Properties

Label 384.2.v.a.229.29
Level $384$
Weight $2$
Character 384.229
Analytic conductor $3.066$
Analytic rank $0$
Dimension $512$
CM no
Inner twists $2$

Related objects

Downloads

Learn more

Newspace parameters

Level: \( N \) \(=\) \( 384 = 2^{7} \cdot 3 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 384.v (of order \(32\), degree \(16\), minimal)

Newform invariants

Self dual: no
Analytic conductor: \(3.06625543762\)
Analytic rank: \(0\)
Dimension: \(512\)
Relative dimension: \(32\) over \(\Q(\zeta_{32})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{32}]$

Embedding invariants

Embedding label 229.29
Character \(\chi\) \(=\) 384.229
Dual form 384.2.v.a.109.29

$q$-expansion

\(f(q)\) \(=\) \(q+(1.38550 + 0.283508i) q^{2} +(-0.881921 + 0.471397i) q^{3} +(1.83925 + 0.785602i) q^{4} +(-0.311554 - 0.379630i) q^{5} +(-1.35555 + 0.403091i) q^{6} +(2.05811 - 1.37518i) q^{7} +(2.32556 + 1.60990i) q^{8} +(0.555570 - 0.831470i) q^{9} +O(q^{10})\) \(q+(1.38550 + 0.283508i) q^{2} +(-0.881921 + 0.471397i) q^{3} +(1.83925 + 0.785602i) q^{4} +(-0.311554 - 0.379630i) q^{5} +(-1.35555 + 0.403091i) q^{6} +(2.05811 - 1.37518i) q^{7} +(2.32556 + 1.60990i) q^{8} +(0.555570 - 0.831470i) q^{9} +(-0.324032 - 0.614307i) q^{10} +(0.708920 - 0.215049i) q^{11} +(-1.99240 + 0.174176i) q^{12} +(1.87893 + 1.54200i) q^{13} +(3.24140 - 1.32184i) q^{14} +(0.453723 + 0.187938i) q^{15} +(2.76566 + 2.88983i) q^{16} +(0.338982 - 0.140411i) q^{17} +(1.00547 - 0.994497i) q^{18} +(0.634562 + 6.44281i) q^{19} +(-0.274787 - 0.942991i) q^{20} +(-1.16683 + 2.18299i) q^{21} +(1.04318 - 0.0969667i) q^{22} +(-7.28620 + 1.44931i) q^{23} +(-2.80986 - 0.323539i) q^{24} +(0.928399 - 4.66738i) q^{25} +(2.16610 + 2.66914i) q^{26} +(-0.0980171 + 0.995185i) q^{27} +(4.86572 - 0.912450i) q^{28} +(0.561081 - 1.84964i) q^{29} +(0.575353 + 0.389023i) q^{30} +(-5.57748 - 5.57748i) q^{31} +(3.01254 + 4.78796i) q^{32} +(-0.523839 + 0.523839i) q^{33} +(0.509468 - 0.0984360i) q^{34} +(-1.16327 - 0.352875i) q^{35} +(1.67504 - 1.09282i) q^{36} +(6.92412 + 0.681966i) q^{37} +(-0.947398 + 9.10645i) q^{38} +(-2.38396 - 0.474200i) q^{39} +(-0.113374 - 1.38442i) q^{40} +(-0.989289 - 4.97349i) q^{41} +(-2.23555 + 2.69374i) q^{42} +(-5.69893 - 3.04614i) q^{43} +(1.47282 + 0.161402i) q^{44} +(-0.488741 + 0.0481368i) q^{45} +(-10.5060 - 0.0576591i) q^{46} +(-1.01282 - 2.44515i) q^{47} +(-3.80135 - 1.24488i) q^{48} +(-0.334102 + 0.806595i) q^{49} +(2.60954 - 6.20346i) q^{50} +(-0.232766 + 0.283626i) q^{51} +(2.24442 + 4.31221i) q^{52} +(-2.92011 - 9.62630i) q^{53} +(-0.417946 + 1.35104i) q^{54} +(-0.302506 - 0.202128i) q^{55} +(7.00016 + 0.115265i) q^{56} +(-3.59675 - 5.38292i) q^{57} +(1.30177 - 2.40361i) q^{58} +(-8.85770 + 7.26933i) q^{59} +(0.686863 + 0.702110i) q^{60} +(0.238013 + 0.445291i) q^{61} +(-6.14637 - 9.30888i) q^{62} -2.47527i q^{63} +(2.81647 + 7.48782i) q^{64} -1.19372i q^{65} +(-0.874293 + 0.577269i) q^{66} +(1.29140 + 2.41603i) q^{67} +(0.733778 + 0.00805453i) q^{68} +(5.74265 - 4.71287i) q^{69} +(-1.51168 - 0.818707i) q^{70} +(0.719325 + 1.07655i) q^{71} +(2.63059 - 1.03922i) q^{72} +(-0.675000 - 0.451021i) q^{73} +(9.40006 + 2.90791i) q^{74} +(1.38141 + 4.55390i) q^{75} +(-3.89437 + 12.3484i) q^{76} +(1.16330 - 1.41749i) q^{77} +(-3.16855 - 1.33288i) q^{78} +(3.41873 - 8.25355i) q^{79} +(0.235414 - 1.95027i) q^{80} +(-0.382683 - 0.923880i) q^{81} +(0.0393575 - 7.17127i) q^{82} +(-11.2884 + 1.11181i) q^{83} +(-3.86106 + 3.09839i) q^{84} +(-0.158915 - 0.0849420i) q^{85} +(-7.03230 - 5.83614i) q^{86} +(0.377083 + 1.89573i) q^{87} +(1.99484 + 0.641179i) q^{88} +(-9.94691 - 1.97856i) q^{89} +(-0.690800 - 0.0718680i) q^{90} +(5.98758 + 0.589726i) q^{91} +(-14.5397 - 3.05840i) q^{92} +(7.54810 + 2.28969i) q^{93} +(-0.710042 - 3.67491i) q^{94} +(2.24818 - 2.24818i) q^{95} +(-4.91386 - 2.80250i) q^{96} +(1.02015 + 1.02015i) q^{97} +(-0.691576 + 1.02282i) q^{98} +(0.215049 - 0.708920i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 512 q + O(q^{10}) \) \( 512 q - 96 q^{50} - 96 q^{52} - 32 q^{54} - 224 q^{56} - 192 q^{60} - 192 q^{62} - 192 q^{64} - 192 q^{66} - 192 q^{68} - 192 q^{70} - 224 q^{74} - 32 q^{76} - 96 q^{78} - 96 q^{80} + O(q^{100}) \)

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/384\mathbb{Z}\right)^\times\).

\(n\) \(127\) \(133\) \(257\)
\(\chi(n)\) \(1\) \(e\left(\frac{9}{32}\right)\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.38550 + 0.283508i 0.979700 + 0.200470i
\(3\) −0.881921 + 0.471397i −0.509177 + 0.272161i
\(4\) 1.83925 + 0.785602i 0.919623 + 0.392801i
\(5\) −0.311554 0.379630i −0.139331 0.169776i 0.698670 0.715444i \(-0.253776\pi\)
−0.838001 + 0.545669i \(0.816276\pi\)
\(6\) −1.35555 + 0.403091i −0.553401 + 0.164561i
\(7\) 2.05811 1.37518i 0.777892 0.519771i −0.102091 0.994775i \(-0.532553\pi\)
0.879984 + 0.475004i \(0.157553\pi\)
\(8\) 2.32556 + 1.60990i 0.822210 + 0.569184i
\(9\) 0.555570 0.831470i 0.185190 0.277157i
\(10\) −0.324032 0.614307i −0.102468 0.194261i
\(11\) 0.708920 0.215049i 0.213748 0.0648396i −0.181595 0.983373i \(-0.558126\pi\)
0.395342 + 0.918534i \(0.370626\pi\)
\(12\) −1.99240 + 0.174176i −0.575157 + 0.0502803i
\(13\) 1.87893 + 1.54200i 0.521122 + 0.427674i 0.857829 0.513936i \(-0.171813\pi\)
−0.336707 + 0.941610i \(0.609313\pi\)
\(14\) 3.24140 1.32184i 0.866299 0.353275i
\(15\) 0.453723 + 0.187938i 0.117151 + 0.0485254i
\(16\) 2.76566 + 2.88983i 0.691415 + 0.722458i
\(17\) 0.338982 0.140411i 0.0822151 0.0340546i −0.341197 0.939992i \(-0.610832\pi\)
0.423412 + 0.905937i \(0.360832\pi\)
\(18\) 1.00547 0.994497i 0.236992 0.234405i
\(19\) 0.634562 + 6.44281i 0.145578 + 1.47808i 0.739280 + 0.673398i \(0.235166\pi\)
−0.593702 + 0.804685i \(0.702334\pi\)
\(20\) −0.274787 0.942991i −0.0614443 0.210859i
\(21\) −1.16683 + 2.18299i −0.254624 + 0.476368i
\(22\) 1.04318 0.0969667i 0.222407 0.0206734i
\(23\) −7.28620 + 1.44931i −1.51928 + 0.302203i −0.883043 0.469293i \(-0.844509\pi\)
−0.636234 + 0.771496i \(0.719509\pi\)
\(24\) −2.80986 0.323539i −0.573561 0.0660421i
\(25\) 0.928399 4.66738i 0.185680 0.933475i
\(26\) 2.16610 + 2.66914i 0.424807 + 0.523461i
\(27\) −0.0980171 + 0.995185i −0.0188634 + 0.191523i
\(28\) 4.86572 0.912450i 0.919535 0.172437i
\(29\) 0.561081 1.84964i 0.104190 0.343469i −0.889309 0.457306i \(-0.848814\pi\)
0.993499 + 0.113837i \(0.0363143\pi\)
\(30\) 0.575353 + 0.389023i 0.105045 + 0.0710255i
