Newspace parameters
Level: | \( N \) | \(=\) | \( 384 = 2^{7} \cdot 3 \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 384.j (of order \(4\), degree \(2\), not minimal) |
Newform invariants
Self dual: | no |
Analytic conductor: | \(3.06625543762\) |
Analytic rank: | \(0\) |
Dimension: | \(8\) |
Relative dimension: | \(4\) over \(\Q(i)\) |
Coefficient field: | 8.0.18939904.2 |
comment: defining polynomial
gp: f.mod \\ as an extension of the character field
|
|
Defining polynomial: |
\( x^{8} - 4x^{7} + 14x^{6} - 28x^{5} + 43x^{4} - 44x^{3} + 30x^{2} - 12x + 2 \)
|
Coefficient ring: | \(\Z[a_1, \ldots, a_{5}]\) |
Coefficient ring index: | \( 2^{4} \) |
Twist minimal: | no (minimal twist has level 48) |
Sato-Tate group: | $\mathrm{SU}(2)[C_{4}]$ |
$q$-expansion
Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\ldots,\beta_{7}\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.
Basis of coefficient ring in terms of a root \(\nu\) of
\( x^{8} - 4x^{7} + 14x^{6} - 28x^{5} + 43x^{4} - 44x^{3} + 30x^{2} - 12x + 2 \)
:
\(\beta_{1}\) | \(=\) |
\( -\nu^{6} + 3\nu^{5} - 11\nu^{4} + 17\nu^{3} - 24\nu^{2} + 16\nu - 5 \)
|
\(\beta_{2}\) | \(=\) |
\( 5\nu^{7} - 17\nu^{6} + 60\nu^{5} - 105\nu^{4} + 155\nu^{3} - 133\nu^{2} + 77\nu - 19 \)
|
\(\beta_{3}\) | \(=\) |
\( 5\nu^{7} - 18\nu^{6} + 63\nu^{5} - 115\nu^{4} + 170\nu^{3} - 152\nu^{2} + 89\nu - 23 \)
|
\(\beta_{4}\) | \(=\) |
\( 8\nu^{7} - 28\nu^{6} + 98\nu^{5} - 175\nu^{4} + 256\nu^{3} - 223\nu^{2} + 126\nu - 31 \)
|
\(\beta_{5}\) | \(=\) |
\( 9\nu^{7} - 31\nu^{6} + 108\nu^{5} - 190\nu^{4} + 275\nu^{3} - 236\nu^{2} + 131\nu - 33 \)
|
\(\beta_{6}\) | \(=\) |
\( 9\nu^{7} - 32\nu^{6} + 111\nu^{5} - 200\nu^{4} + 290\nu^{3} - 253\nu^{2} + 141\nu - 33 \)
|
\(\beta_{7}\) | \(=\) |
\( 10\nu^{7} - 35\nu^{6} + 123\nu^{5} - 220\nu^{4} + 325\nu^{3} - 285\nu^{2} + 168\nu - 43 \)
|
\(\nu\) | \(=\) |
\( ( \beta_{7} - \beta_{3} - \beta_{2} + 1 ) / 2 \)
|
\(\nu^{2}\) | \(=\) |
\( ( \beta_{7} + \beta_{6} - \beta_{5} - 2\beta_{3} - 3 ) / 2 \)
|
\(\nu^{3}\) | \(=\) |
\( ( -2\beta_{7} + 2\beta_{6} - \beta_{5} - 3\beta_{4} + 2\beta_{3} + 5\beta_{2} - 5 ) / 2 \)
|
\(\nu^{4}\) | \(=\) |
\( ( -5\beta_{7} - \beta_{6} + 3\beta_{5} - 6\beta_{4} + 12\beta_{3} + 4\beta_{2} - 2\beta _1 + 7 ) / 2 \)
|
\(\nu^{5}\) | \(=\) |
\( ( 3\beta_{7} - 10\beta_{6} + 5\beta_{5} + 10\beta_{4} + 6\beta_{3} - 19\beta_{2} - 5\beta _1 + 26 ) / 2 \)
|
\(\nu^{6}\) | \(=\) |
\( ( 22\beta_{7} - 9\beta_{6} - 11\beta_{5} + 45\beta_{4} - 48\beta_{3} - 32\beta_{2} + 5\beta _1 - 6 ) / 2 \)
|
\(\nu^{7}\) | \(=\) |
\( ( 7\beta_{7} + 33\beta_{6} - 30\beta_{5} - 83\beta_{3} + 64\beta_{2} + 35\beta _1 - 118 ) / 2 \)
|
Character values
We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/384\mathbb{Z}\right)^\times\).
