.4047i −0.147099 + 0.0599570i
\(358\) 0 0
\(359\) 437.689 1.21919 0.609595 0.792713i \(-0.291332\pi\)
0.609595 + 0.792713i \(0.291332\pi\)
\(360\) 0 0
\(361\) 213.664i 0.591867i
\(362\) 0 0
\(363\) −85.8700 210.674i −0.236556 0.580369i
\(364\) 0 0
\(365\) 371.159 371.159i 1.01687 1.01687i
\(366\) 0 0
\(367\) −246.678 −0.672148 −0.336074 0.941836i \(-0.609099\pi\)
−0.336074 + 0.941836i \(0.609099\pi\)
\(368\) 0 0
\(369\) −12.7530 + 12.4674i −0.0345608 + 0.0337870i
\(370\) 0 0
\(371\) 6.59405 6.59405i 0.0177737 0.0177737i
\(372\) 0 0
\(373\) 349.678 349.678i 0.937476 0.937476i −0.0606816 0.998157i \(-0.519327\pi\)
0.998157 + 0.0606816i \(0.0193274\pi\)
\(374\) 0 0
\(375\) −300.454 + 713.903i −0.801212 + 1.90374i
\(376\) 0 0
\(377\) −200.938 −0.532993
\(378\) 0 0
\(379\) −235.668 + 235.668i −0.621815 + 0.621815i −0.945995 0.324180i \(-0.894912\pi\)
0.324180 + 0.945995i \(0.394912\pi\)
\(380\) 0 0
\(381\) −544.321 + 221.864i −1.42866 + 0.582319i
\(382\) 0 0
\(383\) 64.2130i 0.167658i −0.996480 0.0838290i \(-0.973285\pi\)
0.996480 0.0838290i \(-0.0267149\pi\)
\(384\) 0 0
\(385\) −98.3320 −0.255408
\(386\) 0 0
\(387\) 2.79801 247.122i 0.00723000 0.638559i
\(388\) 0 0
\(389\) 273.321 + 273.321i 0.702624 + 0.702624i 0.964973 0.262349i \(-0.0844973\pi\)
−0.262349 + 0.964973i \(0.584497\pi\)
\(390\) 0 0
\(391\) 186.510i 0.477007i
\(392\) 0 0
\(393\) 233.905 555.778i 0.595179 1.41419i
\(394\) 0 0
\(395\) 109.352 + 109.352i 0.276842 + 0.276842i
\(396\) 0 0
\(397\) −141.678 141.678i −0.356873 0.356873i 0.505786 0.862659i \(-0.331202\pi\)
−0.862659 + 0.505786i \(0.831202\pi\)
\(398\) 0 0
\(399\) 23.2470 55.2368i 0.0582633 0.138438i
\(400\) 0 0
\(401\) 194.801i 0.485788i −0.970053 0.242894i \(-0.921903\pi\)
0.970053 0.242894i \(-0.0780967\pi\)
\(402\) 0 0
\(403\) 59.4392 + 59.4392i 0.147492 + 0.147492i
\(404\) 0 0
\(405\) 520.607 497.548i 1.28545 1.22851i
\(406\) 0 0
\(407\) 258.791 0.635849
\(408\) 0 0
\(409\) 420.826i 1.02891i 0.857516 + 0.514457i \(0.172007\pi\)
−0.857516 + 0.514457i \(0.827993\pi\)
\(410\) 0 0
\(411\) 140.251 57.1659i 0.341244 0.139090i
\(412\) 0 0
\(413\) −46.0307 + 46.0307i −0.111454 + 0.111454i
\(414\) 0 0
\(415\) −944.737 −2.27648
\(416\) 0 0
\(417\) −282.620 + 671.526i −0.677745 + 1.61038i
\(418\) 0 0
\(419\) −186.421 + 186.421i −0.444919 + 0.444919i −0.893661 0.448742i \(-0.851872\pi\)