\(31\) −5.57748 5.57748i −1.00174 1.00174i −0.999998 0.00174611i \(-0.999444\pi\)
−0.00174611 0.999998i \(-0.500556\pi\)
\(32\) 3.01254 + 4.78796i 0.532548 + 0.846400i
\(33\) −0.523839 + 0.523839i −0.0911886 + 0.0911886i
\(34\) 0.509468 0.0984360i 0.0873731 0.0168816i
\(35\) −1.16327 0.352875i −0.196629 0.0596468i
\(36\) 1.67504 1.09282i 0.279173 0.182137i
\(37\) 6.92412 + 0.681966i 1.13832 + 0.112115i 0.649564 0.760307i \(-0.274952\pi\)
0.488754 + 0.872422i \(0.337452\pi\)
\(38\) −0.947398 + 9.10645i −0.153688 + 1.47726i
\(39\) −2.38396 0.474200i −0.381740 0.0759328i
\(40\) −0.113374 1.38442i −0.0179260 0.218896i
\(41\) −0.989289 4.97349i −0.154501 0.776729i −0.977869 0.209220i \(-0.932907\pi\)
0.823368 0.567508i \(-0.192093\pi\)
\(42\) −2.23555 + 2.69374i −0.344952 + 0.415653i
\(43\) −5.69893 3.04614i −0.869079 0.464533i −0.0243358 0.999704i \(-0.507747\pi\)
−0.844744 + 0.535171i \(0.820247\pi\)
\(44\) 1.47282 + 0.161402i 0.222036 + 0.0243322i
\(45\) −0.488741 + 0.0481368i −0.0728572 + 0.00717581i
\(46\) −10.5060 0.0576591i −1.54902 0.00850136i
\(47\) −1.01282 2.44515i −0.147734 0.356662i 0.832638 0.553818i \(-0.186830\pi\)
−0.980372 + 0.197155i \(0.936830\pi\)
\(48\) −3.80135 1.24488i −0.548678 0.179683i
\(49\) −0.334102 + 0.806595i −0.0477289 + 0.115228i
\(50\) 2.60954 6.20346i 0.369044 0.877302i
\(51\) −0.232766 + 0.283626i −0.0325938 + 0.0397156i
\(52\) 2.24442 + 4.31221i 0.311245 + 0.597996i
\(53\) −2.92011 9.62630i −0.401107 1.32227i −0.892387 0.451272i \(-0.850971\pi\)
0.491279 0.871002i \(-0.336529\pi\)
\(54\) −0.417946 + 1.35104i −0.0568752 + 0.183854i
\(55\) −0.302506 0.202128i −0.0407899 0.0272549i
\(56\) 7.00016 + 0.115265i 0.935436 + 0.0154029i
\(57\) −3.59675 5.38292i −0.476402 0.712986i
\(58\) 1.30177 2.40361i 0.170930 0.315610i
\(59\) −8.85770 + 7.26933i −1.15317 + 0.946386i −0.999131 0.0416778i \(-0.986730\pi\)
−0.154044 + 0.988064i \(0.549230\pi\)
\(60\) 0.686863 + 0.702110i 0.0886737 + 0.0906420i
\(61\) 0.238013 + 0.445291i 0.0304745 + 0.0570137i 0.896698 0.442644i \(-0.145959\pi\)
−0.866223 + 0.499657i \(0.833459\pi\)
\(62\) −6.14637 9.30888i −0.780589 1.18223i
\(63\) 2.47527i 0.311854i
\(64\) 2.81647 + 7.48782i 0.352059 + 0.935978i
\(65\) 1.19372i 0.148062i
\(66\) −0.874293 + 0.577269i −0.107618 + 0.0710569i
\(67\) 1.29140 + 2.41603i 0.157769 + 0.295165i 0.948370 0.317167i \(-0.102732\pi\)
−0.790601 + 0.612332i \(0.790232\pi\)
\(68\) 0.733778 + 0.00805453i 0.0889837 + 0.000976755i
\(69\) 5.74265 4.71287i 0.691334 0.567363i
\(70\) −1.51168 0.818707i −0.180680 0.0978543i
\(71\) 0.719325 + 1.07655i 0.0853682 + 0.127762i 0.871696 0.490047i \(-0.163020\pi\)
−0.786328 + 0.617809i \(0.788020\pi\)
\(72\) 2.63059 1.03922i 0.310018 0.122474i
\(73\) −0.675000 0.451021i −0.0790028 0.0527880i 0.515442 0.856925i \(-0.327628\pi\)
−0.594444 + 0.804137i \(0.702628\pi\)
\(74\) 9.40006 + 2.90791i 1.09273 + 0.338037i
\(75\) 1.38141 + 4.55390i 0.159512 + 0.525839i
\(76\) −3.89437 + 12.3484i −0.446715 + 1.41646i
\(77\) 1.16330 1.41749i 0.132571 0.161538i
\(78\) −3.16855 1.33288i −0.358768 0.150919i
\(79\) 3.41873 8.25355i 0.384637 0.928597i −0.606418 0.795146i \(-0.707394\pi\)
0.991055 0.133451i \(-0.0426058\pi\)
\(80\) 0.235414 1.95027i 0.0263201 0.218046i
\(81\) −0.382683 0.923880i −0.0425204 0.102653i
\(82\) 0.0393575 7.17127i 0.00434631 0.791934i
\(83\) −11.2884 + 1.11181i −1.23906 + 0.122037i −0.696239 0.717810i \(-0.745145\pi\)
−0.542824 + 0.839847i \(0.682645\pi\)
\(84\) −3.86106 + 3.09839i −0.421276 + 0.338062i
\(85\) −0.158915 0.0849420i −0.0172368 0.00921326i
\(86\) −7.03230 5.83614i −0.758312 0.629327i
\(87\) 0.377083 + 1.89573i 0.0404276 + 0.203243i
\(88\) 1.99484 + 0.641179i 0.212651 + 0.0683499i
\(89\) −9.94691 1.97856i −1.05437 0.209727i −0.362674 0.931916i \(-0.618136\pi\)
−0.691696 + 0.722189i \(0.743136\pi\)
\(90\) −0.690800 0.0718680i −0.0728167 0.00757555i
\(91\) 5.98758 + 0.589726i 0.627669 + 0.0618200i
\(92\) −14.5397 3.05840i −1.51587 0.318861i
\(93\) 7.54810 + 2.28969i 0.782702 + 0.237430i
\(94\) −0.710042 3.67491i −0.0732352 0.379038i
\(95\) 2.24818 2.24818i 0.230659 0.230659i
\(96\) −4.91386 2.80250i −0.501518 0.286029i
\(97\) 1.02015 + 1.02015i 0.103581 + 0.103581i 0.756998 0.653417i \(-0.226665\pi\)
−0.653417 + 0.756998i \(0.726665\pi\)
\(98\) −0.691576 + 1.02282i −0.0698597 + 0.103320i
\(99\) 0.215049 0.708920i 0.0216132 0.0712492i
\(100\) 5.37425 7.85510i 0.537425 0.785510i
\(101\) −1.15179 + 11.6943i −0.114607 + 1.16363i 0.750090 + 0.661336i \(0.230010\pi\)
−0.864697 + 0.502293i \(0.832490\pi\)
\(102\) −0.402909 + 0.326975i −0.0398939 + 0.0323753i
\(103\) −1.68498 + 8.47094i −0.166026 + 0.834667i 0.804553 + 0.593881i \(0.202405\pi\)
−0.970578 + 0.240786i \(0.922595\pi\)
\(104\) 1.88711 + 6.61090i 0.185047 + 0.648252i
\(105\) 1.19226 0.237155i 0.116353 0.0231440i
\(106\) −1.31669 14.1652i −0.127888 1.37584i
\(107\) 0.0725158 0.135668i 0.00701037 0.0131155i −0.878392 0.477941i \(-0.841383\pi\)
0.885402 + 0.464826i \(0.153883\pi\)
\(108\) −0.962097 + 1.75339i −0.0925778 + 0.168720i
\(109\) −0.228073 2.31567i −0.0218455 0.221801i −0.999909 0.0134938i \(-0.995705\pi\)
0.978063 0.208307i \(-0.0667953\pi\)
\(110\) −0.361819 0.365812i −0.0344981 0.0348788i
\(111\) −6.42800 + 2.66257i −0.610119 + 0.252720i
\(112\) 9.66608 + 2.14430i 0.913359 + 0.202617i
\(113\) 4.53955 + 1.88034i 0.427045 + 0.176888i 0.585845 0.810423i \(-0.300763\pi\)
−0.158801 + 0.987311i \(0.550763\pi\)
\(114\) −3.45722 8.47777i −0.323798 0.794016i
\(115\) 2.82025 + 2.31452i 0.262990 + 0.215830i
\(116\) 2.48505 2.96115i 0.230731 0.274936i
\(117\) 2.32600 0.705586i 0.215039 0.0652314i
\(118\) −14.3333 + 7.56047i −1.31949 + 0.695997i
\(119\) 0.504571 0.755143i 0.0462539 0.0692239i
\(120\) 0.752599 + 1.16751i 0.0687026 + 0.106578i
\(121\) −8.68984 + 5.80637i −0.789986 + 0.527852i
\(122\) 0.203525 + 0.684432i 0.0184263 + 0.0619655i
\(123\) 3.21696 + 3.91988i 0.290064 + 0.353444i
\(124\) −5.87668 14.6400i −0.527742 1.31471i
\(125\) −4.22671 + 2.25922i −0.378048 + 0.202071i
\(126\) 0.701757 3.42949i 0.0625175 0.305524i
\(127\) 17.8119 1.58055 0.790274 0.612753i \(-0.209938\pi\)
0.790274 + 0.612753i \(0.209938\pi\)
\(128\) 1.77938 + 11.1729i 0.157277 + 0.987555i
\(129\) 6.46195 0.568943
\(130\) 0.338427 1.65390i 0.0296820 0.145057i
\(131\) −8.63086 + 4.61329i −0.754082 + 0.403065i −0.803186 0.595729i \(-0.796863\pi\)
0.0491041 + 0.998794i \(0.484363\pi\)
