# Properties

 Label 384.2.v.a.85.4 Level $384$ Weight $2$ Character 384.85 Analytic conductor $3.066$ Analytic rank $0$ Dimension $512$ CM no Inner twists $2$

# Related objects

## Newspace parameters

 Level: $$N$$ $$=$$ $$384 = 2^{7} \cdot 3$$ Weight: $$k$$ $$=$$ $$2$$ Character orbit: $$[\chi]$$ $$=$$ 384.v (of order $$32$$, degree $$16$$, minimal)

## Newform invariants

 Self dual: no Analytic conductor: $$3.06625543762$$ Analytic rank: $$0$$ Dimension: $$512$$ Relative dimension: $$32$$ over $$\Q(\zeta_{32})$$ Twist minimal: yes Sato-Tate group: $\mathrm{SU}(2)[C_{32}]$

## Embedding invariants

 Embedding label 85.4 Character $$\chi$$ $$=$$ 384.85 Dual form 384.2.v.a.253.4

## $q$-expansion

 $$f(q)$$ $$=$$ $$q+(-1.34358 + 0.441342i) q^{2} +(-0.634393 + 0.773010i) q^{3} +(1.61043 - 1.18596i) q^{4} +(2.46859 - 0.748840i) q^{5} +(0.511199 - 1.31859i) q^{6} +(2.57470 + 0.512139i) q^{7} +(-1.64034 + 2.30419i) q^{8} +(-0.195090 - 0.980785i) q^{9} +O(q^{10})$$ $$q+(-1.34358 + 0.441342i) q^{2} +(-0.634393 + 0.773010i) q^{3} +(1.61043 - 1.18596i) q^{4} +(2.46859 - 0.748840i) q^{5} +(0.511199 - 1.31859i) q^{6} +(2.57470 + 0.512139i) q^{7} +(-1.64034 + 2.30419i) q^{8} +(-0.195090 - 0.980785i) q^{9} +(-2.98627 + 2.09562i) q^{10} +(-0.342322 - 0.0337158i) q^{11} +(-0.104890 + 1.99725i) q^{12} +(1.04484 - 3.44439i) q^{13} +(-3.68535 + 0.448220i) q^{14} +(-0.987199 + 2.38331i) q^{15} +(1.18700 - 3.81982i) q^{16} +(-2.21506 - 5.34764i) q^{17} +(0.694982 + 1.23167i) q^{18} +(3.09113 - 1.65224i) q^{19} +(3.08742 - 4.13361i) q^{20} +(-2.02926 + 1.66537i) q^{21} +(0.474819 - 0.105781i) q^{22} +(-1.10734 + 1.65725i) q^{23} +(-0.740540 - 2.72976i) q^{24} +(1.37585 - 0.919314i) q^{25} +(0.116317 + 5.08896i) q^{26} +(0.881921 + 0.471397i) q^{27} +(4.75376 - 2.22872i) q^{28} +(0.640924 + 6.50741i) q^{29} +(0.274531 - 3.63787i) q^{30} +(6.17902 + 6.17902i) q^{31} +(0.0910097 + 5.65612i) q^{32} +(0.243230 - 0.243230i) q^{33} +(5.33626 + 6.20740i) q^{34} +(6.73940 - 0.663773i) q^{35} +(-1.47735 - 1.34812i) q^{36} +(3.27459 - 6.12633i) q^{37} +(-3.42399 + 3.58417i) q^{38} +(1.99971 + 2.99277i) q^{39} +(-2.32387 + 6.91646i) q^{40} +(3.68846 + 2.46455i) q^{41} +(1.99148 - 3.13316i) q^{42} +(0.676727 + 0.824594i) q^{43} +(-0.591274 + 0.351683i) q^{44} +(-1.21605 - 2.27507i) q^{45} +(0.756391 - 2.71538i) q^{46} +(-7.18356 + 2.97553i) q^{47} +(2.19974 + 3.34083i) q^{48} +(-0.100373 - 0.0415760i) q^{49} +(-1.44284 + 1.84240i) q^{50} +(5.53900 + 1.68024i) q^{51} +(-2.40225 - 6.78611i) q^{52} +(0.897741 - 9.11492i) q^{53} +(-1.39298 - 0.244132i) q^{54} +(-0.870303 + 0.173114i) q^{55} +(-5.40345 + 5.09250i) q^{56} +(-0.683791 + 3.43765i) q^{57} +(-3.73312 - 8.46038i) q^{58} +(1.35904 + 4.48016i) q^{59} +(1.23669 + 5.00894i) q^{60} +(8.45098 + 6.93554i) q^{61} +(-11.0291 - 5.57497i) q^{62} -2.62514i q^{63} +(-2.61856 - 7.55931i) q^{64} -9.28522i q^{65} +(-0.219452 + 0.434147i) q^{66} +(-0.239134 - 0.196252i) q^{67} +(-9.90930 - 5.98505i) q^{68} +(-0.578584 - 1.90734i) q^{69} +(-8.76199 + 3.86621i) q^{70} +(1.57021 - 7.89399i) q^{71} +(2.57993 + 1.15930i) q^{72} +(-11.8459 + 2.35630i) q^{73} +(-1.69588 + 9.67645i) q^{74} +(-0.162191 + 1.64675i) q^{75} +(3.01857 - 6.32679i) q^{76} +(-0.864110 - 0.262125i) q^{77} +(-4.00761 - 3.13849i) q^{78} +(-7.38272 - 3.05802i) q^{79} +(0.0697918 - 10.3185i) q^{80} +(-0.923880 + 0.382683i) q^{81} +(-6.04346 - 1.68346i) q^{82} +(4.94666 + 9.25455i) q^{83} +(-1.29293 + 5.08859i) q^{84} +(-9.47262 - 11.5424i) q^{85} +(-1.27317 - 0.809244i) q^{86} +(-5.43689 - 3.63281i) q^{87} +(0.639213 - 0.733470i) q^{88} +(3.47272 + 5.19729i) q^{89} +(2.63795 + 2.52005i) q^{90} +(4.45416 - 8.33316i) q^{91} +(0.182134 + 3.98216i) q^{92} +(-8.69638 + 0.856518i) q^{93} +(8.33849 - 7.16828i) q^{94} +(6.39348 - 6.39348i) q^{95} +(-4.42998 - 3.51785i) q^{96} +(9.98433 + 9.98433i) q^{97} +(0.153209 + 0.0115619i) q^{98} +(0.0337158 + 0.342322i) q^{99} +O(q^{100})$$ $$\operatorname{Tr}(f)(q)$$ $$=$$ $$512 q+O(q^{10})$$ 512 * q $$512 q - 96 q^{50} - 96 q^{52} - 32 q^{54} - 224 q^{56} - 192 q^{60} - 192 q^{62} - 192 q^{64} - 192 q^{66} - 192 q^{68} - 192 q^{70} - 224 q^{74} - 32 q^{76} - 96 q^{78} - 96 q^{80}+O(q^{100})$$ 512 * q - 96 * q^50 - 96 * q^52 - 32 * q^54 - 224 * q^56 - 192 * q^60 - 192 * q^62 - 192 * q^64 - 192 * q^66 - 192 * q^68 - 192 * q^70 - 224 * q^74 - 32 * q^76 - 96 * q^78 - 96 * q^80

## Character values

We give the values of $$\chi$$ on generators for $$\left(\mathbb{Z}/384\mathbb{Z}\right)^\times$$.

 $$n$$ $$127$$ $$133$$ $$257$$ $$\chi(n)$$ $$1$$ $$e\left(\frac{29}{32}\right)$$ $$1$$

## Coefficient data

For each $$n$$ we display the coefficients of the $$q$$-expansion $$a_n$$, the Satake parameters $$\alpha_p$$, and the Satake angles $$\theta_p = \textrm{Arg}(\alpha_p)$$.