0.448742 + 0.893661i \(0.351872\pi\)
\(420\) 0 0
\(421\) 186.889 186.889i 0.443917 0.443917i −0.449409 0.893326i \(-0.648366\pi\)
0.893326 + 0.449409i \(0.148366\pi\)
\(422\) 0 0
\(423\) −471.532 482.332i −1.11473 1.14026i
\(424\) 0 0
\(425\) 620.706 1.46049
\(426\) 0 0
\(427\) −64.5608 + 64.5608i −0.151196 + 0.151196i
\(428\) 0 0
\(429\) −100.672 246.988i −0.234666 0.575731i
\(430\) 0 0
\(431\) 128.395i 0.297901i −0.988845 0.148950i \(-0.952411\pi\)
0.988845 0.148950i \(-0.0475895\pi\)
\(432\) 0 0
\(433\) 684.737 1.58138 0.790690 0.612217i \(-0.209722\pi\)
0.790690 + 0.612217i \(0.209722\pi\)
\(434\) 0 0
\(435\) −375.155 + 152.912i −0.862426 + 0.351522i
\(436\) 0 0
\(437\) −139.372 139.372i −0.318928 0.318928i
\(438\) 0 0
\(439\) 239.107i 0.544663i −0.962203 0.272332i \(-0.912205\pi\)
0.962203 0.272332i \(-0.0877948\pi\)
\(440\) 0 0
\(441\) 297.914 291.243i 0.675541 0.660415i
\(442\) 0 0
\(443\) 310.189 + 310.189i 0.700200 + 0.700200i 0.964453 0.264253i \(-0.0851255\pi\)
−0.264253 + 0.964453i \(0.585125\pi\)
\(444\) 0 0
\(445\) −495.409 495.409i −1.11328 1.11328i
\(446\) 0 0
\(447\) 330.413 + 139.058i 0.739179 + 0.311092i
\(448\) 0 0
\(449\) 545.902i 1.21582i 0.794007 + 0.607908i \(0.207991\pi\)
−0.794007 + 0.607908i \(0.792009\pi\)
\(450\) 0 0
\(451\) 9.41699 + 9.41699i 0.0208803 + 0.0208803i
\(452\) 0 0
\(453\) −34.0872 83.6297i −0.0752477 0.184613i
\(454\) 0 0
\(455\) 193.559 0.425404
\(456\) 0 0
\(457\) 289.579i 0.633652i −0.948484 0.316826i \(-0.897383\pi\)
0.948484 0.316826i \(-0.102617\pi\)
\(458\) 0 0
\(459\) −284.457 123.526i −0.619732 0.269121i
\(460\) 0 0
\(461\) 160.511 160.511i 0.348180 0.348180i −0.511251 0.859431i \(-0.670818\pi\)
0.859431 + 0.511251i \(0.170818\pi\)
\(462\) 0 0
\(463\) −197.573 −0.426723 −0.213361 0.976973i \(-0.568441\pi\)
−0.213361 + 0.976973i \(0.568441\pi\)
\(464\) 0 0
\(465\) 156.207 + 65.7413i 0.335928 + 0.141379i
\(466\) 0 0
\(467\) 52.7645 52.7645i 0.112986 0.112986i −0.648353 0.761339i \(-0.724542\pi\)
0.761339 + 0.648353i \(0.224542\pi\)
\(468\) 0 0
\(469\) 113.041 113.041i 0.241025 0.241025i
\(470\) 0 0
\(471\) 708.826 + 298.318i 1.50494 + 0.633371i
\(472\) 0 0
\(473\) −184.545 −0.390159
\(474\) 0 0
\(475\) −463.830 + 463.830i −0.976484 + 0.976484i
\(476\) 0 0
\(477\) 50.9938 + 0.577371i 0.106905 + 0.00121042i
\(478\) 0 0
\(479\) 175.985i 0.367401i 0.982982 + 0.183700i \(0.0588076\pi\)