\(132\) −1.37500 + 0.551940i −0.119678 + 0.0480402i
\(133\) 10.1661 + 12.3874i 0.881509 + 1.07412i
\(134\) 1.10427 + 3.71354i 0.0953945 + 0.320801i
\(135\) 0.408340 0.272844i 0.0351443 0.0234827i
\(136\) 1.01437 + 0.219191i 0.0869815 + 0.0187955i
\(137\) 0.690622 1.03359i 0.0590038 0.0883055i −0.800795 0.598939i \(-0.795589\pi\)
0.859798 + 0.510634i \(0.170589\pi\)
\(138\) 9.29260 4.90162i 0.791039 0.417254i
\(139\) 20.2956 6.15660i 1.72145 0.522196i 0.733866 0.679294i \(-0.237714\pi\)
0.987583 + 0.157098i \(0.0502139\pi\)
\(140\) −1.86233 1.56290i −0.157396 0.132089i
\(141\) 2.04586 + 1.67900i 0.172293 + 0.141397i
\(142\) 0.691419 + 1.69549i 0.0580226 + 0.142283i
\(143\) 1.66362 + 0.689093i 0.139119 + 0.0576249i
\(144\) 3.93933 0.694057i 0.328277 0.0578381i
\(145\) −0.876985 + 0.363259i −0.0728296 + 0.0301670i
\(146\) −0.807348 0.816259i −0.0668166 0.0675541i
\(147\) −0.0855740 0.868848i −0.00705803 0.0716614i
\(148\) 12.1994 + 6.69390i 1.00279 + 0.550236i
\(149\) 10.1289 18.9498i 0.829790 1.55243i −0.00376611 0.999993i \(-0.501199\pi\)
0.833556 0.552435i \(-0.186301\pi\)
\(150\) 0.622886 + 6.70109i 0.0508585 + 0.547142i
\(151\) 4.88254 0.971198i 0.397336 0.0790350i 0.00762170 0.999971i \(-0.497574\pi\)
0.389714 + 0.920936i \(0.372574\pi\)
\(152\) −8.89654 + 16.0047i −0.721605 + 1.29816i
\(153\) 0.0715808 0.359861i 0.00578697 0.0290930i
\(154\) 2.01363 1.63413i 0.162263 0.131682i
\(155\) −0.379691 + 3.85506i −0.0304975 + 0.309646i
\(156\) −4.01217 2.74502i −0.321230 0.219777i
\(157\) −1.77342 + 5.84617i −0.141534 + 0.466576i −0.998836 0.0482388i \(-0.984639\pi\)
0.857302 + 0.514814i \(0.172139\pi\)
\(158\) 7.07661 10.4661i 0.562985 0.832638i
\(159\) 7.11311 + 7.11311i 0.564106 + 0.564106i
\(160\) 0.879082 2.63536i 0.0694976 0.208344i
\(161\) −13.0027 + 13.0027i −1.02476 + 1.02476i
\(162\) −0.268283 1.38853i −0.0210783 0.109093i
\(163\) −7.14497 2.16740i −0.559637 0.169764i −0.00222143 0.999998i \(-0.500707\pi\)
−0.557416 + 0.830233i \(0.688207\pi\)
\(164\) 2.08764 9.92466i 0.163017 0.774986i
\(165\) 0.362069 + 0.0356607i 0.0281870 + 0.00277618i
\(166\) −15.9553 1.65993i −1.23837 0.128835i
\(167\) 4.89712 + 0.974098i 0.378951 + 0.0753779i 0.380890 0.924620i \(-0.375617\pi\)
−0.00193992 + 0.999998i \(0.500617\pi\)
\(168\) −6.22793 + 3.19820i −0.480495 + 0.246746i
\(169\) −1.38355 6.95558i −0.106427 0.535045i
\(170\) −0.196096 0.162741i −0.0150399 0.0124817i
\(171\) 5.70955 + 3.05182i 0.436620 + 0.233378i
\(172\) −8.08869 10.0797i −0.616757 0.768570i
\(173\) −0.154378 + 0.0152050i −0.0117372 + 0.00115601i −0.103884 0.994589i \(-0.533127\pi\)
0.0921468 + 0.995745i \(0.470627\pi\)
\(174\) −0.0150018 + 2.73344i −0.00113728 + 0.207222i
\(175\) −4.50776 10.8827i −0.340754 0.822654i
\(176\) 2.58209 + 1.45391i 0.194632 + 0.109593i
\(177\) 4.38506 10.5865i 0.329601 0.795728i
\(178\) −13.2206 5.56133i −0.990923 0.416840i
\(179\) −15.3595 + 18.7156i −1.14802 + 1.39887i −0.244864 + 0.969557i \(0.578743\pi\)
−0.903157 + 0.429310i \(0.858757\pi\)
\(180\) −0.936732 0.295420i −0.0698199 0.0220193i
\(181\) 5.40417 + 17.8152i 0.401689 + 1.32419i 0.891760 + 0.452508i \(0.149471\pi\)
−0.490072 + 0.871682i \(0.663029\pi\)
\(182\) 8.12863 + 2.51459i 0.602534 + 0.186394i
\(183\) −0.419818 0.280513i −0.0310338 0.0207361i
\(184\) −19.2777 8.35955i −1.42117 0.616274i
\(185\) −1.89834 2.84107i −0.139569 0.208880i
\(186\) 9.80879 + 5.31232i 0.719215 + 0.389518i
\(187\) 0.210116 0.172438i 0.0153652 0.0126099i
\(188\) 0.0580992 5.29291i 0.00423732 0.386025i
\(189\) 1.16683 + 2.18299i 0.0848746 + 0.158789i
\(190\) 3.75225 2.47749i 0.272217 0.179736i
\(191\) 0.756233i 0.0547191i 0.999626 + 0.0273596i \(0.00870990\pi\)
−0.999626 + 0.0273596i \(0.991290\pi\)
\(192\) −6.01364 5.27599i −0.433997 0.380762i
\(193\) 11.5295i 0.829911i 0.909842 + 0.414956i \(0.136203\pi\)
−0.909842 + 0.414956i \(0.863797\pi\)
\(194\) 1.12420 + 1.70264i 0.0807130 + 0.122243i
\(195\) 0.562714 + 1.05276i 0.0402968 + 0.0753899i
\(196\) −1.24816 + 1.22106i −0.0891542 + 0.0872182i
\(197\) 18.2143 14.9481i 1.29771 1.06501i 0.304044 0.952658i \(-0.401663\pi\)
0.993669 0.112347i \(-0.0358369\pi\)
\(198\) 0.498935 0.921245i 0.0354578 0.0654700i
\(199\) −6.73463 10.0791i −0.477405 0.714488i 0.512109 0.858920i \(-0.328864\pi\)
−0.989515 + 0.144433i \(0.953864\pi\)
\(200\) 9.67304 9.35964i 0.683987 0.661827i
\(201\) −2.27782 1.52199i −0.160665 0.107353i
\(202\) −4.91124 + 15.8760i −0.345554 + 1.11703i
\(203\) −1.38883 4.57835i −0.0974765 0.321337i
\(204\) −0.650931 + 0.338797i −0.0455743 + 0.0237205i
\(205\) −1.57987 + 1.92508i −0.110343 + 0.134453i
\(206\) −4.73612 + 11.2588i −0.329981 + 0.784440i
\(207\) −2.84293 + 6.86345i −0.197598 + 0.477043i
\(208\) 0.740365 + 9.69445i 0.0513351 + 0.672189i
\(209\) 1.83537 + 4.43098i 0.126955 + 0.306497i
\(210\) 1.71912 + 0.00943491i 0.118630 + 0.000651071i
\(211\) −11.3205 + 1.11497i −0.779333 + 0.0767576i −0.479857 0.877346i \(-0.659312\pi\)
−0.299475 + 0.954104i \(0.596812\pi\)
\(212\) 2.19164 19.9992i 0.150523 1.37355i
\(213\) −1.14187 0.610341i −0.0782395 0.0418199i
\(214\) 0.138934 0.167409i 0.00949732 0.0114439i
\(215\) 0.619120 + 3.11253i 0.0422236 + 0.212272i
\(216\) −1.83009 + 2.15657i −0.124522 + 0.146736i
\(217\) −19.1491 3.80900i −1.29993 0.258572i
\(218\) 0.340513 3.27303i 0.0230624 0.221678i
\(219\) 0.807906 + 0.0795718i 0.0545933 + 0.00537697i
\(220\) −0.397591 0.609413i −0.0268056 0.0410866i
\(221\) 0.853437 + 0.258887i 0.0574084 + 0.0174146i
\(222\) −9.66089 + 1.86661i −0.648396 + 0.125279i
\(223\) 14.3472 14.3472i 0.960760 0.960760i −0.0384989 0.999259i \(-0.512258\pi\)
0.999259 + 0.0384989i \(0.0122576\pi\)
\(224\) 12.7845 + 5.71134i 0.854199 + 0.381605i
\(225\) −3.36499 3.36499i −0.224333 0.224333i
\(226\) 5.75647 + 3.89222i 0.382915 + 0.258906i
\(227\) 2.08908 6.88677i 0.138657 0.457091i −0.859919 0.510430i \(-0.829486\pi\)
0.998576 + 0.0533389i \(0.0169864\pi\)
\(228\) −2.38648 12.7261i −0.158049 0.842809i
\(229\) −1.03919 + 10.5511i −0.0686715 + 0.697233i 0.897790 + 0.440423i \(0.145172\pi\)
−0.966462 + 0.256810i \(0.917328\pi\)
\(230\) 3.25128 + 4.00634i 0.214383 + 0.264170i
\(231\) −0.357742 + 1.79849i −0.0235377 + 0.118332i
\(232\) 4.28255 3.39816i 0.281163 0.223100i
\(233\) 8.68924 1.72840i 0.569251 0.113231i 0.0979307 0.995193i \(-0.468778\pi\)
0.471320 + 0.881962i \(0.343778\pi\)
\(234\) 3.42273 0.318153i 0.223751 0.0207983i
\(235\) −0.612707 + 1.14629i −0.0399686 + 0.0747759i