\(n\) | \(127\) | \(133\) | \(257\) |
\(\chi(n)\) | \(1\) | \(\beta_{4}\) | \(1\) |
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
Label | \(\iota_m(\nu)\) | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | ||||||||||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
97.1 |
|
0 | −0.707107 | + | 0.707107i | 0 | −1.27133 | − | 1.27133i | 0 | − | 0.158942i | 0 | − | 1.00000i | 0 | ||||||||||||||||||||||||||||||||||||
97.2 | 0 | −0.707107 | + | 0.707107i | 0 | 2.68554 | + | 2.68554i | 0 | 2.15894i | 0 | − | 1.00000i | 0 | ||||||||||||||||||||||||||||||||||||||
97.3 | 0 | 0.707107 | − | 0.707107i | 0 | −1.74912 | − | 1.74912i | 0 | − | 2.55765i | 0 | − | 1.00000i | 0 | |||||||||||||||||||||||||||||||||||||
97.4 | 0 | 0.707107 | − | 0.707107i | 0 | 0.334904 | + | 0.334904i | 0 | 4.55765i | 0 | − | 1.00000i | 0 | ||||||||||||||||||||||||||||||||||||||
289.1 | 0 | −0.707107 | − | 0.707107i | 0 | −1.27133 | + | 1.27133i | 0 | 0.158942i | 0 | 1.00000i | 0 | |||||||||||||||||||||||||||||||||||||||
289.2 | 0 | −0.707107 | − | 0.707107i | 0 | 2.68554 | − | 2.68554i | 0 | − | 2.15894i | 0 | 1.00000i | 0 | ||||||||||||||||||||||||||||||||||||||
289.3 | 0 | 0.707107 | + | 0.707107i | 0 | −1.74912 | + | 1.74912i | 0 | 2.55765i | 0 | 1.00000i | 0 | |||||||||||||||||||||||||||||||||||||||
289.4 | 0 | 0.707107 | + | 0.707107i | 0 | 0.334904 | − | 0.334904i | 0 | − | 4.55765i | 0 | 1.00000i | 0 | ||||||||||||||||||||||||||||||||||||||
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
16.e | even | 4 | 1 | inner |
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 384.2.j.b | 8 | |
3.b | odd | 2 | 1 | 1152.2.k.c | 8 | ||
4.b | odd | 2 | 1 | 384.2.j.a | 8 | ||
8.b | even | 2 | 1 | 48.2.j.a | ✓ | 8 | |
8.d | odd | 2 | 1 | 192.2.j.a | 8 | ||
12.b | even | 2 | 1 | 1152.2.k.f | 8 | ||
16.e | even | 4 | 1 | 48.2.j.a | ✓ | 8 | |
16.e | even | 4 | 1 | inner | 384.2.j.b | 8 | |
16.f | odd | 4 | 1 | 192.2.j.a | 8 | ||
16.f | odd | 4 | 1 | 384.2.j.a | 8 | ||
24.f | even | 2 | 1 | 576.2.k.b | 8 | ||
24.h | odd | 2 | 1 | 144.2.k.b | 8 | ||
32.g | even | 8 | 1 | 3072.2.a.i | 4 | ||
32.g | even | 8 | 1 | 3072.2.a.t | 4 | ||
32.g | even | 8 | 2 | 3072.2.d.f | 8 | ||
32.h | odd | 8 | 1 | 3072.2.a.n | 4 | ||
32.h | odd | 8 | 1 | 3072.2.a.o | 4 | ||
32.h | odd | 8 | 2 | 3072.2.d.i | 8 | ||
48.i | odd | 4 | 1 | 144.2.k.b | 8 | ||
48.i | odd | 4 | 1 | 1152.2.k.c | 8 | ||
48.k | even | 4 | 1 | 576.2.k.b | 8 | ||
48.k | even | 4 | 1 | 1152.2.k.f | 8 | ||
96.o | even | 8 | 1 | 9216.2.a.x | 4 | ||
96.o | even | 8 | 1 | 9216.2.a.bn | 4 | ||
96.p | odd | 8 | 1 | 9216.2.a.y | 4 | ||
96.p | odd | 8 | 1 | 9216.2.a.bo | 4 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