−0.982982 + 0.183700i \(0.941192\pi\)
\(480\) 0 0
\(481\) −509.409 −1.05906
\(482\) 0 0
\(483\) 30.2606 + 74.2414i 0.0626513 + 0.153709i
\(484\) 0 0
\(485\) −244.130 244.130i −0.503362 0.503362i
\(486\) 0 0
\(487\) 965.217i 1.98196i 0.133991 + 0.990982i \(0.457221\pi\)
−0.133991 + 0.990982i \(0.542779\pi\)
\(488\) 0 0
\(489\) −782.404 329.284i −1.60001 0.673382i
\(490\) 0 0
\(491\) 600.614 + 600.614i 1.22325 + 1.22325i 0.966471 + 0.256775i \(0.0826598\pi\)
0.256775 + 0.966471i \(0.417340\pi\)
\(492\) 0 0
\(493\) 123.365 + 123.365i 0.250233 + 0.250233i
\(494\) 0 0
\(495\) −375.911 384.521i −0.759416 0.776810i
\(496\) 0 0
\(497\) 66.9527i 0.134714i
\(498\) 0 0
\(499\) 51.6092 + 51.6092i 0.103425 + 0.103425i 0.756926 0.653501i \(-0.226700\pi\)
−0.653501 + 0.756926i \(0.726700\pi\)
\(500\) 0 0
\(501\) −479.653 + 195.505i −0.957391 + 0.390230i
\(502\) 0 0
\(503\) −847.530 −1.68495 −0.842475 0.538735i \(-0.818902\pi\)
−0.842475 + 0.538735i \(0.818902\pi\)
\(504\) 0 0
\(505\) 522.199i 1.03406i
\(506\) 0 0
\(507\) 6.79851 + 16.6795i 0.0134093 + 0.0328984i
\(508\) 0 0
\(509\) −128.457 + 128.457i −0.252372 + 0.252372i −0.821942 0.569570i \(-0.807110\pi\)
0.569570 + 0.821942i \(0.307110\pi\)
\(510\) 0 0
\(511\) −97.1660 −0.190149
\(512\) 0 0
\(513\) 304.871 120.257i 0.594290 0.234420i
\(514\) 0 0
\(515\) −621.182 + 621.182i −1.20618 + 1.20618i
\(516\) 0 0
\(517\) −356.162 + 356.162i −0.688901 + 0.688901i
\(518\) 0 0
\(519\) 67.1981 159.668i 0.129476 0.307645i
\(520\) 0 0
\(521\) −676.366 −1.29821 −0.649103 0.760700i \(-0.724856\pi\)
−0.649103 + 0.760700i \(0.724856\pi\)
\(522\) 0 0
\(523\) 600.494 600.494i 1.14817 1.14817i 0.161260 0.986912i \(-0.448444\pi\)
0.986912 0.161260i \(-0.0515559\pi\)
\(524\) 0 0
\(525\) 247.076 100.707i 0.470621 0.191824i
\(526\) 0 0
\(527\) 72.9845i 0.138491i
\(528\) 0 0
\(529\) −265.324 −0.501558
\(530\) 0 0
\(531\) −355.970 4.03042i −0.670376 0.00759025i
\(532\) 0 0
\(533\) −18.5366 18.5366i −0.0347779 0.0347779i
\(534\) 0 0
\(535\) 1242.82i 2.32302i
\(536\) 0 0
\(537\) −251.162 + 596.782i −0.467714 + 1.11133i
\(538\) 0 0
\(539\) −219.985 219.985i −0.408135 0.408135i
\(540\) 0 0
\(541\) −43.4797 43.4797i −0.0803692 0.0803692i 0.665779 0.746149i \(-0.268099\pi\)
−0.746149 + 0.665779i \(0.768099\pi\)
\(542\) 0 0
\(543\) −274.184 + 651.484i −0.504943 + 1.19979i