\(236\) −22.0023 + 6.41146i −1.43223 + 0.417351i
\(237\) 0.875644 + 8.89056i 0.0568792 + 0.577504i
\(238\) 0.913174 0.903205i 0.0591923 0.0585461i
\(239\) 21.4321 8.87748i 1.38633 0.574236i 0.440163 0.897918i \(-0.354921\pi\)
0.946166 + 0.323682i \(0.104921\pi\)
\(240\) 0.711733 + 1.83095i 0.0459421 + 0.118188i
\(241\) 19.0558 + 7.89317i 1.22749 + 0.508444i 0.899784 0.436335i \(-0.143724\pi\)
0.327708 + 0.944779i \(0.393724\pi\)
\(242\) −13.6860 + 5.58111i −0.879767 + 0.358768i
\(243\) 0.773010 + 0.634393i 0.0495886 + 0.0406963i
\(244\) 0.0879433 + 1.00598i 0.00562999 + 0.0644016i
\(245\) 0.410299 0.124463i 0.0262130 0.00795163i
\(246\) 3.34580 + 6.34304i 0.213320 + 0.404418i
\(247\) −8.74252 + 13.0841i −0.556273 + 0.832522i
\(248\) −3.99161 21.9499i −0.253467 1.39382i
\(249\) 9.43138 6.30184i 0.597689 0.399363i
\(250\) −6.49663 + 1.93186i −0.410883 + 0.122181i
\(251\) 15.2723 + 18.6094i 0.963980 + 1.17461i 0.984599 + 0.174825i \(0.0559361\pi\)
−0.0206196 + 0.999787i \(0.506564\pi\)
\(252\) 1.94457 4.55263i 0.122497 0.286789i
\(253\) −4.85366 + 2.59434i −0.305147 + 0.163104i
\(254\) 24.6784 + 5.04980i 1.54846 + 0.316853i
\(255\) 0.180192 0.0112841
\(256\) −0.702260 + 15.9846i −0.0438913 + 0.999036i
\(257\) 9.65253 0.602109 0.301054 0.953607i \(-0.402661\pi\)
0.301054 + 0.953607i \(0.402661\pi\)
\(258\) 8.95307 + 1.83201i 0.557394 + 0.114056i
\(259\) 15.1884 8.11838i 0.943763 0.504452i
\(260\) 0.937785 2.19554i 0.0581590 0.136161i
\(261\) −1.22620 1.49413i −0.0758997 0.0924841i
\(262\) −13.2660 + 3.94482i −0.819576 + 0.243712i
\(263\) 19.4975 13.0278i 1.20227 0.803331i 0.217308 0.976103i \(-0.430272\pi\)
0.984962 + 0.172772i \(0.0552723\pi\)
\(264\) −2.06154 + 0.374893i −0.126879 + 0.0230731i
\(265\) −2.74466 + 4.10767i −0.168603 + 0.252332i
\(266\) 10.5732 + 20.0449i 0.648285 + 1.22903i
\(267\) 9.70508 2.94400i 0.593941 0.180170i
\(268\) 0.477156 + 5.45820i 0.0291470 + 0.333413i
\(269\) 0.943970 + 0.774696i 0.0575549 + 0.0472341i 0.662731 0.748858i \(-0.269397\pi\)
−0.605176 + 0.796092i \(0.706897\pi\)
\(270\) 0.643110 0.262259i 0.0391384 0.0159606i
\(271\) −27.3744 11.3388i −1.66288 0.688786i −0.664585 0.747213i \(-0.731392\pi\)
−0.998292 + 0.0584268i \(0.981392\pi\)
\(272\) 1.34327 + 0.591272i 0.0814478 + 0.0358511i
\(273\) −5.55857 + 2.30244i −0.336420 + 0.139350i
\(274\) 1.24989 1.23625i 0.0755087 0.0746844i
\(275\) −0.345552 3.50845i −0.0208376 0.211567i
\(276\) 14.2646 4.15670i 0.858628 0.250204i
\(277\) 3.31322 6.19860i 0.199072 0.372438i −0.762501 0.646987i \(-0.776029\pi\)
0.961573 + 0.274550i \(0.0885287\pi\)
\(278\) 29.8651 2.77605i 1.79119 0.166496i
\(279\) −7.73618 + 1.53882i −0.463153 + 0.0921269i
\(280\) −2.13717 2.69338i −0.127721 0.160960i
\(281\) −4.82980 + 24.2811i −0.288122 + 1.44849i 0.517310 + 0.855798i \(0.326933\pi\)
−0.805432 + 0.592688i \(0.798067\pi\)
\(282\) 2.35854 + 2.90627i 0.140449 + 0.173066i
\(283\) −1.93573 + 19.6538i −0.115067 + 1.16830i 0.748174 + 0.663503i \(0.230931\pi\)
−0.863241 + 0.504793i \(0.831569\pi\)
\(284\) 0.477280 + 2.54514i 0.0283213 + 0.151026i
\(285\) −0.922935 + 3.04251i −0.0546699 + 0.180223i
\(286\) 2.10959 + 1.42639i 0.124743 + 0.0843442i
\(287\) −8.87553 8.87553i −0.523906 0.523906i
\(288\) 5.65472 + 0.155209i 0.333208 + 0.00914581i
\(289\) −11.9256 + 11.9256i −0.701507 + 0.701507i
\(290\) −1.31805 + 0.254665i −0.0773988 + 0.0149545i
\(291\) −1.38059 0.418797i −0.0809315 0.0245503i
\(292\) −0.887169 1.35982i −0.0519176 0.0795774i
\(293\) −0.296358 0.0291888i −0.0173134 0.00170522i 0.0893567 0.996000i \(-0.471519\pi\)
−0.106670 + 0.994294i \(0.534019\pi\)
\(294\) 0.127762 1.22805i 0.00745121 0.0716215i
\(295\) 5.51931 + 1.09786i 0.321347 + 0.0639198i
\(296\) 15.0046 + 12.7331i 0.872123 + 0.740094i
\(297\) 0.144527 + 0.726585i 0.00838629 + 0.0421607i
\(298\) 19.4060 23.3834i 1.12416 1.35457i
\(299\) −15.9251 8.51215i −0.920973 0.492270i
\(300\) −1.03680 + 9.46099i −0.0598596 + 0.546231i
\(301\) −15.9180 + 1.56779i −0.917501 + 0.0903659i
\(302\) 7.04013 + 0.0386378i 0.405114 + 0.00222336i
\(303\) −4.49688 10.8564i −0.258339 0.623685i
\(304\) −16.8637 + 19.6524i −0.967198 + 1.12714i
\(305\) 0.0948919 0.229089i 0.00543350 0.0131176i
\(306\) 0.201199 0.478296i 0.0115018 0.0273423i
\(307\) 10.2266 12.4612i 0.583663 0.711196i −0.394532 0.918882i \(-0.629093\pi\)
0.978195 + 0.207687i \(0.0665934\pi\)
\(308\) 3.25319 1.69322i 0.185368 0.0964802i
\(309\) −2.50716 8.26500i −0.142627 0.470179i
\(310\) −1.61900 + 5.23357i −0.0919532 + 0.297247i
\(311\) 7.75890 + 5.18433i 0.439967 + 0.293977i 0.755757 0.654853i \(-0.227269\pi\)
−0.315790 + 0.948829i \(0.602269\pi\)
\(312\) −4.78064 4.94071i −0.270651 0.279713i
\(313\) −14.8489 22.2229i −0.839309 1.25611i −0.964527 0.263985i \(-0.914963\pi\)
0.125218 0.992129i \(-0.460037\pi\)
\(314\) −4.11451 + 7.59713i −0.232195 + 0.428731i
\(315\) −0.939686 + 0.771180i −0.0529453 + 0.0434511i
\(316\) 12.7719 12.4946i 0.718475 0.702874i
\(317\) −0.598309 1.11936i −0.0336044 0.0628693i 0.864559 0.502532i \(-0.167598\pi\)
−0.898163 + 0.439663i \(0.855098\pi\)
\(318\) 7.83863 + 11.8719i 0.439568 + 0.665741i
\(319\) 1.43191i 0.0801713i
\(320\) 1.96512 3.40208i 0.109853 0.190182i
\(321\) 0.153832i 0.00858605i
\(322\) −21.7017 + 14.3290i −1.20939 + 0.798522i
\(323\) 1.11975 + 2.09490i 0.0623043 + 0.116563i
\(324\) 0.0219523 1.99988i 0.00121957 0.111104i
\(325\) 8.94149 7.33809i 0.495985 0.407044i
\(326\) −9.28492 5.02860i −0.514244 0.278508i
\(327\) 1.29274 + 1.93472i 0.0714888 + 0.106990i
\(328\) 5.70615 13.1588i 0.315069 0.726574i
\(329\) −5.44703 3.63959i −0.300304 0.200657i
\(330\) 0.491538 + 0.152057i 0.0270583 + 0.00837048i
\(331\) −6.48114 21.3655i −0.356236 1.17435i −0.933736 0.357962i \(-0.883472\pi\)
0.577500 0.816390i \(-0.304028\pi\)
\(332\) −21.6356 6.82330i −1.18741 0.374477i
\(333\) 4.41387 5.37831i 0.241878 0.294730i
\(334\) 6.50882 + 2.73799i 0.356147 + 0.149816i
\(335\) 0.514858 1.24298i 0.0281297 0.0679111i
\(336\) −9.53554 + 2.66546i −0.520206 + 0.145413i
\(337\) −6.97957 16.8502i −0.380201 0.917887i −0.991926 0.126817i \(-0.959524\pi\)
0.611725 0.791071i \(-0.290476\pi\)
\(338\) 0.0550427 10.0292i 0.00299393 0.545519i
\(339\) −4.88991 + 0.481614i −0.265583 + 0.0261577i
\(340\) −0.225554 0.281074i −0.0122324 0.0152434i
\(341\) −5.15342 2.75456i −0.279073 0.149168i
\(342\) 7.04539 + 5.84701i 0.380971 + 0.316170i
