Newspace parameters
comment: Compute space of new eigenforms
[N,k,chi] = [384,2,Mod(13,384)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(384, base_ring=CyclotomicField(32))
chi = DirichletCharacter(H, H._module([0, 15, 0]))
N = Newforms(chi, 2, names="a")
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("384.13");
S:= CuspForms(chi, 2);
N := Newforms(S);
Level: | \( N \) | \(=\) | \( 384 = 2^{7} \cdot 3 \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 384.v (of order \(32\), degree \(16\), minimal) |
Newform invariants
comment: select newform
sage: f = N[0] # Warning: the index may be different
gp: f = lf[1] \\ Warning: the index may be different
Self dual: | no |
Analytic conductor: | \(3.06625543762\) |
Analytic rank: | \(0\) |
Dimension: | \(512\) |
Relative dimension: | \(32\) over \(\Q(\zeta_{32})\) |
Twist minimal: | yes |
Sato-Tate group: | $\mathrm{SU}(2)[C_{32}]$ |
$q$-expansion
The algebraic \(q\)-expansion of this newform has not been computed, but we have computed the trace expansion.
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
comment: embeddings in the coefficient field
gp: mfembed(f)
Label | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | ||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
13.1 | −1.40051 | − | 0.196427i | 0.290285 | + | 0.956940i | 1.92283 | + | 0.550195i | 0.0502132 | + | 0.509823i | −0.218576 | − | 1.39722i | −1.66106 | + | 2.48595i | −2.58487 | − | 1.14825i | −0.831470 | + | 0.555570i | 0.0298193 | − | 0.723874i |
13.2 | −1.39658 | − | 0.222610i | −0.290285 | − | 0.956940i | 1.90089 | + | 0.621788i | 0.0409738 | + | 0.416014i | 0.192382 | + | 1.40107i | −0.338624 | + | 0.506787i | −2.51633 | − | 1.29154i | −0.831470 | + | 0.555570i | 0.0353857 | − | 0.590120i |
13.3 | −1.34449 | + | 0.438569i | −0.290285 | − | 0.956940i | 1.61531 | − | 1.17931i | 0.414961 | + | 4.21317i | 0.809970 | + | 1.15929i | −0.841223 | + | 1.25898i | −1.65457 | + | 2.29399i | −0.831470 | + | 0.555570i | −2.40568 | − | 5.48258i |
13.4 | −1.30780 | − | 0.538203i | 0.290285 | + | 0.956940i | 1.42068 | + | 1.40772i | 0.403677 | + | 4.09860i | 0.135394 | − | 1.40772i | 2.40587 | − | 3.60064i | −1.10032 | − | 2.60563i | −0.831470 | + | 0.555570i | 1.67795 | − | 5.57741i |
13.5 | −1.26580 | + | 0.630679i | 0.290285 | + | 0.956940i | 1.20449 | − | 1.59662i | −0.0580215 | − | 0.589102i | −0.970964 | − | 1.02822i | 0.672130 | − | 1.00591i | −0.517679 | + | 2.78065i | −0.831470 | + | 0.555570i | 0.444978 | + | 0.709091i |
13.6 | −1.21456 | + | 0.724467i | −0.290285 | − | 0.956940i | 0.950294 | − | 1.75981i | −0.290371 | − | 2.94818i | 1.04584 | + | 0.951956i | 1.76246 | − | 2.63771i | 0.120741 | + | 2.82585i | −0.831470 | + | 0.555570i | 2.48853 | + | 3.37037i |
13.7 | −1.06403 | − | 0.931580i | 0.290285 | + | 0.956940i | 0.264317 | + | 1.98246i | −0.231940 | − | 2.35493i | 0.582595 | − | 1.28864i | 0.430118 | − | 0.643717i | 1.56558 | − | 2.35563i | −0.831470 | + | 0.555570i | −1.94701 | + | 2.72179i |
13.8 | −1.06073 | − | 0.935332i | −0.290285 | − | 0.956940i | 0.250309 | + | 1.98427i | −0.385901 | − | 3.91812i | −0.587142 | + | 1.28657i | −2.38112 | + | 3.56360i | 1.59044 | − | 2.33891i | −0.831470 | + | 0.555570i | −3.25540 | + | 4.51703i |
13.9 | −0.922626 | + | 1.07180i | −0.290285 | − | 0.956940i | −0.297523 | − | 1.97775i | −0.0692954 | − | 0.703568i | 1.29348 | + | 0.571770i | −2.09840 | + | 3.14048i | 2.39426 | + | 1.50583i | −0.831470 | + | 0.555570i | 0.818020 | + | 0.574859i |