Display $$a_p$$ with $$p$$ up to: 50 250 1000 Display $$a_n$$ with $$n$$ up to: 50 250 1000
$$n$$ $$a_n$$ $$a_n / n^{(k-1)/2}$$ $$\alpha_n$$ $$\theta_n$$
$$p$$ $$a_p$$ $$a_p / p^{(k-1)/2}$$ $$\alpha_p$$ $$\theta_p$$
$$2$$ −1.34358 + 0.441342i −0.950057 + 0.312076i
$$3$$ −0.634393 + 0.773010i −0.366267 + 0.446298i
$$4$$ 1.61043 1.18596i 0.805217 0.592980i
$$5$$ 2.46859 0.748840i 1.10399 0.334891i 0.314872 0.949134i $$-0.398038\pi$$
0.789117 + 0.614243i $$0.210538\pi$$
$$6$$ 0.511199 1.31859i 0.208696 0.538312i
$$7$$ 2.57470 + 0.512139i 0.973144 + 0.193570i 0.655962 0.754794i $$-0.272263\pi$$
0.317183 + 0.948365i $$0.397263\pi$$
$$8$$ −1.64034 + 2.30419i −0.579948 + 0.814653i
$$9$$ −0.195090 0.980785i −0.0650301 0.326928i
$$10$$ −2.98627 + 2.09562i −0.944341 + 0.662694i
$$11$$ −0.342322 0.0337158i −0.103214 0.0101657i 0.0462782 0.998929i $$-0.485264\pi$$
−0.149492 + 0.988763i $$0.547764\pi$$
$$12$$ −0.104890 + 1.99725i −0.0302792 + 0.576556i
$$13$$ 1.04484 3.44439i 0.289788 0.955302i −0.684313 0.729188i $$-0.739898\pi$$
0.974101 0.226114i $$-0.0726020\pi$$
$$14$$ −3.68535 + 0.448220i −0.984951 + 0.119792i
$$15$$ −0.987199 + 2.38331i −0.254894 + 0.615368i
$$16$$ 1.18700 3.81982i 0.296750 0.954955i
$$17$$ −2.21506 5.34764i −0.537232 1.29699i −0.926648 0.375931i $$-0.877323\pi$$
0.389416 0.921062i $$-0.372677\pi$$
$$18$$ 0.694982 + 1.23167i 0.163809 + 0.290306i
$$19$$ 3.09113 1.65224i 0.709154 0.379051i −0.0770421 0.997028i $$-0.524548\pi$$
0.786196 + 0.617977i $$0.212048\pi$$
$$20$$ 3.08742 4.13361i 0.690368 0.924303i
$$21$$ −2.02926 + 1.66537i −0.442821 + 0.363414i
$$22$$ 0.474819 0.105781i 0.101232 0.0225526i
$$23$$ −1.10734 + 1.65725i −0.230897 + 0.345561i −0.928768 0.370662i $$-0.879131\pi$$
0.697871 + 0.716223i $$0.254131\pi$$
$$24$$ −0.740540 2.72976i −0.151162 0.557210i
$$25$$ 1.37585 0.919314i 0.275170 0.183863i
$$26$$ 0.116317 + 5.08896i 0.0228117 + 0.998027i
$$27$$ 0.881921 + 0.471397i 0.169726 + 0.0907203i
$$28$$ 4.75376 2.22872i 0.898376 0.421188i
$$29$$ 0.640924 + 6.50741i 0.119017 + 1.20840i 0.850291 + 0.526312i $$0.176426\pi$$
−0.731275 + 0.682083i $$0.761074\pi$$
$$30$$ 0.274531 3.63787i 0.0501222 0.664181i
$$31$$ 6.17902 + 6.17902i 1.10979 + 1.10979i 0.993178 + 0.116607i $$0.0372017\pi$$
0.116607 + 0.993178i $$0.462798\pi$$
$$32$$ 0.0910097 + 5.65612i 0.0160884 + 0.999871i
$$33$$ 0.243230 0.243230i 0.0423409 0.0423409i
$$34$$ 5.33626 + 6.20740i 0.915161 + 1.06456i
$$35$$ 6.73940 0.663773i 1.13917 0.112198i
$$36$$ −1.47735 1.34812i −0.246225 0.224687i
$$37$$ 3.27459 6.12633i 0.538339 1.00716i −0.454841 0.890573i $$-0.650304\pi$$
0.993180 0.116589i $$-0.0371961\pi$$
$$38$$ −3.42399 + 3.58417i −0.555444 + 0.581430i
$$39$$ 1.99971 + 2.99277i 0.320209 + 0.479227i
$$40$$ −2.32387 + 6.91646i −0.367436 + 1.09359i
$$41$$ 3.68846 + 2.46455i 0.576040 + 0.384898i 0.809194 0.587542i $$-0.199904\pi$$
−0.233153 + 0.972440i $$0.574904\pi$$
$$42$$ 1.99148 3.13316i 0.307293 0.483457i
$$43$$ 0.676727 + 0.824594i 0.103200 + 0.125749i 0.822049 0.569417i $$-0.192831\pi$$
−0.718849 + 0.695166i $$0.755331\pi$$
$$44$$ −0.591274 + 0.351683i −0.0891379 + 0.0530183i
$$45$$ −1.21605 2.27507i −0.181278 0.339147i
$$46$$ 0.756391 2.71538i 0.111524 0.400360i
$$47$$ −7.18356 + 2.97553i −1.04783 + 0.434025i −0.839117 0.543951i $$-0.816928\pi$$
−0.208713 + 0.977977i $$0.566928\pi$$
$$48$$ 2.19974 + 3.34083i 0.317504 + 0.482208i
$$49$$ −0.100373 0.0415760i −0.0143391 0.00593943i
$$50$$ −1.44284 + 1.84240i −0.204048 + 0.260554i
$$51$$ 5.53900 + 1.68024i 0.775616 + 0.235280i
$$52$$ −2.40225 6.78611i −0.333132 0.941064i
$$53$$ 0.897741 9.11492i 0.123314 1.25203i −0.711969 0.702211i $$-0.752196\pi$$
0.835283 0.549820i $$-0.185304\pi$$
$$54$$ −1.39298 0.244132i −0.189561 0.0332222i
$$55$$ −0.870303 + 0.173114i −0.117352 + 0.0233427i
$$56$$ −5.40345 + 5.09250i −0.722066 + 0.680515i
$$57$$ −0.683791 + 3.43765i −0.0905703 + 0.455328i
$$58$$ −3.73312 8.46038i −0.490183 1.11090i
$$59$$ 1.35904 + 4.48016i 0.176932 + 0.583267i 0.999885 + 0.0151577i $$0.00482504\pi$$
−0.822953 + 0.568110i $$0.807675\pi$$
$$60$$ 1.23669 + 5.00894i 0.159656 + 0.646652i
$$61$$ 8.45098 + 6.93554i 1.08204 + 0.888005i 0.994137 0.108125i $$-0.0344846\pi$$
0.0878993 + 0.996129i $$0.471985\pi$$
$$62$$ −11.0291 5.57497i −1.40070 0.708022i
$$63$$ 2.62514i 0.330736i
$$64$$ −2.61856 7.55931i −0.327320 0.944913i
$$65$$ 9.28522i 1.15169i
$$66$$ −0.219452 + 0.434147i −0.0270127 + 0.0534398i
$$67$$ −0.239134 0.196252i −0.0292149 0.0239760i 0.619673 0.784860i $$-0.287265\pi$$
−0.648887 + 0.760884i $$0.724765\pi$$
$$68$$ −9.90930 5.98505i −1.20168 0.725794i
$$69$$ −0.578584 1.90734i −0.0696534 0.229616i
$$70$$ −8.76199 + 3.86621i −1.04726 + 0.462101i
$$71$$ 1.57021 7.89399i 0.186350 0.936844i −0.768521 0.639824i $$-0.779007\pi$$
0.954871 0.297020i $$-0.0959929\pi$$
$$72$$ 2.57993 + 1.15930i 0.304047 + 0.136625i
$$73$$ −11.8459 + 2.35630i −1.38646 + 0.275784i −0.831237 0.555919i $$-0.812367\pi$$
−0.555222 + 0.831702i $$0.687367\pi$$
$$74$$ −1.69588 + 9.67645i −0.197142 + 1.12486i
$$75$$ −0.162191 + 1.64675i −0.0187282 + 0.190151i
$$76$$ 3.01857 6.32679i 0.346254 0.725732i
$$77$$ −0.864110 0.262125i −0.0984745 0.0298719i
$$78$$ −4.00761 3.13849i −0.453772 0.355364i
$$79$$ −7.38272 3.05802i −0.830621 0.344054i −0.0734722 0.997297i $$-0.523408\pi$$
−0.757148 + 0.653243i $$0.773408\pi$$
$$80$$ 0.0697918 10.3185i 0.00780296 1.15364i
$$81$$ −0.923880 + 0.382683i −0.102653 + 0.0425204i
$$82$$ −6.04346 1.68346i −0.667389 0.185907i
$$83$$ 4.94666 + 9.25455i 0.542967 + 1.01582i 0.992464 + 0.122537i $$0.0391031\pi$$
−0.449497 + 0.893282i $$0.648397\pi$$
$$84$$ −1.29293 + 5.08859i −0.141070 + 0.555211i
$$85$$ −9.47262 11.5424i −1.02745 1.25195i
$$86$$ −1.27317 0.809244i −0.137289 0.0872630i
$$87$$ −5.43689 3.63281i −0.582896 0.389479i
$$88$$ 0.639213 0.733470i 0.0681404 0.0781881i
$$89$$ 3.47272 + 5.19729i 0.368107 + 0.550911i 0.968570 0.248741i $$-0.0800169\pi$$
−0.600463 + 0.799653i $$0.705017\pi$$
$$90$$ 2.63795 + 2.52005i 0.278064 + 0.265637i
$$91$$ 4.45416 8.33316i 0.466923 0.873552i
$$92$$ 0.182134 + 3.98216i 0.0189887 + 0.415169i
$$93$$ −8.69638 + 0.856518i −0.901772 + 0.0888168i
$$94$$ 8.33849 7.16828i 0.860050 0.739351i
$$95$$ 6.39348 6.39348i 0.655957 0.655957i
$$96$$ −4.42998 3.51785i −0.452133 0.359040i
$$97$$ 9.98433 + 9.98433i 1.01376 + 1.01376i 0.999904 + 0.0138515i $$0.00440921\pi$$
0.0138515 + 0.999904i $$0.495591\pi$$
$$98$$ 0.153209 + 0.0115619i 0.0154765 + 0.00116793i
$$99$$ 0.0337158 + 0.342322i 0.00338857 + 0.0344047i
$$100$$ 1.12545 3.11220i 0.112545 0.311220i
$$101$$ −12.4645 6.66243i −1.24027 0.662936i −0.284956 0.958540i $$-0.591979\pi$$