\(544\) 0 0
\(545\) 865.682i 1.58841i
\(546\) 0 0
\(547\) 125.498 + 125.498i 0.229430 + 0.229430i 0.812454 0.583025i \(-0.198131\pi\)
−0.583025 + 0.812454i \(0.698131\pi\)
\(548\) 0 0
\(549\) −499.269 5.65291i −0.909414 0.0102967i
\(550\) 0 0
\(551\) −184.371 −0.334612
\(552\) 0 0
\(553\) 28.6275i 0.0517676i
\(554\) 0 0
\(555\) −951.074 + 387.655i −1.71365 + 0.698477i
\(556\) 0 0
\(557\) −184.272 + 184.272i −0.330829 + 0.330829i −0.852901 0.522072i \(-0.825159\pi\)
0.522072 + 0.852901i \(0.325159\pi\)
\(558\) 0 0
\(559\) 363.263 0.649844
\(560\) 0 0
\(561\) −89.8301 + 213.443i −0.160125 + 0.380469i
\(562\) 0 0
\(563\) 523.489 523.489i 0.929820 0.929820i −0.0678736 0.997694i \(-0.521621\pi\)
0.997694 + 0.0678736i \(0.0216215\pi\)
\(564\) 0 0
\(565\) 52.2510 52.2510i 0.0924796 0.0924796i
\(566\) 0 0
\(567\) −133.272 3.01829i −0.235047 0.00532326i
\(568\) 0 0
\(569\) 52.6214 0.0924805 0.0462403 0.998930i \(-0.485276\pi\)
0.0462403 + 0.998930i \(0.485276\pi\)
\(570\) 0 0
\(571\) 114.561 114.561i 0.200632 0.200632i −0.599639 0.800271i \(-0.704689\pi\)
0.800271 + 0.599639i \(0.204689\pi\)
\(572\) 0 0
\(573\) 16.2416 + 39.8473i 0.0283449 + 0.0695415i
\(574\) 0 0
\(575\) 877.515i 1.52611i
\(576\) 0 0
\(577\) 496.442 0.860384 0.430192 0.902737i \(-0.358446\pi\)
0.430192 + 0.902737i \(0.358446\pi\)
\(578\) 0 0
\(579\) 576.100 234.817i 0.994992 0.405555i
\(580\) 0 0
\(581\) 123.662 + 123.662i 0.212843 + 0.212843i
\(582\) 0 0
\(583\) 38.0810i 0.0653191i
\(584\) 0 0
\(585\) 739.951 + 756.899i 1.26487 + 1.29384i
\(586\) 0 0
\(587\) 115.260 + 115.260i 0.196354 + 0.196354i 0.798435 0.602081i \(-0.205662\pi\)
−0.602081 + 0.798435i \(0.705662\pi\)
\(588\) 0 0
\(589\) 54.5385 + 54.5385i 0.0925952 + 0.0925952i
\(590\) 0 0
\(591\) −380.332 160.067i −0.643540 0.270841i
\(592\) 0 0
\(593\) 227.756i 0.384074i −0.981388 0.192037i \(-0.938491\pi\)
0.981388 0.192037i \(-0.0615094\pi\)
\(594\) 0 0
\(595\) −118.834 118.834i −0.199721 0.199721i
\(596\) 0 0
\(597\) 93.7209 + 229.935i 0.156986 + 0.385151i
\(598\) 0 0
\(599\) 760.308 1.26930 0.634648 0.772802i \(-0.281145\pi\)
0.634648 + 0.772802i \(0.281145\pi\)
\(600\) 0 0
\(601\) 85.7856i 0.142738i −0.997450 0.0713690i \(-0.977263\pi\)
0.997450 0.0713690i \(-0.0227368\pi\)
\(602\) 0 0
\(603\) 874.177 + 9.89776i 1.44971 + 0.0164142i
\(604\) 0 0
\(605\) 476.731 476.731i 0.787986 0.787986i
