Properties

Label 384.2.w
Level $384$
Weight $2$
Character orbit 384.w
Rep. character $\chi_{384}(11,\cdot)$
Character field $\Q(\zeta_{32})$
Dimension $992$
Newform subspaces $1$
Sturm bound $128$
Trace bound $0$

Related objects

Downloads

Learn more about

Defining parameters

Level: \( N \) \(=\) \( 384 = 2^{7} \cdot 3 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 384.w (of order \(32\) and degree \(16\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 384 \)
Character field: \(\Q(\zeta_{32})\)
Newform subspaces: \( 1 \)
Sturm bound: \(128\)
Trace bound: \(0\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(384, [\chi])\).

Total New Old
Modular forms 1056 1056 0
Cusp forms 992 992 0
Eisenstein series 64 64 0

Trace form

\( 992q - 16q^{3} - 32q^{4} - 16q^{6} - 32q^{7} - 16q^{9} + O(q^{10}) \) \( 992q - 16q^{3} - 32q^{4} - 16q^{6} - 32q^{7} - 16q^{9} - 32q^{10} - 16q^{12} - 32q^{13} - 16q^{15} - 32q^{16} - 16q^{18} - 32q^{19} - 16q^{21} - 32q^{22} - 16q^{24} - 32q^{25} - 16q^{27} - 32q^{28} - 16q^{30} - 32q^{31} - 16q^{33} - 32q^{34} - 16q^{36} - 32q^{37} - 16q^{39} - 32q^{40} - 16q^{42} - 32q^{43} - 16q^{45} - 32q^{46} - 16q^{48} - 32q^{49} - 16q^{51} - 128q^{52} - 16q^{54} - 32q^{55} - 16q^{57} - 320q^{58} - 16q^{60} - 32q^{61} - 32q^{63} - 224q^{64} - 16q^{66} - 32q^{67} - 16q^{69} - 224q^{70} - 16q^{72} - 32q^{73} - 16q^{75} - 256q^{76} - 16q^{78} - 32q^{79} - 16q^{81} - 32q^{82} - 16q^{84} - 32q^{85} - 16q^{87} - 32q^{88} - 16q^{90} - 32q^{91} - 16q^{93} - 32q^{94} - 16q^{96} - 32q^{97} - 16q^{99} + O(q^{100}) \)

Decomposition of \(S_{2}^{\mathrm{new}}(384, [\chi])\) into newform subspaces

Label Dim. \(A\) Field CM Traces $q$-expansion
\(a_2\) \(a_3\) \(a_5\) \(a_7\)
384.2.w.a \(992\) \(3.066\) None \(0\) \(-16\) \(0\) \(-32\)