−0.955311 + 0.295604i $$0.904479\pi$$
$$102$$ −8.18367 + 0.187052i −0.810305 + 0.0185209i
$$103$$ −16.2171 + 10.8359i −1.59792 + 1.06769i −0.645123 + 0.764079i $$0.723194\pi$$
−0.952795 + 0.303616i $$0.901806\pi$$
$$104$$ 6.22262 + 8.05749i 0.610178 + 0.790102i
$$105$$ −3.76232 + 5.63072i −0.367165 + 0.549502i
$$106$$ 2.81660 + 12.6429i 0.273573 + 1.22798i
$$107$$ 2.62682 2.15577i 0.253944 0.208406i −0.498805 0.866714i $$-0.666228\pi$$
0.752749 + 0.658308i $$0.228728\pi$$
$$108$$ 1.97933 0.286769i 0.190462 0.0275943i
$$109$$ 1.26797 0.677746i 0.121450 0.0649163i −0.409553 0.912286i $$-0.634315\pi$$
0.531003 + 0.847370i $$0.321815\pi$$
$$110$$ 1.09292 0.616694i 0.104206 0.0587995i
$$111$$ 2.65834 + 6.41779i 0.252318 + 0.609150i
$$112$$ 5.01245 9.22697i 0.473632 0.871867i
$$113$$ −1.48248 + 3.57902i −0.139460 + 0.336686i −0.978143 0.207934i $$-0.933326\pi$$
0.838683 + 0.544620i $$0.183326\pi$$
$$114$$ −0.598447 4.92055i −0.0560497 0.460852i
$$115$$ −1.49256 + 4.92031i −0.139182 + 0.458821i
$$116$$ 8.74969 + 9.71965i 0.812388 + 0.902447i
$$117$$ −3.58204 0.352801i −0.331160 0.0326164i
$$118$$ −3.80327 5.41967i −0.350119 0.498921i
$$119$$ −2.96439 14.9030i −0.271745 1.36615i
$$120$$ −3.87225 6.18413i −0.353486 0.564531i
$$121$$ −10.6726 2.12291i −0.970235 0.192992i
$$122$$ −14.4155 5.58871i −1.30512 0.505978i
$$123$$ −4.24506 + 1.28772i −0.382764 + 0.116110i
$$124$$ 17.2790 + 2.62285i 1.55170 + 0.235538i
$$125$$ −5.47464 + 6.67087i −0.489667 + 0.596661i
$$126$$ 1.15858 + 3.52709i 0.103215 + 0.314219i
$$127$$ −12.9488 −1.14902 −0.574510 0.818497i $$-0.694807\pi$$
−0.574510 + 0.818497i $$0.694807\pi$$
$$128$$ 6.85450 + 9.00088i 0.605858 + 0.795573i
$$129$$ −1.06673 −0.0939204
$$130$$ 4.09796 + 12.4755i 0.359414 + 1.09417i
$$131$$ 6.80375 8.29039i 0.594446 0.724335i −0.385697 0.922626i $$-0.626039\pi$$
0.980143 + 0.198291i $$0.0635390\pi$$
$$132$$ 0.103245 0.680166i 0.00898634 0.0592009i
$$133$$ 8.80491 2.67094i 0.763482 0.231600i
$$134$$ 0.407911 + 0.158141i 0.0352381 + 0.0136613i
$$135$$ 2.53011 + 0.503270i 0.217757 + 0.0433145i
$$136$$ 15.9554 + 3.66803i 1.36817 + 0.314531i
$$137$$ −1.44544 7.26672i −0.123492 0.620838i −0.992112 0.125358i $$-0.959992\pi$$
0.868619 0.495480i $$-0.165008\pi$$
$$138$$ 1.61916 + 2.30731i 0.137832 + 0.196412i
$$139$$ −19.1434 1.88546i −1.62372 0.159923i −0.755173 0.655526i $$-0.772447\pi$$
−0.868549 + 0.495603i $$0.834947\pi$$
$$140$$ 10.0662 9.06161i 0.850745 0.765846i
$$141$$ 2.25709 7.44062i 0.190081 0.626613i
$$142$$ 1.37424 + 11.2992i 0.115323 + 0.948211i
$$143$$ −0.473804 + 1.14386i −0.0396215 + 0.0956547i
$$144$$ −3.97800 0.418984i −0.331500 0.0349153i
$$145$$ 6.45519 + 15.5842i 0.536074 + 1.29420i
$$146$$ 14.8760 8.39397i 1.23115 0.694690i
$$147$$ 0.0958150 0.0512142i 0.00790268 0.00422407i
$$148$$ −1.99206 13.7496i −0.163746 1.13021i
$$149$$ 8.72671 7.16182i 0.714920 0.586719i −0.205030 0.978756i $$-0.565729\pi$$
0.919950 + 0.392036i $$0.128229\pi$$
$$150$$ −0.508864 2.28413i −0.0415486 0.186499i
$$151$$ −9.67694 + 14.4826i −0.787498 + 1.17857i 0.192837 + 0.981231i $$0.438231\pi$$
−0.980335 + 0.197343i $$0.936769\pi$$
$$152$$ −1.26343 + 9.83279i −0.102478 + 0.797544i
$$153$$ −4.81275 + 3.21578i −0.389088 + 0.259980i
$$154$$ 1.27669 0.0291810i 0.102879 0.00235147i
$$155$$ 19.8806 + 10.6264i 1.59685 + 0.853533i
$$156$$ 6.76970 + 2.44809i 0.542010 + 0.196004i
$$157$$ −0.432763 4.39391i −0.0345382 0.350672i −0.996886 0.0788523i $$-0.974874\pi$$
0.962348 0.271820i $$-0.0876255\pi$$
$$158$$ 11.2689 + 0.850407i 0.896508 + 0.0676548i
$$159$$ 6.47641 + 6.47641i 0.513613 + 0.513613i
$$160$$ 4.46020 + 13.8945i 0.352610 + 1.09846i
$$161$$ −3.69981 + 3.69981i −0.291586 + 0.291586i
$$162$$ 1.07242 0.921914i 0.0842569 0.0724324i
$$163$$ 2.49592 0.245827i 0.195495 0.0192546i 0.000204542 1.00000i $$-0.499935\pi$$
0.195291 + 0.980745i $$0.437435\pi$$
$$164$$ 8.86288 0.405365i 0.692074 0.0316537i
$$165$$ 0.418296 0.782576i 0.0325643 0.0609235i
$$166$$ −10.7307 10.2511i −0.832862 0.795640i
$$167$$ −6.20377 9.28459i −0.480062 0.718463i 0.509832 0.860274i $$-0.329708\pi$$
−0.989894 + 0.141811i $$0.954708\pi$$
$$168$$ −0.508648 7.40757i −0.0392430 0.571507i
$$169$$ 0.0369905 + 0.0247163i 0.00284543 + 0.00190125i
$$170$$ 17.8214 + 11.3276i 1.36684 + 0.868784i
$$171$$ −2.22355 2.70940i −0.170039 0.207193i
$$172$$ 2.06776 + 0.525385i 0.157665 + 0.0400602i
$$173$$ −9.26587 17.3352i −0.704471 1.31797i −0.938343 0.345705i $$-0.887640\pi$$
0.233872 0.972267i $$-0.424860\pi$$
$$174$$ 8.90823 + 2.48146i 0.675331 + 0.188119i
$$175$$ 4.01322 1.66233i 0.303371 0.125660i
$$176$$ −0.535126 + 1.26759i −0.0403366 + 0.0955482i
$$177$$ −4.32538 1.79163i −0.325115 0.134667i
$$178$$ −6.95967 5.45034i −0.521649 0.408520i
$$179$$ 16.0719 + 4.87536i 1.20127 + 0.364401i 0.826617 0.562764i $$-0.190262\pi$$
0.374652 + 0.927165i $$0.377762\pi$$
$$180$$ −4.65651 2.22167i −0.347076 0.165593i
$$181$$ 0.586988 5.95979i 0.0436305 0.442988i −0.948408 0.317052i $$-0.897307\pi$$
0.992038 0.125935i $$-0.0401931\pi$$
$$182$$ −2.30677 + 13.1621i −0.170989 + 0.975640i
$$183$$ −10.7225 + 2.13283i −0.792629 + 0.157664i
$$184$$ −2.00221 5.26998i −0.147605 0.388508i
$$185$$ 3.49600 17.5756i 0.257031 1.29218i
$$186$$ 11.3063 4.98888i 0.829018 0.365802i
$$187$$ 0.577966 + 1.90530i 0.0422651 + 0.139329i
$$188$$ −8.03980 + 13.3113i −0.586363 + 0.970827i
$$189$$ 2.02926 + 1.66537i 0.147607 + 0.121138i
$$190$$ −5.76847 + 11.4119i −0.418489 + 0.827906i
$$191$$ 16.2911i 1.17878i 0.807848 + 0.589391i $$0.200632\pi$$
−0.807848 + 0.589391i $$0.799368\pi$$
$$192$$ 7.50462 + 2.77140i 0.541599 + 0.200008i
$$193$$ 12.6761i 0.912448i 0.889865 + 0.456224i $$0.150798\pi$$
−0.889865 + 0.456224i $$0.849202\pi$$
$$194$$ −17.8213 9.00829i −1.27949 0.646757i
$$195$$ 7.17757 + 5.89048i 0.513997 + 0.421826i
$$196$$ −0.210952 + 0.0520833i −0.0150680 + 0.00372024i
$$197$$ −2.16075 7.12305i −0.153947 0.507496i 0.845711 0.533641i $$-0.179177\pi$$
−0.999658 + 0.0261451i $$0.991677\pi$$
$$198$$ −0.196381 0.445059i −0.0139562 0.0316289i
$$199$$ 2.55848 12.8623i 0.181366 0.911788i −0.777707 0.628627i $$-0.783617\pi$$
0.959073 0.283160i $$-0.0913829\pi$$
$$200$$ −0.138592 + 4.67821i −0.00979996 + 0.330799i
$$201$$ 0.303410 0.0603520i 0.0214009 0.00425690i
$$202$$ 19.6875 + 3.45042i 1.38521 + 0.242770i
$$203$$ −1.68251 + 17.0829i −0.118089 + 1.19898i
$$204$$ 10.9129 3.86312i 0.764056 0.270472i
$$205$$ 10.9509 + 3.32191i 0.764841 + 0.232012i
$$206$$ 17.0067 21.7162i 1.18491 1.51304i
$$207$$ 1.84144 + 0.762750i 0.127989 + 0.0530148i
$$208$$ −11.9167 8.07961i −0.826275 0.560220i
$$209$$ −1.11387 + 0.461380i −0.0770480 + 0.0319143i
$$210$$ 2.56993 9.22581i 0.177342 0.636641i