\(606\) 0 0
\(607\) 685.217 1.12886 0.564429 0.825482i \(-0.309096\pi\)
0.564429 + 0.825482i \(0.309096\pi\)
\(608\) 0 0
\(609\) 69.1216 + 29.0906i 0.113500 + 0.0477678i
\(610\) 0 0
\(611\) 701.077 701.077i 1.14743 1.14743i
\(612\) 0 0
\(613\) 544.727 544.727i 0.888624 0.888624i −0.105767 0.994391i \(-0.533730\pi\)
0.994391 + 0.105767i \(0.0337296\pi\)
\(614\) 0 0
\(615\) −48.7143 20.5020i −0.0792102 0.0333365i
\(616\) 0 0
\(617\) 383.577 0.621681 0.310840 0.950462i \(-0.399390\pi\)
0.310840 + 0.950462i \(0.399390\pi\)
\(618\) 0 0
\(619\) −81.7634 + 81.7634i −0.132089 + 0.132089i −0.770060 0.637971i \(-0.779774\pi\)
0.637971 + 0.770060i \(0.279774\pi\)
\(620\) 0 0
\(621\) −174.634 + 402.148i −0.281214 + 0.647581i
\(622\) 0 0
\(623\) 129.694i 0.208176i
\(624\) 0 0
\(625\) −944.365 −1.51098
\(626\) 0 0
\(627\) −92.3715 226.625i −0.147323 0.361443i
\(628\) 0 0
\(629\) 312.748 + 312.748i 0.497214 + 0.497214i
\(630\) 0 0
\(631\) 944.242i 1.49642i 0.663461 + 0.748211i \(0.269087\pi\)
−0.663461 + 0.748211i \(0.730913\pi\)
\(632\) 0 0
\(633\) 788.523 + 331.859i 1.24569 + 0.524263i
\(634\) 0 0
\(635\) −1231.74 1231.74i −1.93974 1.93974i
\(636\) 0 0
\(637\) 433.022 + 433.022i 0.679784 + 0.679784i
\(638\) 0 0
\(639\) −261.814 + 255.952i −0.409725 + 0.400551i
\(640\) 0 0
\(641\) 1102.48i 1.71994i 0.510344 + 0.859970i \(0.329518\pi\)
−0.510344 + 0.859970i \(0.670482\pi\)
\(642\) 0 0
\(643\) −794.664 794.664i −1.23587 1.23587i −0.961674 0.274195i \(-0.911588\pi\)
−0.274195 0.961674i \(-0.588412\pi\)
\(644\) 0 0
\(645\) 678.217 276.439i 1.05150 0.428588i
\(646\) 0 0
\(647\) 768.446 1.18771 0.593853 0.804574i \(-0.297606\pi\)
0.593853 + 0.804574i \(0.297606\pi\)
\(648\) 0 0
\(649\) 265.830i 0.409599i
\(650\) 0 0
\(651\) −11.8415 29.0519i −0.0181897 0.0446266i
\(652\) 0 0
\(653\) −829.478 + 829.478i −1.27026 + 1.27026i −0.324305 + 0.945953i \(0.605130\pi\)
−0.945953 + 0.324305i \(0.894870\pi\)
\(654\) 0 0
\(655\) 1786.96 2.72819
\(656\) 0 0
\(657\) −371.454 379.961i −0.565378 0.578328i
\(658\) 0 0
\(659\) −653.956 + 653.956i −0.992346 + 0.992346i −0.999971 0.00762509i \(-0.997573\pi\)
0.00762509 + 0.999971i \(0.497573\pi\)
\(660\) 0 0
\(661\) −734.342 + 734.342i −1.11096 + 1.11096i −0.117936 + 0.993021i \(0.537628\pi\)
−0.993021 + 0.117936i \(0.962372\pi\)
\(662\) 0 0
\(663\) 176.823 420.146i 0.266702 0.633705i
