Properties

Label 384.2.n
Level $384$
Weight $2$
Character orbit 384.n
Rep. character $\chi_{384}(49,\cdot)$
Character field $\Q(\zeta_{8})$
Dimension $32$
Newform subspaces $1$
Sturm bound $128$
Trace bound $0$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 384 = 2^{7} \cdot 3 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 384.n (of order \(8\) and degree \(4\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 32 \)
Character field: \(\Q(\zeta_{8})\)
Newform subspaces: \( 1 \)
Sturm bound: \(128\)
Trace bound: \(0\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(384, [\chi])\).

Total New Old
Modular forms 288 32 256
Cusp forms 224 32 192
Eisenstein series 64 0 64

Trace form

\( 32q + O(q^{10}) \) \( 32q + 16q^{23} + 48q^{31} + 48q^{35} + 16q^{43} - 16q^{51} - 32q^{53} - 32q^{55} - 64q^{59} - 32q^{61} - 16q^{63} - 16q^{67} - 32q^{69} - 64q^{71} - 32q^{75} - 32q^{77} + 48q^{91} + O(q^{100}) \)

Decomposition of \(S_{2}^{\mathrm{new}}(384, [\chi])\) into newform subspaces

Label Dim. \(A\) Field CM Traces $q$-expansion
\(a_2\) \(a_3\) \(a_5\) \(a_7\)
384.2.n.a \(32\) \(3.066\) None \(0\) \(0\) \(0\) \(0\)

Decomposition of \(S_{2}^{\mathrm{old}}(384, [\chi])\) into lower level spaces

\( S_{2}^{\mathrm{old}}(384, [\chi]) \cong \) \(S_{2}^{\mathrm{new}}(32, [\chi])\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(96, [\chi])\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(128, [\chi])\)\(^{\oplus 2}\)