$$211$$ −3.20002 5.98682i −0.220299 0.412150i 0.747358 0.664422i $$-0.231322\pi$$
−0.967656 + 0.252272i $$0.918822\pi$$
$$212$$ −9.36417 15.7437i −0.643134 1.08128i
$$213$$ 5.10601 + 6.22169i 0.349858 + 0.426303i
$$214$$ −2.57792 + 4.05579i −0.176223 + 0.277248i
$$215$$ 2.28805 + 1.52883i 0.156044 + 0.104265i
$$216$$ −2.53284 + 1.25886i −0.172338 + 0.0856546i
$$217$$ 12.7446 + 19.0736i 0.865159 + 1.29480i
$$218$$ −1.40451 + 1.47022i −0.0951255 + 0.0995758i
$$219$$ 5.69352 10.6518i 0.384732 0.719784i
$$220$$ −1.19626 + 1.31093i −0.0806519 + 0.0883831i
$$221$$ −20.7337 + 2.04210i −1.39470 + 0.137366i
$$222$$ −6.40414 7.44961i −0.429818 0.499985i
$$223$$ 1.18297 1.18297i 0.0792177 0.0792177i −0.666388 0.745605i $$-0.732160\pi$$
0.745605 + 0.666388i $$0.232160\pi$$
$$224$$ −2.66240 + 14.6094i −0.177889 + 0.976133i
$$225$$ −1.17007 1.17007i −0.0780043 0.0780043i
$$226$$ 0.412263 5.46299i 0.0274233 0.363393i
$$227$$ −1.26102 12.8034i −0.0836969 0.849789i −0.941769 0.336260i $$-0.890838\pi$$
0.858072 0.513529i $$-0.171662\pi$$
$$228$$ 2.97571 + 6.34706i 0.197071 + 0.420344i
$$229$$ 21.3287 + 11.4004i 1.40944 + 0.753361i 0.988139 0.153560i $$-0.0490738\pi$$
0.421300 + 0.906921i $$0.361574\pi$$
$$230$$ −0.166159 7.26958i −0.0109562 0.479342i
$$231$$ 0.750811 0.501676i 0.0493997 0.0330078i
$$232$$ −16.0456 9.19756i −1.05345 0.603849i
$$233$$ −15.0479 + 22.5207i −0.985819 + 1.47538i −0.109303 + 0.994008i $$0.534862\pi$$
−0.876515 + 0.481374i $$0.840138\pi$$
$$234$$ 4.96848 1.10689i 0.324800 0.0723596i
$$235$$ −15.5051 + 12.7247i −1.01144 + 0.830069i
$$236$$ 7.50194 + 5.60324i 0.488335 + 0.364740i
$$237$$ 7.04743 3.76693i 0.457780 0.244688i
$$238$$ 10.5602 + 18.7151i 0.684517 + 1.21312i
$$239$$ −1.34058 3.23644i −0.0867148 0.209348i 0.874573 0.484893i $$-0.161142\pi$$
−0.961288 + 0.275545i $$0.911142\pi$$
$$240$$ 7.93200 + 6.59991i 0.512009 + 0.426023i
$$241$$ −1.32866 + 3.20767i −0.0855865 + 0.206624i −0.960878 0.276971i $$-0.910669\pi$$
0.875292 + 0.483595i $$0.160669\pi$$
$$242$$ 15.2764 1.85795i 0.982007 0.119434i
$$243$$ 0.290285 0.956940i 0.0186218 0.0613878i
$$244$$ 21.8350 + 1.14672i 1.39784 + 0.0734111i
$$245$$ −0.278915 0.0274707i −0.0178192 0.00175504i
$$246$$ 5.13526 3.60368i 0.327412 0.229763i
$$247$$ −2.46122 12.3734i −0.156604 0.787300i
$$248$$ −24.3733 + 4.10192i −1.54771 + 0.260472i
$$249$$ −10.2920 2.04720i −0.652229 0.129736i
$$250$$ 4.41151 11.3791i 0.279008 0.719675i
$$251$$ −4.12967 + 1.25272i −0.260663 + 0.0790711i −0.417911 0.908488i $$-0.637238\pi$$
0.157249 + 0.987559i $$0.449738\pi$$
$$252$$ −3.11331 4.22762i −0.196120 0.266315i
$$253$$ 0.434944 0.529980i 0.0273447 0.0333196i
$$254$$ 17.3978 5.71485i 1.09164 0.358581i
$$255$$ 14.9318 0.935065
$$256$$ −13.1821 9.06827i −0.823878 0.566767i
$$257$$ 29.4479 1.83691 0.918456 0.395524i $$-0.129437\pi$$
0.918456 + 0.395524i $$0.129437\pi$$
$$258$$ 1.43324 0.470793i 0.0892298 0.0293103i
$$259$$ 11.5686 14.0964i 0.718839 0.875907i
$$260$$ −11.0119 14.9532i −0.682929 0.927361i
$$261$$ 6.25733 1.89814i 0.387319 0.117492i
$$262$$ −5.48251 + 14.1416i −0.338711 + 0.873672i
$$263$$ −14.6323 2.91056i −0.902269 0.179473i −0.277908 0.960608i $$-0.589641\pi$$
−0.624362 + 0.781135i $$0.714641\pi$$
$$264$$ 0.161467 + 0.959427i 0.00993762 + 0.0590486i
$$265$$ −4.60946 23.1733i −0.283157 1.42353i
$$266$$ −10.6513 + 7.47460i −0.653075 + 0.458297i
$$267$$ −6.22063 0.612678i −0.380696 0.0374953i
$$268$$ −0.617857 0.0324482i −0.0377416 0.00198209i
$$269$$ −2.38146 + 7.85063i −0.145200 + 0.478661i −0.999129 0.0417289i $$-0.986713\pi$$
0.853929 + 0.520390i $$0.174213\pi$$
$$270$$ −3.62152 + 0.440457i −0.220399 + 0.0268054i
$$271$$ 4.70866 11.3677i 0.286031 0.690539i −0.713923 0.700225i $$-0.753083\pi$$
0.999953 + 0.00968592i $$0.00308317\pi$$
$$272$$ −23.0563 + 2.11349i −1.39799 + 0.128149i
$$273$$ 3.61592 + 8.72961i 0.218846 + 0.528340i
$$274$$ 5.14918 + 9.12552i 0.311073 + 0.551293i
$$275$$ −0.501980 + 0.268314i −0.0302705 + 0.0161799i
$$276$$ −3.19380 2.38546i −0.192244 0.143588i
$$277$$ −3.63056 + 2.97953i −0.218139 + 0.179022i −0.737116 0.675766i $$-0.763813\pi$$
0.518977 + 0.854788i $$0.326313\pi$$
$$278$$ 26.5529 5.91551i 1.59254 0.354789i
$$279$$ 4.85483 7.26576i 0.290651 0.434990i
$$280$$ −9.52545 + 16.6176i −0.569255 + 0.993094i
$$281$$ 9.48457 6.33739i 0.565802 0.378057i −0.239523 0.970891i $$-0.576991\pi$$
0.805325 + 0.592834i $$0.201991\pi$$
$$282$$ 0.251270 + 10.9932i 0.0149629 + 0.654638i
$$283$$ −21.3847 11.4304i −1.27119 0.679466i −0.308798 0.951128i $$-0.599927\pi$$
−0.962393 + 0.271662i $$0.912427\pi$$
$$284$$ −6.83323 14.5750i −0.405477 0.864865i
$$285$$ 0.886246 + 8.99821i 0.0524967 + 0.533008i
$$286$$ 0.131760 1.74599i 0.00779116 0.103242i
$$287$$ 8.23447 + 8.23447i 0.486066 + 0.486066i
$$288$$ 5.52969 1.19272i 0.325840 0.0702814i
$$289$$ −11.6699 + 11.6699i −0.686466 + 0.686466i
$$290$$ −15.5510 18.0897i −0.913189 1.06227i
$$291$$ −14.0520 + 1.38400i −0.823742 + 0.0811315i
$$292$$ −16.2826 + 17.8434i −0.952866 + 1.04421i
$$293$$ −10.1175 + 18.9286i −0.591073 + 1.10582i 0.391541 + 0.920161i $$0.371942\pi$$
−0.982614 + 0.185659i $$0.940558\pi$$
$$294$$ −0.106132 + 0.111098i −0.00618977 + 0.00647935i
$$295$$ 6.70985 + 10.0420i 0.390662 + 0.584668i
$$296$$ 8.74476 + 17.5945i 0.508279 + 1.02266i
$$297$$ −0.286008 0.191104i −0.0165959 0.0110890i
$$298$$ −8.56425 + 13.4740i −0.496114 + 0.780526i
$$299$$ 4.55123 + 5.54569i 0.263204 + 0.320715i
$$300$$ 1.69178 + 2.84434i 0.0976752 + 0.164218i
$$301$$ 1.32006 + 2.46966i 0.0760870 + 0.142349i
$$302$$ 6.61002 23.7294i 0.380364 1.36547i
$$303$$ 13.0575 5.40861i 0.750136 0.310717i
$$304$$ −2.64210 13.7688i −0.151535 0.789694i
$$305$$ 26.0556 + 10.7926i 1.49194 + 0.617983i
$$306$$ 5.04707 6.44473i 0.288522 0.368421i
$$307$$ −15.0233 4.55727i −0.857425 0.260097i −0.169189 0.985584i $$-0.554115\pi$$
−0.688236 + 0.725487i $$0.741615\pi$$
$$308$$ −1.70246 + 0.602664i −0.0970068 + 0.0343400i
$$309$$ 1.91174 19.4102i 0.108755 1.10421i
$$310$$ −31.4011 5.50332i −1.78346 0.312568i
$$311$$ −26.9961 + 5.36985i −1.53081 + 0.304496i −0.887390 0.461020i $$-0.847484\pi$$
−0.643416 + 0.765516i $$0.722484\pi$$
$$312$$ −10.1761 0.301468i −0.576109 0.0170673i
$$313$$ −0.279084 + 1.40305i −0.0157747 + 0.0793050i −0.987871 0.155278i $$-0.950373\pi$$
0.972096 + 0.234583i $$0.0753726\pi$$
$$314$$ 2.52067 + 5.71259i 0.142250 + 0.322380i
$$315$$ −1.96581 6.48041i −0.110761 0.365129i
$$316$$ −15.5161 + 3.83086i −0.872847 + 0.215502i
$$317$$ 26.7603 + 21.9616i 1.50301 + 1.23349i 0.900108 + 0.435667i $$0.143487\pi$$
0.602898 + 0.797818i $$0.294013\pi$$
$$318$$ −11.5599 5.84329i −0.648247 0.327675i
$$319$$ 2.24924i 0.125933i