\(343\) 3.80190 + 19.1135i 0.205283 + 1.03203i
\(344\) −8.34925 16.2587i −0.450161 0.876610i
\(345\) −3.57829 0.711767i −0.192649 0.0383202i
\(346\) −0.218203 0.0227009i −0.0117307 0.00122041i
\(347\) 30.7824 + 3.03180i 1.65248 + 0.162755i 0.880877 0.473344i \(-0.156953\pi\)
0.771607 + 0.636100i \(0.219453\pi\)
\(348\) −0.795737 + 3.78295i −0.0426560 + 0.202787i
\(349\) −29.5463 8.96279i −1.58158 0.479767i −0.627324 0.778759i \(-0.715850\pi\)
−0.954256 + 0.298992i \(0.903350\pi\)
\(350\) −3.16020 16.3560i −0.168920 0.874265i
\(351\) −1.71874 + 1.71874i −0.0917397 + 0.0917397i
\(352\) 3.16530 + 2.74644i 0.168711 + 0.146386i
\(353\) −1.61361 1.61361i −0.0858839 0.0858839i 0.662860 0.748744i \(-0.269343\pi\)
−0.748744 + 0.662860i \(0.769343\pi\)
\(354\) 9.07686 13.4244i 0.482430 0.713499i
\(355\) 0.184580 0.608480i 0.00979651 0.0322948i
\(356\) −16.7405 11.4534i −0.887243 0.607028i
\(357\) −0.0890195 + 0.903830i −0.00471141 + 0.0478358i
\(358\) −26.5866 + 21.5760i −1.40515 + 1.14033i
\(359\) −1.19192 + 5.99220i −0.0629073 + 0.316256i −0.999408 0.0344099i \(-0.989045\pi\)
0.936500 + 0.350666i \(0.114045\pi\)
\(360\) −1.21409 0.674877i −0.0639883 0.0355691i
\(361\) −22.4722 + 4.47001i −1.18275 + 0.235264i
\(362\) 2.43677 + 26.2151i 0.128074 + 1.37784i
\(363\) 4.92665 9.21712i 0.258582 0.483774i
\(364\) 10.5494 + 5.78851i 0.552936 + 0.303400i
\(365\) 0.0390782 + 0.396768i 0.00204545 + 0.0207678i
\(366\) −0.502132 0.507674i −0.0262469 0.0265365i
\(367\) −11.6008 + 4.80520i −0.605555 + 0.250829i −0.664327 0.747442i \(-0.731282\pi\)
0.0587715 + 0.998271i \(0.481282\pi\)
\(368\) −24.3394 17.0476i −1.26878 0.888666i
\(369\) −4.68493 1.94056i −0.243887 0.101022i
\(370\) −1.82470 4.47451i −0.0948616 0.232619i
\(371\) −19.2478 15.7963i −0.999298 0.820102i
\(372\) 12.0840 + 10.1411i 0.626528 + 0.525792i
\(373\) −13.9131 + 4.22048i −0.720391 + 0.218528i −0.629131 0.777299i \(-0.716589\pi\)
−0.0912596 + 0.995827i \(0.529089\pi\)
\(374\) 0.340004 0.179344i 0.0175812 0.00927365i
\(375\) 2.66263 3.98491i 0.137498 0.205780i
\(376\) 1.58108 7.31688i 0.0815378 0.377340i
\(377\) 3.90637 2.61016i 0.201189 0.134430i
\(378\) 0.997758 + 3.35535i 0.0513192 + 0.172581i
\(379\) −18.5506 22.6040i −0.952880 1.16109i −0.986846 0.161664i \(-0.948314\pi\)
0.0339662 0.999423i \(-0.489186\pi\)
\(380\) 5.90114 2.36879i 0.302722 0.121516i
\(381\) −15.7087 + 8.39646i −0.804780 + 0.430164i
\(382\) −0.214398 + 1.04776i −0.0109695 + 0.0536083i
\(383\) 22.5543 1.15247 0.576234 0.817284i \(-0.304522\pi\)
0.576234 + 0.817284i \(0.304522\pi\)
\(384\) −6.83615 9.01483i −0.348856 0.460036i
\(385\) −0.900554 −0.0458965
\(386\) −3.26870 + 15.9742i −0.166372 + 0.813064i
\(387\) −5.69893 + 3.04614i −0.289693 + 0.154844i
\(388\) 1.07488 + 2.67774i 0.0545686 + 0.135942i
\(389\) 1.17511 + 1.43188i 0.0595804 + 0.0725990i 0.801948 0.597394i \(-0.203797\pi\)
−0.742367 + 0.669993i \(0.766297\pi\)
\(390\) 0.481176 + 1.61814i 0.0243653 + 0.0819378i
\(391\) −2.26639 + 1.51435i −0.114616 + 0.0765841i
\(392\) −2.07551 + 1.33792i −0.104829 + 0.0675749i
\(393\) 5.43705 8.13712i 0.274263 0.410463i
\(394\) 29.4738 15.5467i 1.48487 0.783233i
\(395\) −4.19841 + 1.27358i −0.211245 + 0.0640805i
\(396\) 0.952457 1.13494i 0.0478628 0.0570327i
\(397\) 9.65882 + 7.92679i 0.484762 + 0.397834i 0.844782 0.535111i \(-0.179730\pi\)
−0.360020 + 0.932945i \(0.617230\pi\)
\(398\) −6.47337 15.8739i −0.324481 0.795689i
\(399\) −14.8050 6.13244i −0.741179 0.307006i
\(400\) 16.0556 10.2255i 0.802778 0.511273i
\(401\) −16.5526 + 6.85629i −0.826595 + 0.342387i −0.755554 0.655086i \(-0.772632\pi\)
−0.0710413 + 0.997473i \(0.522632\pi\)
\(402\) −2.72443 2.75450i −0.135882 0.137382i
\(403\) −1.87923 19.0802i −0.0936113 0.950451i
\(404\) −11.3055 + 20.6039i −0.562470 + 1.02508i
\(405\) −0.231506 + 0.433117i −0.0115036 + 0.0215217i
\(406\) −0.626230 6.73706i −0.0310793 0.334355i
\(407\) 5.05530 1.00556i 0.250582 0.0498439i
\(408\) −0.997920 + 0.284861i −0.0494044 + 0.0141027i
\(409\) −4.76127 + 23.9365i −0.235430 + 1.18358i 0.664412 + 0.747367i \(0.268682\pi\)
−0.899841 + 0.436218i \(0.856318\pi\)
\(410\) −2.73469 + 2.21930i −0.135057 + 0.109603i
\(411\) −0.121844 + 1.23710i −0.00601011 + 0.0610217i
\(412\) −9.75388 + 14.2564i −0.480539 + 0.702364i
\(413\) −8.23345 + 27.1421i −0.405142 + 1.33557i
\(414\) −5.88474 + 8.70335i −0.289219 + 0.427746i
\(415\) 3.93903 + 3.93903i 0.193359 + 0.193359i
\(416\) −1.72267 + 13.6416i −0.0844608 + 0.668834i
\(417\) −14.9969 + 14.9969i −0.734402 + 0.734402i
\(418\) 1.28670 + 6.65949i 0.0629346 + 0.325726i
\(419\) −1.54642 0.469103i −0.0755478 0.0229172i 0.252285 0.967653i \(-0.418818\pi\)
−0.327832 + 0.944736i \(0.606318\pi\)
\(420\) 2.37917 + 0.500455i 0.116092 + 0.0244197i
\(421\) −13.9875 1.37765i −0.681709 0.0671424i −0.248766 0.968564i \(-0.580025\pi\)
−0.432943 + 0.901421i \(0.642525\pi\)
\(422\) −16.0007 1.66464i −0.778900 0.0810335i
\(423\) −2.59576 0.516329i −0.126210 0.0251048i
\(424\) 8.70645 27.0876i 0.422823 1.31549i
\(425\) −0.340640 1.71251i −0.0165235 0.0830691i
\(426\) −1.40903 1.16936i −0.0682676 0.0566556i
\(427\) 1.10222 + 0.589146i 0.0533399 + 0.0285108i
\(428\) 0.239955 0.192558i 0.0115987 0.00930762i
\(429\) −1.79202 + 0.176498i −0.0865194 + 0.00852142i
\(430\) −0.0246309 + 4.48794i −0.00118781 + 0.216428i
\(431\) −1.96723 4.74932i −0.0947584 0.228767i 0.869392 0.494123i \(-0.164511\pi\)
−0.964151 + 0.265356i \(0.914511\pi\)
\(432\) −3.14700 + 2.46909i −0.151410 + 0.118794i
\(433\) 9.80140 23.6627i 0.471025 1.13716i −0.492686 0.870207i \(-0.663985\pi\)
0.963711 0.266948i \(-0.0860152\pi\)
\(434\) −25.4513 10.7063i −1.22170 0.513919i
\(435\) 0.602193 0.733774i 0.0288729 0.0351818i
\(436\) 1.39971 4.43826i 0.0670340 0.212554i
\(437\) −13.9612 46.0239i −0.667855 2.20162i
\(438\) 1.09680 + 0.339295i 0.0524071 + 0.0162121i
\(439\) −13.3181 8.89884i −0.635636 0.424719i 0.195565 0.980691i \(-0.437346\pi\)
−0.831201 + 0.555972i \(0.812346\pi\)
\(440\) −0.378091 0.957064i −0.0180248 0.0456263i
\(441\) 0.485042 + 0.725916i 0.0230972 + 0.0345674i
\(442\) 1.10904 + 0.600646i 0.0527519 + 0.0285698i
\(443\) 12.8752 10.5664i 0.611718 0.502024i −0.276763 0.960938i \(-0.589262\pi\)
0.888480 + 0.458915i \(0.151762\pi\)
\(444\) −13.9144 0.152735i −0.660348 0.00724850i
\(445\) 2.34788 + 4.39258i 0.111300 + 0.208228i
\(446\) 23.9457 15.8106i 1.13386 0.748653i
\(447\) 21.4869i 1.01630i
\(448\) 16.0937 + 11.5376i 0.760358 + 0.545100i