\(664\) 0 0
\(665\) 177.600 0.267068
\(666\) 0 0
\(667\) 174.405 174.405i 0.261477 0.261477i
\(668\) 0 0
\(669\) 648.022 264.132i 0.968643 0.394816i
\(670\) 0 0
\(671\) 372.842i 0.555652i
\(672\) 0 0
\(673\) 514.259 0.764129 0.382065 0.924136i \(-0.375213\pi\)
0.382065 + 0.924136i \(0.375213\pi\)
\(674\) 0 0
\(675\) 1338.35 + 581.183i 1.98274 + 0.861012i
\(676\) 0 0
\(677\) 662.519 + 662.519i 0.978610 + 0.978610i 0.999776 0.0211661i \(-0.00673787\pi\)
−0.0211661 + 0.999776i \(0.506738\pi\)
\(678\) 0 0
\(679\) 63.9111i 0.0941253i
\(680\) 0 0
\(681\) −155.293 + 368.988i −0.228037 + 0.541833i
\(682\) 0 0
\(683\) −280.446 280.446i −0.410608 0.410608i 0.471342 0.881950i \(-0.343770\pi\)
−0.881950 + 0.471342i \(0.843770\pi\)
\(684\) 0 0
\(685\) 317.373 + 317.373i 0.463318 + 0.463318i
\(686\) 0 0
\(687\) 227.217 539.885i 0.330738 0.785859i
\(688\) 0 0
\(689\) 74.9595i 0.108795i
\(690\) 0 0
\(691\) 631.830 + 631.830i 0.914371 + 0.914371i 0.996612 0.0822418i \(-0.0262080\pi\)
−0.0822418 + 0.996612i \(0.526208\pi\)
\(692\) 0 0
\(693\) −1.12700 + 99.5370i −0.00162626 + 0.143632i
\(694\) 0 0
\(695\) −2159.13 −3.10666
\(696\) 0 0
\(697\) 22.7608i 0.0326554i
\(698\) 0 0
\(699\) 1102.34 449.309i 1.57702 0.642788i
\(700\) 0 0
\(701\) 160.480 160.480i 0.228930 0.228930i −0.583315 0.812246i \(-0.698245\pi\)
0.812246 + 0.583315i \(0.198245\pi\)
\(702\) 0 0
\(703\) −467.409 −0.664878
\(704\) 0 0
\(705\) 775.409 1842.43i 1.09987 2.61338i
\(706\) 0 0
\(707\) −68.3534 + 68.3534i −0.0966809 + 0.0966809i
\(708\) 0 0
\(709\) 410.261 410.261i 0.578648 0.578648i −0.355883 0.934531i \(-0.615820\pi\)
0.934531 + 0.355883i \(0.115820\pi\)
\(710\) 0 0
\(711\) 111.946 109.439i 0.157448 0.153923i
\(712\) 0 0
\(713\) −103.181 −0.144714
\(714\) 0 0
\(715\) 558.907 558.907i 0.781688 0.781688i
\(716\) 0 0
\(717\) −322.505 791.236i −0.449798 1.10354i
\(718\) 0 0
\(719\) 1069.18i 1.48704i 0.668716 + 0.743518i \(0.266844\pi\)
−0.668716 + 0.743518i \(0.733156\pi\)
\(720\) 0 0
\(721\) 162.620 0.225547
\(722\) 0 0
\(723\) −740.447 + 301.804i −1.02413 + 0.417433i
\(724\) 0 0
\(725\) −580.422 580.422i −0.800582 0.800582i
\(726\) 0 0
\(727\) 148.864i 0.204765i 0.994745 + 0.102382i \(0.0326466\pi\)
−0.994745 + 0.102382i \(0.967353\pi\)
\(728\) 0 0
\(729\) −497.678 532.689i −0.682686 0.730712i
\(730\) 0 0
\(731\) −223.022 223.022i −0.305092 0.305092i