$$320$$ −12.1249 16.7000i −0.677801 0.933557i
$$321$$ 3.39817i 0.189667i
$$322$$ 3.33813 6.60389i 0.186027 0.368021i
$$323$$ −15.6827 12.8704i −0.872606 0.716130i
$$324$$ −1.03400 + 1.71197i −0.0574445 + 0.0951095i
$$325$$ −1.72893 5.69951i −0.0959036 0.316152i
$$326$$ −3.24498 + 1.43184i −0.179723 + 0.0793024i
$$327$$ −0.280489 + 1.41011i −0.0155111 + 0.0779795i
$$328$$ −11.7291 + 4.45620i −0.647632 + 0.246052i
$$329$$ −20.0194 + 3.98210i −1.10370 + 0.219540i
$$330$$ −0.216632 + 1.23607i −0.0119252 + 0.0680433i
$$331$$ −3.22075 + 32.7008i −0.177028 + 1.79740i 0.338956 + 0.940802i $$0.389926\pi$$
−0.515985 + 0.856598i $$0.672574\pi$$
$$332$$ 18.9418 + 9.03732i 1.03957 + 0.495987i
$$333$$ −6.64745 2.01648i −0.364278 0.110503i
$$334$$ 12.4330 + 9.73665i 0.680301 + 0.532766i
$$335$$ −0.737286 0.305394i −0.0402823 0.0166855i
$$336$$ 3.95268 + 9.72821i 0.215636 + 0.530717i
$$337$$ 29.5250 12.2296i 1.60833 0.666191i 0.615764 0.787930i $$-0.288847\pi$$
0.992562 + 0.121740i $$0.0388473\pi$$
$$338$$ −0.0606082 0.0168829i −0.00329665 0.000918311i
$$339$$ −1.82614 3.41647i −0.0991825 0.185557i
$$340$$ −28.9439 7.35418i −1.56970 0.398836i
$$341$$ −1.90689 2.32355i −0.103264 0.125827i
$$342$$ 4.18329 + 2.65896i 0.226206 + 0.143780i
$$343$$ −15.5162 10.3676i −0.837796 0.559798i
$$344$$ −3.01008 + 0.206690i −0.162293 + 0.0111440i
$$345$$ −2.85658 4.27518i −0.153793 0.230168i
$$346$$ 20.1002 + 19.2019i 1.08059 + 1.03230i
$$347$$ 13.7802 25.7810i 0.739762 1.38400i −0.176857 0.984236i $$-0.556593\pi$$
0.916619 0.399761i $$-0.130907\pi$$
$$348$$ −13.0641 + 0.597519i −0.700311 + 0.0320304i
$$349$$ −4.76163 + 0.468980i −0.254884 + 0.0251039i −0.224652 0.974439i $$-0.572125\pi$$
−0.0302321 + 0.999543i $$0.509625\pi$$
$$350$$ −4.65844 + 4.00468i −0.249004 + 0.214059i
$$351$$ 2.54514 2.54514i 0.135850 0.135850i
$$352$$ 0.159546 1.93929i 0.00850384 0.103364i
$$353$$ −26.2312 26.2312i −1.39615 1.39615i −0.810741 0.585405i $$-0.800935\pi$$
−0.585405 0.810741i $$-0.699065\pi$$
$$354$$ 6.60223 + 0.498236i 0.350905 + 0.0264809i
$$355$$ −2.03512 20.6629i −0.108013 1.09667i
$$356$$ 11.7564 + 4.25139i 0.623086 + 0.225323i
$$357$$ 13.4007 + 7.16285i 0.709243 + 0.379098i
$$358$$ −23.7456 + 0.542748i −1.25500 + 0.0286851i
$$359$$ 16.6301 11.1119i 0.877702 0.586462i −0.0330324 0.999454i $$-0.510516\pi$$
0.910734 + 0.412993i $$0.135516\pi$$
$$360$$ 7.23693 + 0.929883i 0.381419 + 0.0490091i
$$361$$ −3.73066 + 5.58332i −0.196350 + 0.293859i
$$362$$ 1.84164 + 8.26654i 0.0967942 + 0.434480i
$$363$$ 8.41165 6.90326i 0.441497 0.362327i
$$364$$ −2.70964 18.7025i −0.142024 0.980275i
$$365$$ −27.4782 + 14.6874i −1.43828 + 0.768775i
$$366$$ 13.4652 7.59792i 0.703840 0.397150i
$$367$$ −5.55188 13.4034i −0.289806 0.699653i 0.710185 0.704016i $$-0.248611\pi$$
−0.999990 + 0.00436221i $$0.998611\pi$$
$$368$$ 5.01599 + 6.19701i 0.261477 + 0.323041i
$$369$$ 1.69761 4.09840i 0.0883741 0.213354i
$$370$$ 3.05966 + 25.1572i 0.159064 + 1.30786i
$$371$$ 6.97952 23.0084i 0.362359 1.19454i
$$372$$ −12.9892 + 11.6929i −0.673456 + 0.606249i
$$373$$ −28.5933 2.81619i −1.48050 0.145817i −0.674741 0.738054i $$-0.735745\pi$$
−0.805764 + 0.592237i $$0.798245\pi$$
$$374$$ −1.61743 2.30485i −0.0836356 0.119181i
$$375$$ −1.68358 8.46391i −0.0869395 0.437075i
$$376$$ 4.92731 21.4332i 0.254107 1.10533i
$$377$$ 23.0837 + 4.59163i 1.18887 + 0.236481i
$$378$$ −3.46148 1.34197i −0.178039 0.0690234i
$$379$$ −11.0658 + 3.35679i −0.568414 + 0.172427i −0.561394 0.827549i $$-0.689735\pi$$
−0.00702035 + 0.999975i $$0.502235\pi$$
$$380$$ 2.71388 17.8787i 0.139219 0.917158i
$$381$$ 8.21463 10.0096i 0.420848 0.512805i
$$382$$ −7.18994 21.8885i −0.367869 1.11991i
$$383$$ −9.32760 −0.476618 −0.238309 0.971189i $$-0.576593\pi$$
−0.238309 + 0.971189i $$0.576593\pi$$
$$384$$ −11.3062 0.411503i −0.576968 0.0209994i
$$385$$ −2.32943 −0.118719
$$386$$ −5.59451 17.0314i −0.284753 0.866878i
$$387$$ 0.676727 0.824594i 0.0344000 0.0419165i
$$388$$ 27.9201 + 4.23811i 1.41743 + 0.215157i
$$389$$ 3.76297 1.14148i 0.190790 0.0578755i −0.193444 0.981111i $$-0.561966\pi$$
0.384234 + 0.923236i $$0.374466\pi$$
$$390$$ −12.2434 4.74659i −0.619968 0.240353i
$$391$$ 11.3152 + 2.25074i 0.572236 + 0.113825i
$$392$$ 0.260446 0.163080i 0.0131545 0.00823680i
$$393$$ 2.09231 + 10.5187i 0.105543 + 0.530600i
$$394$$ 6.04685 + 8.61679i 0.304636 + 0.434107i
$$395$$ −20.5149 2.02054i −1.03222 0.101664i
$$396$$ 0.460278 + 0.511303i 0.0231298 + 0.0256939i
$$397$$ −5.94614 + 19.6018i −0.298428 + 0.983786i 0.671625 + 0.740892i $$0.265597\pi$$
−0.970053 + 0.242894i $$0.921903\pi$$
$$398$$ 2.23916 + 18.4108i 0.112239 + 0.922850i
$$399$$ −3.52111 + 8.50071i −0.176276 + 0.425568i
$$400$$ −1.87848 6.34673i −0.0939239 0.317337i
$$401$$ 2.89621 + 6.99208i 0.144630 + 0.349168i 0.979549 0.201205i $$-0.0644857\pi$$
−0.834919 + 0.550373i $$0.814486\pi$$
$$402$$ −0.381021 + 0.214995i −0.0190036 + 0.0107230i
$$403$$ 27.7391 14.8268i 1.38178 0.738577i
$$404$$ −27.9747 + 4.05301i −1.39179 + 0.201645i
$$405$$ −1.99412 + 1.63653i −0.0990884 + 0.0813197i
$$406$$ −5.27878 23.6948i −0.261981 1.17595i
$$407$$ −1.32752 + 1.98677i −0.0658027 + 0.0984807i
$$408$$ −12.9574 + 10.0067i −0.641489 + 0.495407i
$$409$$ 26.5807 17.7607i 1.31433 0.878209i 0.316806 0.948490i $$-0.397390\pi$$
0.997527 + 0.0702813i $$0.0223897\pi$$
$$410$$ −16.1795 + 0.369811i −0.799048 + 0.0182637i
$$411$$ 6.53423 + 3.49262i 0.322310 + 0.172278i
$$412$$ −13.2656 + 36.6833i −0.653550 + 1.80726i
$$413$$ 1.20466 + 12.2311i 0.0592773 + 0.601852i
$$414$$ −2.81076 0.212114i −0.138142 0.0104248i
$$415$$ 19.1415 + 19.1415i 0.939618 + 0.939618i
$$416$$ 19.5770 + 5.59629i 0.959840 + 0.274381i
$$417$$ 13.6019 13.6019i 0.666089 0.666089i
$$418$$ 1.29295 1.11150i 0.0632403 0.0543653i
$$419$$ −2.07764 + 0.204630i −0.101499 + 0.00999681i −0.148639 0.988891i $$-0.547489\pi$$
0.0471399 + 0.998888i $$0.484989\pi$$
$$420$$ 0.618821 + 13.5299i 0.0301954 + 0.660190i
$$421$$ −1.96636 + 3.67881i −0.0958347 + 0.179294i −0.925270 0.379308i $$-0.876162\pi$$
0.829436 + 0.558602i $$0.188662\pi$$
$$422$$ 6.94173 + 6.63149i 0.337918 + 0.322816i
$$423$$ 4.31980 + 6.46503i 0.210036 + 0.314341i
$$424$$ 19.5299 + 17.0201i 0.948455 + 0.826571i
$$425$$ −7.96376 5.32121i −0.386299 0.258117i
$$426$$ −9.60624 6.10586i −0.465424 0.295830i
$$427$$ 18.2068 + 22.1850i 0.881086 + 1.07361i
$$428$$ 1.67366 6.58703i 0.0808994 0.318396i
$$429$$ −0.583641 1.09191i −0.0281784 0.0527182i
$$430$$ −3.74893 1.04430i −0.180789 0.0503604i
$$431$$ −0.247516 + 0.102525i −0.0119224 + 0.00493843i −0.388637 0.921391i $$-0.627054\pi$$
0.376714 + 0.926330i $$0.377054\pi$$
$$432$$ 2.84749 2.80923i 0.137000 0.135159i
