Defining parameters
Level: | \( N \) | \(=\) | \( 384 = 2^{7} \cdot 3 \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 384.j (of order \(4\) and degree \(2\)) |
Character conductor: | \(\operatorname{cond}(\chi)\) | \(=\) | \( 16 \) |
Character field: | \(\Q(i)\) | ||
Newform subspaces: | \( 2 \) | ||
Sturm bound: | \(128\) | ||
Trace bound: | \(11\) | ||
Distinguishing \(T_p\): | \(11\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{2}(384, [\chi])\).
Total | New | Old | |
---|---|---|---|
Modular forms | 160 | 16 | 144 |
Cusp forms | 96 | 16 | 80 |
Eisenstein series | 64 | 0 | 64 |
Trace form
Decomposition of \(S_{2}^{\mathrm{new}}(384, [\chi])\) into newform subspaces
Label | Dim | $A$ | Field | CM | Traces | $q$-expansion | |||
---|---|---|---|---|---|---|---|---|---|
$a_{2}$ | $a_{3}$ | $a_{5}$ | $a_{7}$ | ||||||
384.2.j.a | $8$ | $3.066$ | 8.0.18939904.2 | None | \(0\) | \(0\) | \(0\) | \(0\) | \(q-\beta _{2}q^{3}+(\beta _{3}-\beta _{5})q^{5}+(\beta _{4}+\beta _{5}+\beta _{6}+\cdots)q^{7}+\cdots\) |
384.2.j.b | $8$ | $3.066$ | 8.0.18939904.2 | None | \(0\) | \(0\) | \(0\) | \(0\) | \(q-\beta _{3}q^{3}+(-\beta _{2}+\beta _{6})q^{5}+(\beta _{4}+\beta _{5}+\cdots)q^{7}+\cdots\) |
Decomposition of \(S_{2}^{\mathrm{old}}(384, [\chi])\) into lower level spaces
\( S_{2}^{\mathrm{old}}(384, [\chi]) \cong \) \(S_{2}^{\mathrm{new}}(16, [\chi])\)\(^{\oplus 8}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(48, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(64, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(128, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(192, [\chi])\)\(^{\oplus 2}\)