\(449\) 23.9091i 1.12834i 0.825659 + 0.564170i \(0.190804\pi\)
−0.825659 + 0.564170i \(0.809196\pi\)
\(450\) −3.70821 5.61621i −0.174807 0.264751i
\(451\) −1.77087 3.31306i −0.0833870 0.156006i
\(452\) 6.87215 + 7.02469i 0.323239 + 0.330414i
\(453\) −3.84820 + 3.15813i −0.180804 + 0.148382i
\(454\) 4.84688 8.94938i 0.227475 0.420015i
\(455\) −1.64158 2.45680i −0.0769584 0.115176i
\(456\) 0.301471 18.3087i 0.0141177 0.857384i
\(457\) 27.0954 + 18.1046i 1.26747 + 0.846896i 0.993387 0.114810i \(-0.0366259\pi\)
0.274082 + 0.961706i \(0.411626\pi\)
\(458\) −4.43110 + 14.3239i −0.207052 + 0.669313i
\(459\) 0.106509 + 0.351112i 0.00497140 + 0.0163885i
\(460\) 3.36884 + 6.47256i 0.157073 + 0.301785i
\(461\) 14.9424 18.2074i 0.695937 0.848002i −0.298382 0.954447i \(-0.596447\pi\)
0.994319 + 0.106445i \(0.0339468\pi\)
\(462\) −1.00554 + 2.39040i −0.0467820 + 0.111211i
\(463\) 9.70182 23.4223i 0.450882 1.08852i −0.521106 0.853492i \(-0.674480\pi\)
0.971988 0.235032i \(-0.0755196\pi\)
\(464\) 6.89690 3.49404i 0.320181 0.162207i
\(465\) −1.48241 3.57885i −0.0687450 0.165965i
\(466\) 12.5290 + 0.0687620i 0.580394 + 0.00318534i
\(467\) −34.8104 + 3.42852i −1.61083 + 0.158653i −0.862989 0.505222i \(-0.831411\pi\)
−0.747843 + 0.663875i \(0.768911\pi\)
\(468\) 4.83241 + 0.529567i 0.223378 + 0.0244793i
\(469\) 5.98032 + 3.19655i 0.276146 + 0.147603i
\(470\) −1.17389 + 1.41449i −0.0541475 + 0.0652455i
\(471\) −1.19185 5.99185i −0.0549177 0.276090i
\(472\) −32.3020 + 2.64529i −1.48682 + 0.121760i
\(473\) −4.69516 0.933925i −0.215884 0.0429419i
\(474\) −1.30733 + 12.5662i −0.0600477 + 0.577183i
\(475\) 30.6602 + 3.01976i 1.40678 + 0.138556i
\(476\) 1.52127 0.992504i 0.0697274 0.0454913i
\(477\) −9.62630 2.92011i −0.440758 0.133702i
\(478\) 32.2111 6.22362i 1.47330 0.284662i
\(479\) 11.1129 11.1129i 0.507759 0.507759i −0.406079 0.913838i \(-0.633104\pi\)
0.913838 + 0.406079i \(0.133104\pi\)
\(480\) 0.467019 + 2.73858i 0.0213164 + 0.124998i
\(481\) 11.9584 + 11.9584i 0.545254 + 0.545254i
\(482\) 24.1641 + 16.3385i 1.10065 + 0.744198i
\(483\) 5.33793 17.5968i 0.242884 0.800683i
\(484\) −20.5443 + 3.85259i −0.933830 + 0.175118i
\(485\) 0.0694474 0.705112i 0.00315345 0.0320175i
\(486\) 0.891154 + 1.09811i 0.0404236 + 0.0498112i
\(487\) −3.76330 + 18.9194i −0.170531 + 0.857318i 0.796886 + 0.604130i \(0.206479\pi\)
−0.967417 + 0.253188i \(0.918521\pi\)
\(488\) −0.163358 + 1.41873i −0.00739488 + 0.0642228i
\(489\) 7.32301 1.45664i 0.331158 0.0658714i
\(490\) 0.603757 0.0561210i 0.0272749 0.00253529i
\(491\) −11.1184 + 20.8011i −0.501766 + 0.938739i 0.495761 + 0.868459i \(0.334889\pi\)
−0.997527 + 0.0702798i \(0.977611\pi\)
\(492\) 2.83732 + 9.73688i 0.127916 + 0.438972i
\(493\) −0.0695128 0.705775i −0.00313070 0.0317865i
\(494\) −15.8222 + 15.6495i −0.711876 + 0.704105i
\(495\) −0.336127 + 0.139228i −0.0151078 + 0.00625784i
\(496\) 0.692573 31.5434i 0.0310975 1.41634i
\(497\) 2.96090 + 1.22644i 0.132814 + 0.0550136i
\(498\) 14.8538 6.05737i 0.665616 0.271437i
\(499\) 17.5280 + 14.3849i 0.784663 + 0.643956i 0.938944 0.344071i \(-0.111806\pi\)
−0.154281 + 0.988027i \(0.549306\pi\)
\(500\) −9.54880 + 0.834757i −0.427036 + 0.0373315i
\(501\) −4.77806 + 1.44941i −0.213468 + 0.0647548i
\(502\) 15.8840 + 30.1132i 0.708936 + 1.34402i
\(503\) −2.72838 + 4.08331i −0.121653 + 0.182066i −0.887298 0.461197i \(-0.847420\pi\)
0.765645 + 0.643263i \(0.222420\pi\)
\(504\) 3.98492 5.75639i 0.177503 0.256410i
\(505\) 4.79836 3.20616i 0.213524 0.142672i
\(506\) −7.46028 + 2.21842i −0.331650 + 0.0986206i
\(507\) 4.49902 + 5.48207i 0.199809 + 0.243467i
\(508\) 32.7604 + 13.9930i 1.45351 + 0.620841i
\(509\) −5.21574 + 2.78787i −0.231184 + 0.123570i −0.582922 0.812528i \(-0.698091\pi\)
0.351738 + 0.936098i \(0.385591\pi\)
\(510\) 0.249657 + 0.0510858i 0.0110550 + 0.00226212i
\(511\) −2.00946 −0.0888933
\(512\) −5.50473 + 21.9476i −0.243277 + 0.969957i
\(513\) −6.47399 −0.285834
\(514\) 13.3736 + 2.73657i 0.589886 + 0.120705i
\(515\) 3.74079 1.99949i 0.164839 0.0881081i
\(516\) 11.8851 + 5.07652i 0.523214 + 0.223482i
\(517\) −1.24383 1.51561i −0.0547037 0.0666567i
\(518\) 23.3453 6.94202i 1.02573 0.305015i
\(519\) 0.128982 0.0861831i 0.00566169 0.00378302i
\(520\) 1.92176 2.77606i 0.0842746 0.121738i
\(521\) 19.6734 29.4434i 0.861909 1.28994i −0.0937906 0.995592i \(-0.529898\pi\)
0.955699 0.294345i \(-0.0951016\pi\)
\(522\) −1.27531 2.41775i −0.0558186 0.105822i
\(523\) 2.74840 0.833718i 0.120179 0.0364560i −0.229622 0.973280i \(-0.573749\pi\)
0.349801 + 0.936824i \(0.386249\pi\)
\(524\) −19.4985 + 1.70456i −0.851796 + 0.0744641i
\(525\) 9.10555 + 7.47273i 0.397399 + 0.326137i
\(526\) 30.7074 12.5224i 1.33891 0.546004i
\(527\) −2.67380 1.10752i −0.116473 0.0482445i
\(528\) −2.96257 0.0650467i −0.128929 0.00283080i
\(529\) 29.7389 12.3183i 1.29300 0.535577i
\(530\) −4.96729 + 4.91307i −0.215765 + 0.213410i
\(531\) 1.12315 + 11.4035i 0.0487406 + 0.494871i
\(532\) 8.96634 + 30.7699i 0.388740 + 1.33405i
\(533\) 5.81032 10.8703i 0.251673 0.470846i
\(534\) 14.2811 1.32747i 0.618003 0.0574452i
\(535\) −0.0740961 + 0.0147386i −0.00320345 + 0.000637206i
\(536\) −0.886338 + 7.69764i −0.0382840 + 0.332487i
\(537\) 4.72339 23.7461i 0.203829 1.02472i
\(538\) 1.08824 + 1.34097i 0.0469175 + 0.0578132i
\(539\) −0.0633949 + 0.643660i −0.00273061 + 0.0277244i
\(540\) 0.965384 0.181035i 0.0415435 0.00779049i
\(541\) −11.7557 + 38.7535i −0.505419 + 1.66614i 0.218169 + 0.975911i \(0.429992\pi\)
−0.723588 + 0.690232i \(0.757508\pi\)
\(542\) −34.7127 23.4709i −1.49104 1.00816i
\(543\) −13.1641 13.1641i −0.564924 0.564924i
\(544\) 1.69348 + 1.20004i 0.0726073 + 0.0514512i
\(545\) −0.808040 + 0.808040i −0.0346126 + 0.0346126i
\(546\) −8.35419 + 1.61414i −0.357526 + 0.0690788i
\(547\) 27.6135 + 8.37647i 1.18067 + 0.358152i 0.818801 0.574077i \(-0.194639\pi\)
0.361868 + 0.932229i \(0.382139\pi\)
\(548\) 2.08221 1.35847i 0.0889478 0.0580310i
\(549\) 0.502479 + 0.0494899i 0.0214453 + 0.00211218i
\(550\) 0.515908 4.95894i 0.0219984 0.211450i
\(551\) 12.2729 + 2.44123i 0.522844 + 0.104000i
\(552\) 20.9421 1.71500i 0.891356 0.0729954i
\(553\) −4.31403 21.6881i −0.183451 0.922272i
\(554\) 6.34783 7.64886i 0.269693 0.324969i
\(555\) 3.01346 + 1.61073i 0.127914 + 0.0683716i
\(556\) 42.1652 + 4.62075i 1.78820 + 0.195963i
\(557\) −39.1922 + 3.86009i −1.66063 + 0.163557i −0.884346 0.466832i \(-0.845395\pi\)