$$433$$ 25.2602 + 10.4631i 1.21393 + 0.502825i 0.895474 0.445114i $$-0.146837\pi$$
0.318453 + 0.947939i $$0.396837\pi$$
$$434$$ −25.5414 20.0023i −1.22603 0.960141i
$$435$$ −16.1419 4.89659i −0.773944 0.234773i
$$436$$ 1.23821 2.59523i 0.0592995 0.124289i
$$437$$ −0.684750 + 6.95238i −0.0327560 + 0.332578i
$$438$$ −2.94863 + 16.8244i −0.140891 + 0.803901i
$$439$$ 14.5369 2.89157i 0.693809 0.138007i 0.164425 0.986390i $$-0.447423\pi$$
0.529384 + 0.848382i $$0.322423\pi$$
$$440$$ 1.02871 2.28931i 0.0490417 0.109138i
$$441$$ −0.0211953 + 0.106556i −0.00100930 + 0.00507409i
$$442$$ 26.9563 11.8944i 1.28218 0.565759i
$$443$$ 9.66448 + 31.8595i 0.459173 + 1.51369i 0.815180 + 0.579208i $$0.196638\pi$$
−0.356006 + 0.934484i $$0.615862\pi$$
$$444$$ 11.8923 + 7.18276i 0.564384 + 0.340879i
$$445$$ 12.4647 + 10.2295i 0.590882 + 0.484924i
$$446$$ −1.06733 + 2.11152i −0.0505395 + 0.0999833i
$$447$$ 11.2892i 0.533963i
$$448$$ −2.87059 20.8040i −0.135623 0.982897i
$$449$$ 6.89233i 0.325269i 0.986686 + 0.162635i $$0.0519992\pi$$
−0.986686 + 0.162635i $$0.948001\pi$$
$$450$$ 2.08848 + 1.05568i 0.0984518 + 0.0497653i
$$451$$ −1.17955 0.968030i −0.0555427 0.0455827i
$$452$$ 1.85713 + 7.52193i 0.0873522 + 0.353802i
$$453$$ −5.05619 16.6680i −0.237560 0.783131i
$$454$$ 7.34494 + 16.6458i 0.344715 + 0.781228i
$$455$$ 4.75533 23.9066i 0.222933 1.12076i
$$456$$ −6.79934 7.21450i −0.318408 0.337850i
$$457$$ 0.242410 0.0482184i 0.0113395 0.00225556i −0.189417 0.981897i $$-0.560660\pi$$
0.200757 + 0.979641i $$0.435660\pi$$
$$458$$ −33.6884 5.90418i −1.57415 0.275884i
$$459$$ 0.567347 5.76037i 0.0264815 0.268871i
$$460$$ 3.43162 + 9.69395i 0.160000 + 0.451983i
$$461$$ 4.66482 + 1.41506i 0.217262 + 0.0659057i 0.397039 0.917802i $$-0.370038\pi$$
−0.179777 + 0.983707i $$0.557538\pi$$
$$462$$ −0.787367 + 1.00541i −0.0366316 + 0.0467758i
$$463$$ 0.407658 + 0.168857i 0.0189455 + 0.00784747i 0.392136 0.919907i $$-0.371736\pi$$
−0.373191 + 0.927755i $$0.621736\pi$$
$$464$$ 25.6179 + 5.27609i 1.18928 + 0.244936i
$$465$$ −20.8264 + 8.62659i −0.965803 + 0.400049i
$$466$$ 10.2787 36.8997i 0.476153 1.70935i
$$467$$ 15.0596 + 28.1745i 0.696876 + 1.30376i 0.942438 + 0.334382i $$0.108527\pi$$
−0.245562 + 0.969381i $$0.578973\pi$$
$$468$$ −6.18706 + 3.68000i −0.285997 + 0.170108i
$$469$$ −0.515189 0.627760i −0.0237892 0.0289873i
$$470$$ 15.2165 23.9398i 0.701883 1.10426i
$$471$$ 3.67108 + 2.45294i 0.169154 + 0.113025i
$$472$$ −12.5524 4.21751i −0.577772 0.194126i
$$473$$ −0.203857 0.305094i −0.00937336 0.0140282i
$$474$$ −7.80631 + 8.17151i −0.358556 + 0.375330i
$$475$$ 2.73400 5.11496i 0.125445 0.234691i
$$476$$ −22.4483 20.4846i −1.02892 0.938912i
$$477$$ −9.11492 + 0.897741i −0.417344 + 0.0411048i
$$478$$ 3.22956 + 3.75678i 0.147716 + 0.171831i
$$479$$ −25.3109 + 25.3109i −1.15648 + 1.15648i −0.171257 + 0.985226i $$0.554783\pi$$
−0.985226 + 0.171257i $$0.945217\pi$$
$$480$$ −13.5701 5.36681i −0.619389 0.244960i
$$481$$ −17.6800 17.6800i −0.806139 0.806139i
$$482$$ 0.369488 4.89616i 0.0168297 0.223014i
$$483$$ −0.512858 5.20713i −0.0233358 0.236933i
$$484$$ −19.7052 + 9.23845i −0.895691 + 0.419929i
$$485$$ 32.1239 + 17.1706i 1.45867 + 0.779677i
$$486$$ 0.0323159 + 1.41384i 0.00146588 + 0.0641333i
$$487$$ 27.7843 18.5649i 1.25903 0.841255i 0.266566 0.963817i $$-0.414111\pi$$
0.992461 + 0.122562i $$0.0391110\pi$$
$$488$$ −29.8433 + 8.09599i −1.35094 + 0.366488i
$$489$$ −1.39337 + 2.08532i −0.0630103 + 0.0943015i
$$490$$ 0.386870 0.0861876i 0.0174770 0.00389356i
$$491$$ 1.43686 1.17920i 0.0648445 0.0532165i −0.601413 0.798938i $$-0.705395\pi$$
0.666257 + 0.745722i $$0.267895\pi$$
$$492$$ −5.30920 + 7.10826i −0.239357 + 0.320465i
$$493$$ 33.3796 17.8418i 1.50334 0.803552i
$$494$$ 8.76775 + 15.5384i 0.394480 + 0.699108i
$$495$$ 0.339575 + 0.819808i 0.0152628 + 0.0368476i
$$496$$ 30.9373 16.2682i 1.38912 0.730466i
$$497$$ 8.08565 19.5205i 0.362691 0.875613i
$$498$$ 14.7317 1.79169i 0.660142 0.0802878i
$$499$$ −2.35748 + 7.77157i −0.105535 + 0.347903i −0.993765 0.111497i $$-0.964436\pi$$
0.888230 + 0.459400i $$0.151936\pi$$
$$500$$ −0.905175 + 17.2357i −0.0404807 + 0.770804i
$$501$$ 11.1127 + 1.09451i 0.496479 + 0.0488990i
$$502$$ 4.99568 3.50573i 0.222968 0.156469i
$$503$$ −1.29704 6.52067i −0.0578322 0.290742i 0.941036 0.338307i $$-0.109854\pi$$
−0.998868 + 0.0475644i $$0.984854\pi$$
$$504$$ 6.04881 + 4.30612i 0.269436 + 0.191810i
$$505$$ −35.7590 7.11290i −1.59125 0.316520i
$$506$$ −0.350481 + 0.904032i −0.0155808 + 0.0401891i
$$507$$ −0.0425725 + 0.0129142i −0.00189071 + 0.000573541i
$$508$$ −20.8532 + 15.3567i −0.925211 + 0.681346i
$$509$$ −5.97921 + 7.28569i −0.265024 + 0.322932i −0.888471 0.458933i $$-0.848232\pi$$
0.623447 + 0.781866i $$0.285732\pi$$
$$510$$ −20.0621 + 6.59002i −0.888365 + 0.291811i
$$511$$ −31.7064 −1.40261
$$512$$ 21.7134 + 6.36619i 0.959606 + 0.281348i
$$513$$ 3.50500 0.154749
$$514$$ −39.5658 + 12.9966i −1.74517 + 0.573255i
$$515$$ −31.9191 + 38.8935i −1.40652 + 1.71385i
$$516$$ −1.71790 + 1.26510i −0.0756264 + 0.0556929i
$$517$$ 2.55942 0.776391i 0.112563 0.0341456i
$$518$$ −9.32207 + 24.0454i −0.409588 + 1.05649i
$$519$$ 19.2785 + 3.83473i 0.846233 + 0.168326i
$$520$$ 21.3949 + 15.2309i 0.938228 + 0.667920i
$$521$$ −2.67369 13.4416i −0.117137 0.588886i −0.994113 0.108352i $$-0.965443\pi$$
0.876976 0.480534i $$-0.159557\pi$$
$$522$$ −7.56952 + 5.31193i −0.331309 + 0.232497i
$$523$$ −5.58449 0.550024i −0.244193 0.0240509i −0.0248197 0.999692i $$-0.507901\pi$$
−0.219373 + 0.975641i $$0.570401\pi$$
$$524$$ 1.12493 21.4201i 0.0491427 0.935742i
$$525$$ −1.26096 + 4.15683i −0.0550328 + 0.181419i
$$526$$ 20.9443 2.54729i 0.913217 0.111067i
$$527$$ 19.3562 46.7301i 0.843171 2.03560i
$$528$$ −0.640380 1.21781i −0.0278690 0.0529983i
$$529$$ 7.28143 + 17.5789i 0.316584 + 0.764302i
$$530$$ 16.4205 + 29.1009i 0.713263 + 1.26406i
$$531$$ 4.12894 2.20696i 0.179181 0.0957741i
$$532$$ 11.0121 14.7436i 0.477435 0.639218i
$$533$$ 12.3427 10.1294i 0.534623 0.438754i
$$534$$ 8.62833 1.92224i 0.373384 0.0831833i
$$535$$ 4.87022 7.28880i 0.210558 0.315122i
$$536$$ 0.844463 0.229089i 0.0364752 0.00989514i
$$537$$ −13.9646 + 9.33085i −0.602617 + 0.402656i
$$538$$ −0.265116 11.5990i −0.0114300 0.500069i
$$539$$ 0.0329583 + 0.0176166i 0.00141962 + 0.000758800i
$$540$$ 4.67143 2.19012i 0.201026 0.0942478i
$$541$$ 0.121607 + 1.23470i 0.00522831 + 0.0530840i 0.997445 0.0714403i $$-0.0227595\pi$$
−0.992217 + 0.124524i $$0.960260\pi$$
$$542$$ −1.30943 + 17.3516i −0.0562450 + 0.745314i
$$543$$ 4.23460 + 4.23460i 0.181724 + 0.181724i
$$544$$ 30.0453 13.0154i 1.28818 0.558029i
$$545$$ 2.62259 2.62259i 0.112339 0.112339i
$$546$$ −8.71104 10.1331i −0.372798 0.433657i