48.2.j.a | ✓ | 8 | 8.b | even | 2 | 1 | |
48.2.j.a | ✓ | 8 | 16.e | even | 4 | 1 | |
144.2.k.b | 8 | 24.h | odd | 2 | 1 | ||
144.2.k.b | 8 | 48.i | odd | 4 | 1 | ||
192.2.j.a | 8 | 8.d | odd | 2 | 1 | ||
192.2.j.a | 8 | 16.f | odd | 4 | 1 | ||
384.2.j.a | 8 | 4.b | odd | 2 | 1 | ||
384.2.j.a | 8 | 16.f | odd | 4 | 1 | ||
384.2.j.b | 8 | 1.a | even | 1 | 1 | trivial | |
384.2.j.b | 8 | 16.e | even | 4 | 1 | inner | |
576.2.k.b | 8 | 24.f | even | 2 | 1 | ||
576.2.k.b | 8 | 48.k | even | 4 | 1 | ||
1152.2.k.c | 8 | 3.b | odd | 2 | 1 | ||
1152.2.k.c | 8 | 48.i | odd | 4 | 1 | ||
1152.2.k.f | 8 | 12.b | even | 2 | 1 | ||
1152.2.k.f | 8 | 48.k | even | 4 | 1 | ||
3072.2.a.i | 4 | 32.g | even | 8 | 1 | ||
3072.2.a.n | 4 | 32.h | odd | 8 | 1 | ||
3072.2.a.o | 4 | 32.h | odd | 8 | 1 | ||
3072.2.a.t | 4 | 32.g | even | 8 | 1 | ||
3072.2.d.f | 8 | 32.g | even | 8 | 2 | ||
3072.2.d.i | 8 | 32.h | odd | 8 | 2 | ||
9216.2.a.x | 4 | 96.o | even | 8 | 1 | ||
9216.2.a.y | 4 | 96.p | odd | 8 | 1 | ||
9216.2.a.bn | 4 | 96.o | even | 8 | 1 | ||
9216.2.a.bo | 4 | 96.p | odd | 8 | 1 |
Hecke kernels
This newform subspace can be constructed as the kernel of the linear operator
\( T_{11}^{8} - 8T_{11}^{7} + 32T_{11}^{6} - 256T_{11}^{3} + 2048T_{11}^{2} + 2048T_{11} + 1024 \)
acting on \(S_{2}^{\mathrm{new}}(384, [\chi])\).
Hecke characteristic polynomials
$p$
$F_p(T)$
$2$
\( T^{8} \)
$3$
\( (T^{4} + 1)^{2} \)
$5$
\( T^{8} + 16 T^{5} + 128 T^{4} + \cdots + 64 \)
$7$
\( T^{8} + 32 T^{6} + 264 T^{4} + \cdots + 16 \)
$11$
\( T^{8} - 8 T^{7} + 32 T^{6} + \cdots + 1024 \)
$13$
\( T^{8} + 64 T^{5} + 776 T^{4} + \cdots + 16 \)
$17$
\( (T^{4} - 32 T^{2} + 64 T + 16)^{2} \)
$19$
\( T^{8} - 8 T^{7} + 32 T^{6} + 32 T^{5} + \cdots + 256 \)
$23$
\( (T^{2} + 8)^{4} \)
$29$
\( T^{8} - 16 T^{7} + 128 T^{6} + \cdots + 61504 \)
$31$
\( (T^{4} - 12 T^{3} + 40 T^{2} - 24 T - 28)^{2} \)
$37$
\( T^{8} - 16 T^{7} + 128 T^{6} + \cdots + 1106704 \)
$41$
\( T^{8} + 128 T^{6} + 3872 T^{4} + \cdots + 12544 \)
$43$
\( T^{8} - 8 T^{7} + 32 T^{6} + \cdots + 12544 \)
$47$
\( (T^{2} - 8)^{4} \)
$53$
\( T^{8} + 16 T^{7} + 128 T^{6} + \cdots + 18496 \)
$59$
\( (T^{2} + 8 T + 32)^{4} \)
$61$
\( T^{8} + 16 T^{7} + 128 T^{6} + \cdots + 1106704 \)
$67$
\( T^{8} - 16 T^{7} + 128 T^{6} + \cdots + 65536 \)
$71$
\( T^{8} + 128 T^{6} + 4224 T^{4} + \cdots + 4096 \)
$73$
\( T^{8} + 256 T^{6} + 8320 T^{4} + \cdots + 4096 \)
$79$
\( (T^{4} + 12 T^{3} - 168 T^{2} + \cdots - 10108)^{2} \)
$83$
\( T^{8} - 40 T^{7} + 800 T^{6} + \cdots + 1024 \)
$89$
\( T^{8} + 464 T^{6} + 62304 T^{4} + \cdots + 3625216 \)
$97$
\( (T^{4} - 224 T^{2} + 768 T + 512)^{2} \)
show more
show less