13.10 | −0.870630 | + | 1.11445i | 0.290285 | + | 0.956940i | −0.484007 | − | 1.94055i | −0.328555 | − | 3.33588i | −1.31919 | − | 0.509633i | −1.53196 | + | 2.29274i | 2.58404 | + | 1.15010i | −0.831470 | + | 0.555570i | 4.00372 | + | 2.53816i |
13.11 | −0.612256 | − | 1.27481i | −0.290285 | − | 0.956940i | −1.25028 | + | 1.56102i | 0.189500 | + | 1.92402i | −1.04219 | + | 0.955951i | 0.476963 | − | 0.713825i | 2.75550 | + | 0.638130i | −0.831470 | + | 0.555570i | 2.33674 | − | 1.41957i |
13.12 | −0.607361 | + | 1.27715i | −0.290285 | − | 0.956940i | −1.26223 | − | 1.55138i | 0.269039 | + | 2.73160i | 1.39846 | + | 0.210471i | 0.857384 | − | 1.28317i | 2.74797 | − | 0.669804i | −0.831470 | + | 0.555570i | −3.65206 | − | 1.31546i |
13.13 | −0.542361 | − | 1.30608i | 0.290285 | + | 0.956940i | −1.41169 | + | 1.41673i | 0.155407 | + | 1.57788i | 1.09240 | − | 0.898142i | 0.0321569 | − | 0.0481261i | 2.61601 | + | 1.07540i | −0.831470 | + | 0.555570i | 1.97655 | − | 1.05875i |
13.14 | −0.283082 | + | 1.38559i | 0.290285 | + | 0.956940i | −1.83973 | − | 0.784471i | −0.166665 | − | 1.69218i | −1.40810 | + | 0.131324i | 1.76235 | − | 2.63755i | 1.60775 | − | 2.32704i | −0.831470 | + | 0.555570i | 2.39185 | + | 0.248095i |
13.15 | −0.229611 | − | 1.39545i | 0.290285 | + | 0.956940i | −1.89456 | + | 0.640821i | −0.159671 | − | 1.62116i | 1.26871 | − | 0.624802i | −2.66520 | + | 3.98875i | 1.32924 | + | 2.49662i | −0.831470 | + | 0.555570i | −2.22559 | + | 0.595050i |
13.16 | −0.162120 | − | 1.40489i | −0.290285 | − | 0.956940i | −1.94743 | + | 0.455521i | −0.344842 | − | 3.50124i | −1.29734 | + | 0.562957i | 1.89335 | − | 2.83360i | 0.955675 | + | 2.66208i | −0.831470 | + | 0.555570i | −4.86295 | + | 1.05208i |
13.17 | −0.156266 | + | 1.40555i | −0.290285 | − | 0.956940i | −1.95116 | − | 0.439279i | −0.103867 | − | 1.05457i | 1.39039 | − | 0.258474i | −0.0783117 | + | 0.117202i | 0.922330 | − | 2.67382i | −0.831470 | + | 0.555570i | 1.49849 | + | 0.0188036i |
13.18 | 0.147414 | − | 1.40651i | −0.290285 | − | 0.956940i | −1.95654 | − | 0.414679i | 0.138503 | + | 1.40624i | −1.38874 | + | 0.267222i | −1.77662 | + | 2.65890i | −0.871671 | + | 2.69076i | −0.831470 | + | 0.555570i | 1.99831 | + | 0.0124945i |
13.19 | 0.246397 | + | 1.39258i | 0.290285 | + | 0.956940i | −1.87858 | + | 0.686257i | 0.267357 | + | 2.71452i | −1.26109 | + | 0.640033i | −0.343422 | + | 0.513967i | −1.41855 | − | 2.44698i | −0.831470 | + | 0.555570i | −3.71432 | + | 1.04117i |
13.20 | 0.320440 | − | 1.37743i | 0.290285 | + | 0.956940i | −1.79464 | − | 0.882769i | −0.362380 | − | 3.67931i | 1.41114 | − | 0.0932050i | 1.08924 | − | 1.63016i | −1.79103 | + | 2.18911i | −0.831470 | + | 0.555570i | −5.18411 | − | 0.679844i |
See next 80 embeddings (of 512 total) |
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
128.k | even | 32 | 1 | inner |
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 384.2.v.a | ✓ | 512 |
128.k | even | 32 | 1 | inner | 384.2.v.a | ✓ | 512 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
384.2.v.a | ✓ | 512 | 1.a | even | 1 | 1 | trivial |
384.2.v.a | ✓ | 512 | 128.k | even | 32 | 1 | inner |
Hecke kernels
This newform subspace is the entire newspace \(S_{2}^{\mathrm{new}}(384, [\chi])\).