$$547$$ 39.9881 3.93848i 1.70977 0.168397i 0.804704 0.593677i $$-0.202324\pi$$
0.905062 + 0.425279i $$0.139824\pi$$
$$548$$ −10.9458 9.98835i −0.467583 0.426681i
$$549$$ 5.15357 9.64165i 0.219949 0.411496i
$$550$$ 0.556034 0.582047i 0.0237094 0.0248186i
$$551$$ 12.7330 + 19.0563i 0.542444 + 0.811825i
$$552$$ 5.34394 + 1.79552i 0.227453 + 0.0764223i
$$553$$ −17.4421 11.6545i −0.741715 0.495598i
$$554$$ 3.56298 5.60556i 0.151376 0.238157i
$$555$$ 11.3683 + 13.8523i 0.482556 + 0.587996i
$$556$$ −33.0653 + 19.6669i −1.40228 + 0.834061i
$$557$$ 3.00176 + 5.61591i 0.127189 + 0.237954i 0.937453 0.348111i $$-0.113177\pi$$
−0.810265 + 0.586064i $$0.800677\pi$$
$$558$$ −3.31618 + 11.9048i −0.140385 + 0.503970i
$$559$$ 3.54730 1.46934i 0.150035 0.0621464i
$$560$$ 5.46418 26.5312i 0.230904 1.12115i
$$561$$ −1.83947 0.761935i −0.0776627 0.0321689i
$$562$$ −9.94636 + 12.7007i −0.419562 + 0.535749i
$$563$$ 17.8459 + 5.41350i 0.752116 + 0.228152i 0.642989 0.765876i $$-0.277694\pi$$
0.109128 + 0.994028i $$0.465194\pi$$
$$564$$ −5.18938 14.6595i −0.218512 0.617274i
$$565$$ −0.979524 + 9.94528i −0.0412089 + 0.418401i
$$566$$ 33.7769 + 5.91970i 1.41975 + 0.248824i
$$567$$ −2.57470 + 0.512139i −0.108127 + 0.0215078i
$$568$$ 15.6136 + 16.5669i 0.655130 + 0.695132i
$$569$$ −0.111898 + 0.562550i −0.00469101 + 0.0235833i −0.983060 0.183285i $$-0.941327\pi$$
0.978369 + 0.206868i $$0.0663270\pi$$
$$570$$ −5.16203 11.6987i −0.216214 0.490005i
$$571$$ −8.20064 27.0339i −0.343186 1.13133i −0.943446 0.331528i $$-0.892436\pi$$
0.600259 0.799805i $$-0.295064\pi$$
$$572$$ 0.593545 + 2.40403i 0.0248174 + 0.100518i
$$573$$ −12.5932 10.3350i −0.526088 0.431749i
$$574$$ −14.6979 7.42949i −0.613479 0.310101i
$$575$$ 3.29813i 0.137541i
$$576$$ −6.90320 + 4.04299i −0.287633 + 0.168458i
$$577$$ 37.4395i 1.55863i −0.626635 0.779313i $$-0.715568\pi$$
0.626635 0.779313i $$-0.284432\pi$$
$$578$$ 10.5291 20.8299i 0.437953 0.866411i
$$579$$ −9.79878 8.04165i −0.407223 0.334200i
$$580$$ 28.8779 + 17.4418i 1.19909 + 0.724229i
$$581$$ 7.99654 + 26.3611i 0.331752 + 1.09364i
$$582$$ 18.2692 8.06125i 0.757283 0.334150i
$$583$$ −0.614634 + 3.08997i −0.0254555 + 0.127974i
$$584$$ 14.0020 31.1603i 0.579406 1.28942i
$$585$$ −9.10681 + 1.81146i −0.376520 + 0.0748945i
$$586$$ 5.23979 29.8974i 0.216454 1.23505i
$$587$$ 4.12885 41.9209i 0.170416 1.73026i −0.406669 0.913575i $$-0.633310\pi$$
0.577085 0.816684i $$-0.304190\pi$$
$$588$$ 0.0935659 0.196110i 0.00385859 0.00808743i
$$589$$ 29.3094 + 8.89091i 1.20767 + 0.366344i
$$590$$ −13.4472 10.5309i −0.553612 0.433552i
$$591$$ 6.87696 + 2.84853i 0.282880 + 0.117173i
$$592$$ −19.5145 19.7803i −0.802042 0.812965i
$$593$$ 20.9283 8.66880i 0.859424 0.355985i 0.0909415 0.995856i $$-0.471012\pi$$
0.768482 + 0.639871i $$0.221012\pi$$
$$594$$ 0.468618 + 0.130538i 0.0192276 + 0.00535602i
$$595$$ −18.4778 34.5696i −0.757517 1.41721i
$$596$$ 5.56016 21.8832i 0.227753 0.896369i
$$597$$ 8.31965 + 10.1375i 0.340500 + 0.414901i
$$598$$ −8.56250 5.44245i −0.350147 0.222558i
$$599$$ 0.196905 + 0.131568i 0.00804532 + 0.00537571i 0.559586 0.828772i $$-0.310960\pi$$
−0.551541 + 0.834148i $$0.685960\pi$$
$$600$$ −3.52838 3.07496i −0.144046 0.125535i
$$601$$ 6.19674 + 9.27408i 0.252770 + 0.378298i 0.936055 0.351855i $$-0.114449\pi$$
−0.683284 + 0.730153i $$0.739449\pi$$
$$602$$ −2.86358 2.73560i −0.116711 0.111495i
$$603$$ −0.145829 + 0.272826i −0.00593860 + 0.0111103i
$$604$$ 1.59165 + 34.7997i 0.0647632 + 1.41598i
$$605$$ −27.9360 + 2.75146i −1.13576 + 0.111863i
$$606$$ −15.1569 + 13.0298i −0.615705 + 0.529298i
$$607$$ −29.4853 + 29.4853i −1.19677 + 1.19677i −0.221644 + 0.975128i $$0.571142\pi$$
−0.975128 + 0.221644i $$0.928858\pi$$
$$608$$ 9.62661 + 17.3334i 0.390411 + 0.702964i
$$609$$ −12.1378 12.1378i −0.491850 0.491850i
$$610$$ −39.7712 3.00132i −1.61029 0.121520i
$$611$$ 2.74318 + 27.8519i 0.110977 + 1.12677i
$$612$$ −3.93684 + 10.8865i −0.159137 + 0.440062i
$$613$$ −10.3878 5.55241i −0.419561 0.224260i 0.248086 0.968738i $$-0.420198\pi$$
−0.667647 + 0.744478i $$0.732698\pi$$
$$614$$ 22.1964 0.507337i 0.895773 0.0204745i
$$615$$ −9.51502 + 6.35774i −0.383683 + 0.256369i
$$616$$ 2.02142 1.56110i 0.0814453 0.0628984i
$$617$$ −18.4114 + 27.5546i −0.741216 + 1.10931i 0.248828 + 0.968548i $$0.419955\pi$$
−0.990044 + 0.140760i $$0.955045\pi$$
$$618$$ 5.99796 + 26.9230i 0.241273 + 1.08300i
$$619$$ −18.8257 + 15.4499i −0.756670 + 0.620983i −0.931553 0.363606i $$-0.881545\pi$$
0.174883 + 0.984589i $$0.444045\pi$$
$$620$$ 44.6189 6.46445i 1.79194 0.259619i
$$621$$ −1.75781 + 0.939570i −0.0705386 + 0.0377036i
$$622$$ 33.9015 19.1293i 1.35933 0.767016i
$$623$$ 6.27946 + 15.1600i 0.251581 + 0.607371i
$$624$$ 13.8055 4.08609i 0.552663 0.163575i
$$625$$ −11.6854 + 28.2111i −0.467417 + 1.12845i
$$626$$ −0.244251 2.00828i −0.00976225 0.0802672i
$$627$$ 0.349980 1.15373i 0.0139769 0.0460755i
$$628$$ −5.90794 6.56287i −0.235752 0.261887i
$$629$$ −40.0148 3.94111i −1.59549 0.157143i
$$630$$ 5.50130 + 7.83937i 0.219177 + 0.312328i
$$631$$ 0.140770 + 0.707700i 0.00560398 + 0.0281731i 0.983486 0.180984i $$-0.0579281\pi$$
−0.977882 + 0.209157i $$0.932928\pi$$
$$632$$ 19.1564 11.9950i 0.762002 0.477134i
$$633$$ 6.65794 + 1.32435i 0.264630 + 0.0526381i
$$634$$ −45.6472 17.6968i −1.81288 0.702830i
$$635$$ −31.9653 + 9.69658i −1.26851 + 0.384797i
$$636$$ 18.1106 + 2.74908i 0.718132 + 0.109008i
$$637$$ −0.248079 + 0.302285i −0.00982923 + 0.0119770i
$$638$$ 0.992684 + 3.02204i 0.0393007 + 0.119644i
$$639$$ −8.04864 −0.318399
$$640$$ 23.6612 + 17.0866i 0.935291 + 0.675408i
$$641$$ 6.07689 0.240023 0.120011 0.992773i $$-0.461707\pi$$
0.120011 + 0.992773i $$0.461707\pi$$
$$642$$ −1.49975 4.56572i −0.0591905 0.180195i
$$643$$ −4.16057 + 5.06967i −0.164077 + 0.199928i −0.848558 0.529102i $$-0.822529\pi$$
0.684481 + 0.729031i $$0.260029\pi$$
$$644$$ −1.57048 + 10.3461i −0.0618857 + 0.407695i
$$645$$ −2.63333 + 0.798811i −0.103687 + 0.0314532i
$$646$$ 26.7512 + 10.3711i 1.05251 + 0.408045i
$$647$$ −10.8820 2.16457i −0.427817 0.0850980i −0.0235145 0.999723i $$-0.507486\pi$$
−0.404302 + 0.914625i $$0.632486\pi$$
$$648$$ 0.633703 2.75652i 0.0248942 0.108286i
$$649$$ −0.314178 1.57948i −0.0123326 0.0620001i
$$650$$ 4.83839 + 6.89472i 0.189777 + 0.270433i
$$651$$ −22.8292 2.24848i −0.894747 0.0881249i
$$652$$ 3.72798 3.35595i 0.145999 0.131429i
$$653$$ −0.769872 + 2.53793i −0.0301274 + 0.0993168i −0.970715 0.240235i $$-0.922775\pi$$
0.940587 + 0.339552i $$0.110275\pi$$
$$654$$ −0.245482 2.01840i −0.00959909 0.0789256i
$$655$$ 10.5875 25.5605i 0.413689 0.998733i
$$656$$ 13.7923 11.1638i 0.538500 0.435874i
$$657$$ 4.62204 + 11.1586i 0.180323 + 0.435338i
$$658$$ 25.1403 14.1857i 0.980069 0.553015i