\(732\) 0 0
\(733\) 690.136 + 690.136i 0.941522 + 0.941522i 0.998382 0.0568598i \(-0.0181088\pi\)
−0.0568598 + 0.998382i \(0.518109\pi\)
\(734\) 0 0
\(735\) 1137.98 + 478.934i 1.54828 + 0.651610i
\(736\) 0 0
\(737\) 652.816i 0.885775i
\(738\) 0 0
\(739\) 535.593 + 535.593i 0.724754 + 0.724754i 0.969570 0.244815i \(-0.0787274\pi\)
−0.244815 + 0.969570i \(0.578727\pi\)
\(740\) 0 0
\(741\) 181.826 + 446.093i 0.245379 + 0.602014i
\(742\) 0 0
\(743\) −20.5116 −0.0276065 −0.0138032 0.999905i \(-0.504394\pi\)
−0.0138032 + 0.999905i \(0.504394\pi\)
\(744\) 0 0
\(745\) 1062.36i 1.42599i
\(746\) 0 0
\(747\) −10.8278 + 956.315i −0.0144950 + 1.28021i
\(748\) 0 0
\(749\) −162.679 + 162.679i −0.217195 + 0.217195i
\(750\) 0 0
\(751\) −15.8000 −0.0210385 −0.0105193 0.999945i \(-0.503348\pi\)
−0.0105193 + 0.999945i \(0.503348\pi\)
\(752\) 0 0
\(753\) 601.992 + 253.355i 0.799458 + 0.336461i
\(754\) 0 0
\(755\) 189.245 189.245i 0.250655 0.250655i
\(756\) 0 0
\(757\) −810.497 + 810.497i −1.07067 + 1.07067i −0.0733640 + 0.997305i \(0.523373\pi\)
−0.997305 + 0.0733640i \(0.976627\pi\)
\(758\) 0 0
\(759\) 301.753 + 126.996i 0.397566 + 0.167320i
\(760\) 0 0
\(761\) −212.194 −0.278836 −0.139418 0.990234i \(-0.544523\pi\)
−0.139418 + 0.990234i \(0.544523\pi\)
\(762\) 0 0
\(763\) −113.314 + 113.314i −0.148511 + 0.148511i
\(764\) 0 0
\(765\) 10.4050 918.980i 0.0136014 1.20128i
\(766\) 0 0
\(767\) 523.266i 0.682224i
\(768\) 0 0
\(769\) −883.681 −1.14913 −0.574565 0.818459i \(-0.694829\pi\)
−0.574565 + 0.818459i \(0.694829\pi\)
\(770\) 0 0
\(771\) 271.951 + 667.207i 0.352725 + 0.865378i
\(772\) 0 0
\(773\) −515.805 515.805i −0.667277 0.667277i 0.289808 0.957085i \(-0.406409\pi\)
−0.957085 + 0.289808i \(0.906409\pi\)
\(774\) 0 0
\(775\) 343.387i 0.443080i
\(776\) 0 0
\(777\) 175.233 + 73.7490i 0.225526 + 0.0949151i
\(778\) 0 0
\(779\) −17.0083 17.0083i −0.0218335 0.0218335i
\(780\) 0 0
\(781\) 193.328 + 193.328i 0.247539 + 0.247539i
\(782\) 0 0
\(783\) 150.486 + 381.505i 0.192192 + 0.487235i
\(784\) 0 0
\(785\) 2279.05i 2.90325i
\(786\) 0 0
\(787\) −279.150 279.150i −0.354702 0.354702i 0.507154 0.861856i \(-0.330698\pi\)
−0.861856 + 0.507154i \(0.830698\pi\)
\(788\) 0 0
\(789\) −390.898 + 159.329i −0.495435 + 0.201938i
\(790\) 0 0
\(791\) −13.6788 −0.0172931
\(792\) 0 0
\(793\) 733.911i 0.925487i
\(794\) 0 0
\(795\)