−0.776280 + 0.630389i \(0.782895\pi\)
\(558\) −11.1548 0.0612200i −0.472220 0.00259165i
\(559\) −6.01076 14.5113i −0.254228 0.613761i
\(560\) −2.19747 4.33760i −0.0928600 0.183297i
\(561\) −0.104019 + 0.251124i −0.00439169 + 0.0106025i
\(562\) −13.5756 + 32.2722i −0.572651 + 1.36132i
\(563\) 24.3271 29.6426i 1.02526 1.24929i 0.0572586 0.998359i \(-0.481764\pi\)
0.968006 0.250929i \(-0.0807359\pi\)
\(564\) 2.44382 + 4.69532i 0.102904 + 0.197709i
\(565\) −0.700481 2.30918i −0.0294694 0.0971478i
\(566\) −8.25395 + 26.6816i −0.346939 + 1.12151i
\(567\) −2.05811 1.37518i −0.0864325 0.0577523i
\(568\) −0.0602921 + 3.66161i −0.00252980 + 0.153638i
\(569\) 16.7260 + 25.0322i 0.701188 + 1.04940i 0.995598 + 0.0937233i \(0.0298769\pi\)
−0.294410 + 0.955679i \(0.595123\pi\)
\(570\) −2.14130 + 3.95375i −0.0896894 + 0.165604i
\(571\) −22.3838 + 18.3699i −0.936734 + 0.768758i −0.973053 0.230582i \(-0.925937\pi\)
0.0363185 + 0.999340i \(0.488437\pi\)
\(572\) 2.51845 + 2.57435i 0.105302 + 0.107639i
\(573\) −0.356486 0.666938i −0.0148924 0.0278617i
\(574\) −9.78081 14.8134i −0.408243 0.618298i
\(575\) 35.3530i 1.47432i
\(576\) 7.79064 + 1.81820i 0.324610 + 0.0757583i
\(577\) 0.995066i 0.0414251i −0.999785 0.0207126i \(-0.993407\pi\)
0.999785 0.0207126i \(-0.00659349\pi\)
\(578\) −19.9040 + 13.1420i −0.827898 + 0.546635i
\(579\) −5.43497 10.1681i −0.225869 0.422572i
\(580\) −1.89837 0.0208380i −0.0788255 0.000865251i
\(581\) −21.7038 + 17.8119i −0.900426 + 0.738961i
\(582\) −1.79408 0.971652i −0.0743669 0.0402763i
\(583\) −4.14024 6.19631i −0.171471 0.256625i
\(584\) −0.843658 2.13556i −0.0349108 0.0883699i
\(585\) −0.992538 0.663193i −0.0410364 0.0274197i
\(586\) −0.402331 0.124461i −0.0166201 0.00514144i
\(587\) −0.436117 1.43769i −0.0180005 0.0593397i 0.947480 0.319815i \(-0.103621\pi\)
−0.965481 + 0.260475i \(0.916121\pi\)
\(588\) 0.525177 1.66525i 0.0216579 0.0686739i
\(589\) 32.3954 39.4739i 1.33483 1.62649i
\(590\) 7.33578 + 3.08586i 0.302009 + 0.127043i
\(591\) −9.01708 + 21.7692i −0.370913 + 0.895463i
\(592\) 17.1790 + 21.8956i 0.706052 + 0.899905i
\(593\) 18.0032 + 43.4635i 0.739302 + 1.78483i 0.608703 + 0.793398i \(0.291690\pi\)
0.130599 + 0.991435i \(0.458310\pi\)
\(594\) −0.00574981 + 1.04766i −0.000235917 + 0.0429861i
\(595\) −0.443876 + 0.0437180i −0.0181972 + 0.00179226i
\(596\) 33.5165 26.8961i 1.37289 1.10171i
\(597\) 10.6907 + 5.71428i 0.437540 + 0.233870i
\(598\) −19.6511 16.3085i −0.803592 0.666905i
\(599\) 8.43163 + 42.3886i 0.344507 + 1.73195i 0.632715 + 0.774385i \(0.281941\pi\)
−0.288208 + 0.957568i \(0.593059\pi\)
\(600\) −4.11875 + 12.8143i −0.168147 + 0.523142i
\(601\) −15.9170 3.16609i −0.649268 0.129147i −0.140540 0.990075i \(-0.544884\pi\)
−0.508728 + 0.860928i \(0.669884\pi\)
\(602\) −22.4990 2.34070i −0.916991 0.0954000i
\(603\) 2.72632 + 0.268519i 0.111024 + 0.0109349i
\(604\) 9.74317 + 2.04946i 0.396444 + 0.0833914i
\(605\) 4.91163 + 1.48993i 0.199686 + 0.0605741i
\(606\) −3.15257 16.3165i −0.128064 0.662814i
\(607\) 6.88231 6.88231i 0.279344 0.279344i −0.553503 0.832847i \(-0.686709\pi\)
0.832847 + 0.553503i \(0.186709\pi\)
\(608\) −28.9363 + 22.4475i −1.17352 + 0.910367i
\(609\) 3.38305 + 3.38305i 0.137088 + 0.137088i
\(610\) 0.196422 0.290502i 0.00795288 0.0117621i
\(611\) 1.86741 6.15604i 0.0755475 0.249047i
\(612\) 0.414362 0.605639i 0.0167496 0.0244815i
\(613\) −2.79093 + 28.3368i −0.112725 + 1.14451i 0.757834 + 0.652447i \(0.226258\pi\)
−0.870559 + 0.492065i \(0.836242\pi\)
\(614\) 17.7018 14.3657i 0.714388 0.579751i
\(615\) 0.485845 2.44251i 0.0195912 0.0984915i
\(616\) 4.98735 1.42366i 0.200946 0.0573610i
\(617\) 32.9808 6.56030i 1.32776 0.264108i 0.520276 0.853998i \(-0.325829\pi\)
0.807483 + 0.589891i \(0.200829\pi\)
\(618\) −1.13049 12.1620i −0.0454751 0.489227i
\(619\) 10.2936 19.2580i 0.413735 0.774043i −0.585597 0.810603i \(-0.699140\pi\)
0.999331 + 0.0365593i \(0.0116398\pi\)
\(620\) −3.72689 + 6.79213i −0.149676 + 0.272779i
\(621\) −0.728164 7.39317i −0.0292202 0.296678i
\(622\) 9.28020 + 9.38262i 0.372102 + 0.376209i
\(623\) −23.1927 + 9.60674i −0.929197 + 0.384886i
\(624\) −5.22287 8.20073i −0.209082 0.328292i
\(625\) −19.8083 8.20488i −0.792334 0.328195i
\(626\) −14.2728 34.9998i −0.570457 1.39887i
\(627\) −3.70740 3.04259i −0.148059 0.121509i
\(628\) −7.85452 + 9.35936i −0.313429 + 0.373479i
\(629\) 2.44290 0.741047i 0.0974050 0.0295475i
\(630\) −1.52057 + 0.802066i −0.0605811 + 0.0319551i
\(631\) −20.2363 + 30.2857i −0.805594 + 1.20566i 0.169863 + 0.985468i \(0.445667\pi\)
−0.975457 + 0.220189i \(0.929333\pi\)
\(632\) 21.2378 13.6903i 0.844795 0.544572i
\(633\) 9.45816 6.31974i 0.375928 0.251187i
\(634\) −0.511613 1.72050i −0.0203188 0.0683297i
\(635\) −5.54937 6.76192i −0.220220 0.268339i
\(636\) 7.49469 + 18.6708i 0.297184 + 0.740347i
\(637\) −1.87152 + 1.00035i −0.0741525 + 0.0396353i
\(638\) 0.405956 1.98391i 0.0160719 0.0785438i
\(639\) 1.29475 0.0512195
\(640\) 3.68720 4.15647i 0.145749 0.164299i
\(641\) 14.5334 0.574033 0.287017 0.957926i \(-0.407336\pi\)
0.287017 + 0.957926i \(0.407336\pi\)
\(642\) −0.0436125 + 0.213135i −0.00172125 + 0.00841176i
\(643\) 22.2473 11.8914i 0.877348 0.468952i 0.0297292 0.999558i \(-0.490535\pi\)
0.847619 + 0.530606i \(0.178035\pi\)
\(644\) −34.1302 + 13.7002i −1.34492 + 0.539865i
\(645\) −2.01325 2.45315i −0.0792716 0.0965927i
\(646\) 0.957494 + 3.21995i 0.0376721 + 0.126687i
\(647\) 30.5640 20.4222i 1.20160 0.802880i 0.216735 0.976230i \(-0.430459\pi\)
0.984860 + 0.173350i \(0.0554593\pi\)
\(648\) 0.597396 2.76462i 0.0234679 0.108604i
\(649\) −4.71615 + 7.05821i −0.185125 + 0.277059i
\(650\) 14.4689 7.63198i 0.567516 0.299351i
\(651\) 18.6836 5.66760i 0.732267 0.222131i
\(652\) −11.4387 9.59949i −0.447972 0.375945i
\(653\) −8.82768 7.24469i −0.345454 0.283507i 0.445626 0.895219i \(-0.352981\pi\)
−0.791080 + 0.611712i \(0.790481\pi\)
\(654\) 1.24259 + 3.04707i 0.0485891 + 0.119150i
\(655\) 4.44032 + 1.83924i 0.173498 + 0.0718652i
\(656\) 11.6365 16.6139i 0.454330 0.648662i
\(657\) −0.750020 + 0.310668i −0.0292611 + 0.0121203i
\(658\) −6.51503 6.58694i −0.253982 0.256786i
\(659\) 0.266457 + 2.70538i 0.0103797 + 0.105387i 0.998979 0.0451863i \(-0.0143881\pi\)
−0.988599 + 0.150573i \(0.951888\pi\)
\(660\) 0.637919 + 0.350031i 0.0248310 + 0.0136249i
\(661\) 4.47772 8.37722i 0.174163 0.325836i −0.779661 0.626202i \(-0.784609\pi\)
0.953824 + 0.300366i \(0.0971087\pi\)