$$659$$ −3.57036 + 1.90840i −0.139081 + 0.0743406i −0.539470 0.842005i $$-0.681375\pi$$
0.400388 + 0.916346i $$0.368875\pi$$
$$660$$ −0.254465 1.75637i −0.00990505 0.0683666i
$$661$$ −10.8360 + 8.89286i −0.421471 + 0.345892i −0.821100 0.570785i $$-0.806639\pi$$
0.399629 + 0.916677i $$0.369139\pi$$
$$662$$ −10.1049 45.3578i −0.392738 1.76288i
$$663$$ 11.5748 17.3229i 0.449527 0.672765i
$$664$$ −29.4384 3.78259i −1.14243 0.146793i
$$665$$ 19.7356 13.1869i 0.765315 0.511367i
$$666$$ 9.82137 0.224485i 0.380570 0.00869860i
$$667$$ −11.4941 6.14375i −0.445055 0.237887i
$$668$$ −21.0019 7.59482i −0.812588 0.293852i
$$669$$ 0.163980 + 1.66492i 0.00633985 + 0.0643696i
$$670$$ 1.12539 + 0.0849272i 0.0434776 + 0.00328102i
$$671$$ −2.65912 2.65912i −0.102654 0.102654i
$$672$$ −9.60422 11.3262i −0.370491 0.436917i
$$673$$ 17.6319 17.6319i 0.679659 0.679659i −0.280264 0.959923i $$-0.590422\pi$$
0.959923 + 0.280264i $$0.0904220\pi$$
$$674$$ −34.2718 + 29.4621i −1.32010 + 1.13484i
$$675$$ 1.64675 0.162191i 0.0633836 0.00624274i
$$676$$ 0.0888833 0.00406529i 0.00341859 0.000156357i
$$677$$ −2.15182 + 4.02577i −0.0827012 + 0.154723i −0.919872 0.392218i $$-0.871708\pi$$
0.837171 + 0.546941i $$0.184208\pi$$
$$678$$ 3.96141 + 3.78437i 0.152137 + 0.145338i
$$679$$ 20.5933 + 30.8200i 0.790297 + 1.18276i
$$680$$ 42.1343 2.89319i 1.61577 0.110949i
$$681$$ 10.6971 + 7.14758i 0.409914 + 0.273896i
$$682$$ 3.58754 + 2.28029i 0.137374 + 0.0873170i
$$683$$ −1.53192 1.86665i −0.0586173 0.0714254i 0.742876 0.669429i $$-0.233461\pi$$
−0.801494 + 0.598003i $$0.795961\pi$$
$$684$$ −6.79411 1.72628i −0.259779 0.0660058i
$$685$$ −9.00982 16.8562i −0.344248 0.644042i
$$686$$ 25.4230 + 7.08179i 0.970654 + 0.270384i
$$687$$ −22.3434 + 9.25495i −0.852455 + 0.353098i
$$688$$ 3.95308 1.60618i 0.150710 0.0612351i
$$689$$ −30.4573 12.6158i −1.16033 0.480625i
$$690$$ 5.72487 + 4.48333i 0.217942 + 0.170677i
$$691$$ 42.5086 + 12.8948i 1.61710 + 0.490543i 0.963816 0.266568i $$-0.0858896\pi$$
0.653287 + 0.757111i $$0.273390\pi$$
$$692$$ −35.4809 16.9283i −1.34878 0.643517i
$$693$$ −0.0885087 + 0.898644i −0.00336217 + 0.0341367i
$$694$$ −7.13667 + 40.7207i −0.270904 + 1.54574i
$$695$$ −48.6692 + 9.68091i −1.84613 + 0.367218i
$$696$$ 17.2890 6.56856i 0.655340 0.248981i
$$697$$ 5.00935 25.1837i 0.189742 0.953900i
$$698$$ 6.19067 2.73162i 0.234320 0.103393i
$$699$$ −7.86249 25.9192i −0.297387 0.980353i
$$700$$ 4.49157 7.43659i 0.169765 0.281076i
$$701$$ 5.13187 + 4.21162i 0.193828 + 0.159071i 0.726302 0.687376i $$-0.241237\pi$$
−0.532474 + 0.846447i $$0.678737\pi$$
$$702$$ −2.29634 + 4.54289i −0.0866696 + 0.171460i
$$703$$ 24.3477i 0.918291i
$$704$$ 0.641524 + 2.67601i 0.0241784 + 0.100856i
$$705$$ 20.0581i 0.755431i
$$706$$ 46.8207 + 23.6669i 1.76212 + 0.890715i
$$707$$ −28.6803 23.5373i −1.07863 0.885212i
$$708$$ −9.09054 + 2.24442i −0.341643 + 0.0843504i
$$709$$ −9.16345 30.2079i −0.344141 1.13448i −0.942767 0.333452i $$-0.891787\pi$$
0.598627 0.801028i $$-0.295713\pi$$
$$710$$ 11.8538 + 26.8642i 0.444863 + 1.00819i
$$711$$ −1.55897 + 7.83745i −0.0584658 + 0.293927i
$$712$$ −17.6720 0.523534i −0.662285 0.0196203i
$$713$$ −17.0825 + 3.39792i −0.639744 + 0.127253i
$$714$$ −21.1663 3.70958i −0.792128 0.138827i
$$715$$ −0.313059 + 3.17854i −0.0117077 + 0.118871i
$$716$$ 31.6647 11.2092i 1.18337 0.418906i
$$717$$ 3.35226 + 1.01690i 0.125192 + 0.0379767i
$$718$$ −17.4398 + 22.2693i −0.650847 + 0.831082i
$$719$$ 28.5626 + 11.8310i 1.06520 + 0.441222i 0.845296 0.534299i $$-0.179424\pi$$
0.219908 + 0.975521i $$0.429424\pi$$
$$720$$ −10.1338 + 1.94458i −0.377665 + 0.0724703i
$$721$$ −47.3036 + 19.5938i −1.76168 + 0.729711i
$$722$$ 2.54830 9.14815i 0.0948378 0.340459i
$$723$$ −1.63667 3.06199i −0.0608683 0.113877i
$$724$$ −6.12276 10.2940i −0.227551 0.382573i
$$725$$ 6.86417 + 8.36401i 0.254929 + 0.310632i
$$726$$ −8.25506 + 12.9875i −0.306374 + 0.482012i
$$727$$ 39.9487 + 26.6929i 1.48162 + 0.989985i 0.993080 + 0.117442i $$0.0374694\pi$$
0.488537 + 0.872543i $$0.337531\pi$$
$$728$$ 11.8948 + 23.9324i 0.440851 + 0.886996i
$$729$$ 0.555570 + 0.831470i 0.0205767 + 0.0307952i
$$730$$ 30.4372 31.8611i 1.12653 1.17923i
$$731$$ 2.91064 5.44542i 0.107654 0.201406i
$$732$$ −14.7384 + 16.1512i −0.544747 + 0.596966i
$$733$$ 26.7390 2.63356i 0.987627 0.0972728i 0.408714 0.912662i $$-0.365977\pi$$
0.578913 + 0.815390i $$0.303477\pi$$
$$734$$ 13.3749 + 15.5584i 0.493677 + 0.574269i
$$735$$ 0.198177 0.198177i 0.00730987 0.00730987i
$$736$$ −9.47441 6.11243i −0.349231 0.225307i
$$737$$ 0.0752441 + 0.0752441i 0.00277165 + 0.00277165i
$$738$$ −0.472090 + 6.25576i −0.0173779 + 0.230278i
$$739$$ −2.19455 22.2817i −0.0807279 0.819645i −0.947248 0.320502i $$-0.896148\pi$$
0.866520 0.499143i $$-0.166352\pi$$
$$740$$ −15.2138 32.4504i −0.559271 1.19290i
$$741$$ 11.1261 + 5.94705i 0.408729 + 0.218470i
$$742$$ 0.776994 + 33.9941i 0.0285244 + 1.24796i
$$743$$ −7.81164 + 5.21957i −0.286581 + 0.191488i −0.690549 0.723286i $$-0.742631\pi$$
0.403967 + 0.914773i $$0.367631\pi$$
$$744$$ 12.2914 21.4431i 0.450626 0.786141i
$$745$$ 16.1796 24.2145i 0.592776 0.887152i
$$746$$ 39.6604 8.83562i 1.45207 0.323495i
$$747$$ 8.11168 6.65709i 0.296791 0.243570i
$$748$$ 3.19039 + 2.38292i 0.116652 + 0.0871281i
$$749$$ 7.86732 4.20517i 0.287466 0.153654i
$$750$$ 5.99750 + 10.6289i 0.218998 + 0.388114i
$$751$$ 14.3533 + 34.6520i 0.523761 + 1.26447i 0.935551 + 0.353192i $$0.114904\pi$$
−0.411790 + 0.911279i $$0.635096\pi$$
$$752$$ 2.83908 + 30.9719i 0.103531 + 1.12943i
$$753$$ 1.65147 3.98700i 0.0601829 0.145294i
$$754$$ −33.0414 + 4.01856i −1.20330 + 0.146347i
$$755$$ −13.0433 + 42.9980i −0.474695 + 1.56486i
$$756$$ 5.24305 + 0.275352i 0.190688 + 0.0100144i
$$757$$ −17.4238 1.71610i −0.633280 0.0623727i −0.223717 0.974654i $$-0.571819\pi$$
−0.409564 + 0.912282i $$0.634319\pi$$
$$758$$ 13.3864 9.39394i 0.486216 0.341203i
$$759$$ 0.133755 + 0.672432i 0.00485500 + 0.0244077i
$$760$$ 4.24429 + 25.2193i 0.153957 + 0.914799i
$$761$$ 3.10452 + 0.617528i 0.112539 + 0.0223854i 0.251038 0.967977i $$-0.419228\pi$$
−0.138500 + 0.990363i $$0.544228\pi$$
$$762$$ −6.61941 + 17.0741i −0.239796 + 0.618531i
$$763$$ 3.61175 1.09561i 0.130754 0.0396638i
$$764$$ 19.3206 + 26.2357i 0.698994 + 0.949176i
$$765$$ −9.47262 + 11.5424i −0.342483 + 0.417317i
$$766$$ 12.5324 4.11666i 0.452814 0.148741i
$$767$$ 16.8514 0.608469
$$768$$ 15.3725 4.43702i 0.554706 0.160107i
$$769$$ −13.2897 −0.479239 −0.239619 0.970867i $$-0.577023\pi$$
−0.239619 + 0.970867i $$0.577023\pi$$
$$770$$ 3.12978 1.02807i 0.112789 0.0370492i
$$771$$ −18.6816 + 22.7636i −0.672800 + 0.819810i
$$772$$ 15.0334 + 20.4141i 0.541063 + 0.734719i
$$773$$ −41.6982