\(662\) −2.92239 31.4394i −0.113582 1.22193i
\(663\) −0.874703 + 0.173989i −0.0339707 + 0.00675718i
\(664\) −28.0418 15.5876i −1.08823 0.604915i
\(665\) 1.53534 7.71868i 0.0595380 0.299318i
\(666\) 7.64023 6.20031i 0.296053 0.240257i
\(667\) −1.40744 + 14.2900i −0.0544964 + 0.553311i
\(668\) 8.24176 + 5.63879i 0.318883 + 0.218171i
\(669\) −5.88988 + 19.4163i −0.227716 + 0.750679i
\(670\) 1.06573 1.57618i 0.0411728 0.0608933i
\(671\) 0.264492 + 0.264492i 0.0102106 + 0.0102106i
\(672\) −13.9672 + 0.989606i −0.538797 + 0.0381749i
\(673\) 29.4051 29.4051i 1.13348 1.13348i 0.143889 0.989594i \(-0.454039\pi\)
0.989594 0.143889i \(-0.0459609\pi\)
\(674\) −4.89308 25.3247i −0.188474 0.975473i
\(675\) 4.55390 + 1.38141i 0.175280 + 0.0531705i
\(676\) 2.91963 13.8800i 0.112293 0.533844i
\(677\) 13.8641 + 1.36550i 0.532842 + 0.0524803i 0.360860 0.932620i \(-0.382483\pi\)
0.171981 + 0.985100i \(0.444983\pi\)
\(678\) −6.91153 0.719047i −0.265436 0.0276148i
\(679\) 3.50248 + 0.696686i 0.134413 + 0.0267363i
\(680\) −0.232820 0.453375i −0.00892823 0.0173861i
\(681\) 1.40400 + 7.05837i 0.0538013 + 0.270477i
\(682\) −6.35915 5.27749i −0.243504 0.202085i
\(683\) −9.89117 5.28694i −0.378475 0.202299i 0.271179 0.962529i \(-0.412586\pi\)
−0.649654 + 0.760230i \(0.725086\pi\)
\(684\) 8.10375 + 10.0985i 0.309855 + 0.386125i
\(685\) −0.607548 + 0.0598382i −0.0232132 + 0.00228630i
\(686\) −0.151254 + 27.5596i −0.00577489 + 1.05223i
\(687\) −4.05725 9.79507i −0.154794 0.373705i
\(688\) −6.95847 24.8936i −0.265289 0.949058i
\(689\) 9.35707 22.5900i 0.356476 0.860609i
\(690\) −4.75595 2.00063i −0.181056 0.0761627i
\(691\) −16.0668 + 19.5774i −0.611208 + 0.744760i −0.983010 0.183553i \(-0.941240\pi\)
0.371802 + 0.928312i \(0.378740\pi\)
\(692\) −0.295885 0.0933144i −0.0112479 0.00354728i
\(693\) −0.532303 1.75477i −0.0202205 0.0666581i
\(694\) 41.7896 + 12.9276i 1.58631 + 0.490725i
\(695\) −8.66041 5.78670i −0.328508 0.219502i
\(696\) −2.17499 + 5.01569i −0.0824428 + 0.190119i
\(697\) −1.03368 1.54702i −0.0391535 0.0585974i
\(698\) −38.3956 20.7946i −1.45329 0.787087i
\(699\) −6.84846 + 5.62039i −0.259033 + 0.212583i
\(700\) 0.258583 23.5573i 0.00977352 0.890381i
\(701\) −12.4828 23.3536i −0.471468 0.882054i −0.999462 0.0328060i \(-0.989556\pi\)
0.527994 0.849248i \(-0.322944\pi\)
\(702\) −2.86860 + 1.89405i −0.108268 + 0.0714863i
\(703\) 45.0435i 1.69885i
\(704\) 3.60690 + 4.70259i 0.135940 + 0.177236i
\(705\) 1.29977i 0.0489521i
\(706\) −1.77820 2.69314i −0.0669233 0.101358i
\(707\) 13.7114 + 25.6521i 0.515668 + 0.964748i
\(708\) 16.3820 16.0262i 0.615672 0.602302i
\(709\) 27.1986 22.3213i 1.02147 0.838295i 0.0345291 0.999404i \(-0.489007\pi\)
0.986937 + 0.161108i \(0.0515069\pi\)
\(710\) 0.428245 0.790722i 0.0160718 0.0296753i
\(711\) −4.96323 7.42800i −0.186136 0.278572i
\(712\) −19.9469 20.6148i −0.747541 0.772571i
\(713\) 48.7221 + 32.5551i 1.82466 + 1.21920i
\(714\) −0.379580 + 1.22702i −0.0142054 + 0.0459202i
\(715\) −0.256707 0.846249i −0.00960029 0.0316479i
\(716\) −42.9529 + 22.3561i −1.60522 + 0.835488i
\(717\) −14.7166 + 17.9323i −0.549603 + 0.669693i
\(718\) −3.35025 + 7.96431i −0.125030 + 0.297225i
\(719\) −15.8309 + 38.2191i −0.590391 + 1.42533i 0.292734 + 0.956194i \(0.405435\pi\)
−0.883125 + 0.469137i \(0.844565\pi\)
\(720\) −1.49080 1.27925i −0.0555588 0.0476748i
\(721\) 8.18125 + 19.7513i 0.304686 + 0.735576i
\(722\) −32.4027 0.177833i −1.20590 0.00661827i
\(723\) −20.5265 + 2.02169i −0.763390 + 0.0751873i
\(724\) −4.05602 + 37.0120i −0.150741 + 1.37554i
\(725\) −8.11205 4.33598i −0.301274 0.161034i
\(726\) 9.43903 11.3736i 0.350315 0.422115i
\(727\) 6.93358 + 34.8574i 0.257152 + 1.29279i 0.866216 + 0.499670i \(0.166545\pi\)
−0.609064 + 0.793121i \(0.708455\pi\)
\(728\) 12.9751 + 11.0108i 0.480889 + 0.408088i
\(729\) −0.980785 0.195090i −0.0363254 0.00722557i
\(730\) −0.0583436 + 0.560802i −0.00215939 + 0.0207562i
\(731\) −2.35955 0.232395i −0.0872710 0.00859544i
\(732\) −0.551777 0.845743i −0.0203943 0.0312596i
\(733\) −15.0990 4.58023i −0.557694 0.169175i −0.00115966 0.999999i \(-0.500369\pi\)
−0.556534 + 0.830825i \(0.687869\pi\)
\(734\) −17.4352 + 3.36872i −0.643546 + 0.124342i
\(735\) −0.303180 + 0.303180i −0.0111830 + 0.0111830i
\(736\) −28.8893 30.5199i −1.06487 1.12498i
\(737\) 1.43506 + 1.43506i 0.0528611 + 0.0528611i
\(738\) −5.94082 4.01687i −0.218685 0.147863i
\(739\) 0.216045 0.712206i 0.00794735 0.0261989i −0.952877 0.303357i \(-0.901893\pi\)
0.960824 + 0.277158i \(0.0893926\pi\)
\(740\) −1.25957 6.71678i −0.0463027 0.246914i
\(741\) 1.54241 15.6603i 0.0566618 0.575297i
\(742\) −22.1896 27.3427i −0.814606 1.00378i
\(743\) 3.16656 15.9194i 0.116170 0.584025i −0.878221 0.478255i \(-0.841269\pi\)
0.994391 0.105770i \(-0.0337306\pi\)
\(744\) 13.8674 + 17.4765i 0.508404 + 0.640719i
\(745\) −10.3496 + 2.05866i −0.379180 + 0.0754236i
\(746\) −20.4732 + 1.90304i −0.749575 + 0.0696752i
\(747\) −5.34706 + 10.0037i −0.195639 + 0.366014i
\(748\) 0.521922 0.152088i 0.0190834 0.00556089i
\(749\) −0.0373225 0.378941i −0.00136373 0.0138462i
\(750\) 4.81884 4.76624i 0.175959 0.174038i
\(751\) 24.9381 10.3297i 0.910004 0.376936i 0.121946 0.992537i \(-0.461087\pi\)
0.788058 + 0.615601i \(0.211087\pi\)
\(752\) 4.26498 9.68933i 0.155528 0.353334i
\(753\) −22.2414 9.21268i −0.810521 0.335729i
\(754\) 6.15230 2.50890i 0.224054 0.0913687i
\(755\) −1.88987 1.55098i −0.0687795 0.0564459i
\(756\) 0.431132 + 4.93173i 0.0156801 + 0.179365i
\(757\) −23.1385 + 7.01899i −0.840984 + 0.255110i −0.681250 0.732051i \(-0.738563\pi\)
−0.159733 + 0.987160i \(0.551063\pi\)
\(758\) −19.2935 36.5771i −0.700773 1.32854i
\(759\) 3.05758 4.57600i 0.110983 0.166098i
\(760\) 8.84763 1.60895i 0.320937 0.0583627i
\(761\) 2.15070 1.43705i 0.0779628 0.0520931i −0.515978 0.856602i \(-0.672571\pi\)
0.593941 + 0.804509i \(0.297571\pi\)
\(762\) −24.1449 + 7.17981i −0.874677 + 0.260097i
\(763\) −3.65387 4.45226i −0.132279 0.161182i
\(764\) −0.594098 + 1.39090i −0.0214937 + 0.0503210i
\(765\) −0.158915 + 0.0849420i −0.00574560 + 0.00307109i
\(766\) 31.2490 + 6.39430i 1.12907 + 0.231036i
\(767\) −27.8523 −1.00569
\(768\) −6.91574 14.4282i −0.249550 0.520632i
\(769\) 53.4795 1.92852 0.964261 0.264956i \(-0.0853573\pi\)
0.964261 + 0.264956i \(0.0853573\pi\)
\(770\) −1.24772 0.255314i −0.0449648 0.00920087i
\(771\) −8.51278 + 4.55017i −0.306580 + 0.163870i
\(772\) −9.05759 + 21.2056i −0.325990 + 0.763206i
\(773\) 22.4262