Properties

Label 384.2.f.c.191.1
Level $384$
Weight $2$
Character 384.191
Analytic conductor $3.066$
Analytic rank $0$
Dimension $4$
CM discriminant -8
Inner twists $8$

Related objects

Downloads

Learn more about

Newspace parameters

Level: \( N \) \(=\) \( 384 = 2^{7} \cdot 3 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 384.f (of order \(2\), degree \(1\), minimal)

Newform invariants

Self dual: no
Analytic conductor: \(3.06625543762\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: \(\Q(\zeta_{8})\)
Defining polynomial: \(x^{4} + 1\)
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 2^{3}\cdot 3 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{U}(1)[D_{2}]$

Embedding invariants

Embedding label 191.1
Root \(0.707107 - 0.707107i\) of defining polynomial
Character \(\chi\) \(=\) 384.191
Dual form 384.2.f.c.191.2

$q$-expansion

\(f(q)\) \(=\) \(q+(-1.41421 - 1.00000i) q^{3} +(1.00000 + 2.82843i) q^{9} +O(q^{10})\) \(q+(-1.41421 - 1.00000i) q^{3} +(1.00000 + 2.82843i) q^{9} -6.00000i q^{11} -5.65685i q^{17} -8.48528 q^{19} -5.00000 q^{25} +(1.41421 - 5.00000i) q^{27} +(-6.00000 + 8.48528i) q^{33} -11.3137i q^{41} +8.48528 q^{43} +7.00000 q^{49} +(-5.65685 + 8.00000i) q^{51} +(12.0000 + 8.48528i) q^{57} +6.00000i q^{59} +8.48528 q^{67} -2.00000 q^{73} +(7.07107 + 5.00000i) q^{75} +(-7.00000 + 5.65685i) q^{81} +18.0000i q^{83} -5.65685i q^{89} +10.0000 q^{97} +(16.9706 - 6.00000i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4q + 4q^{9} + O(q^{10}) \) \( 4q + 4q^{9} - 20q^{25} - 24q^{33} + 28q^{49} + 48q^{57} - 8q^{73} - 28q^{81} + 40q^{97} + O(q^{100}) \)

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/384\mathbb{Z}\right)^\times\).

\(n\) \(127\) \(133\) \(257\)
\(\chi(n)\) \(-1\) \(-1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −1.41421 1.00000i −0.816497 0.577350i
\(4\) 0 0
\(5\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(6\) 0 0
\(7\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(8\) 0 0
\(9\) 1.00000 + 2.82843i 0.333333 + 0.942809i
\(10\) 0 0
\(11\) 6.00000i 1.80907i −0.426401 0.904534i \(-0.640219\pi\)
0.426401 0.904534i \(-0.359781\pi\)
\(12\) 0 0
\(13\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) 5.65685i 1.37199i −0.727607 0.685994i \(-0.759367\pi\)
0.727607 0.685994i \(-0.240633\pi\)
\(18\) 0 0
\(19\) −8.48528 −1.94666 −0.973329 0.229416i \(-0.926318\pi\)
−0.973329 + 0.229416i \(0.926318\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(24\) 0 0
\(25\) −5.00000 −1.00000
\(26\) 0 0
\(27\) 1.41421 5.00000i 0.272166 0.962250i
\(28\) 0 0
\(29\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(30\) 0 0
\(31\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(32\) 0 0
\(33\) −6.00000 + 8.48528i −1.04447 + 1.47710i
\(34\) 0 0
\(35\) 0 0
\(36\) 0 0
\(37\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) 11.3137i 1.76690i −0.468521 0.883452i \(-0.655213\pi\)
0.468521 0.883452i \(-0.344787\pi\)
\(42\) 0 0
\(43\) 8.48528 1.29399 0.646997 0.762493i \(-0.276025\pi\)
0.646997 + 0.762493i \(0.276025\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(48\) 0 0
\(49\) 7.00000 1.00000
\(50\) 0 0
\(51\) −5.65685 + 8.00000i −0.792118 + 1.12022i
\(52\) 0 0
\(53\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) 0 0
\(57\) 12.0000 + 8.48528i 1.58944 + 1.12390i
\(58\) 0 0
\(59\) 6.00000i 0.781133i 0.920575 + 0.390567i \(0.127721\pi\)
−0.920575 + 0.390567i \(0.872279\pi\)
\(60\) 0 0
\(61\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) 0 0
\(66\) 0 0
\(67\) 8.48528 1.03664 0.518321 0.855186i \(-0.326557\pi\)
0.518321 + 0.855186i \(0.326557\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(72\) 0 0
\(73\) −2.00000 −0.234082 −0.117041 0.993127i \(-0.537341\pi\)
−0.117041 + 0.993127i \(0.537341\pi\)
\(74\) 0 0
\(75\) 7.07107 + 5.00000i 0.816497 + 0.577350i
\(76\) 0 0
\(77\) 0 0
\(78\) 0 0
\(79\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(80\) 0 0
\(81\) −7.00000 + 5.65685i −0.777778 + 0.628539i
\(82\) 0 0
\(83\) 18.0000i 1.97576i 0.155230 + 0.987878i \(0.450388\pi\)
−0.155230 + 0.987878i \(0.549612\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) 5.65685i 0.599625i −0.953998 0.299813i \(-0.903076\pi\)
0.953998 0.299813i \(-0.0969242\pi\)
\(90\) 0 0
\(91\) 0 0
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) 0 0
\(96\) 0 0
\(97\) 10.0000 1.01535 0.507673 0.861550i \(-0.330506\pi\)
0.507673 + 0.861550i \(0.330506\pi\)
\(98\) 0 0
\(99\) 16.9706 6.00000i 1.70561 0.603023i
\(100\) 0 0
\(101\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(102\) 0 0
\(103\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) 6.00000i 0.580042i 0.957020 + 0.290021i \(0.0936623\pi\)
−0.957020 + 0.290021i \(0.906338\pi\)
\(108\) 0 0
\(109\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) 11.3137i 1.06430i −0.846649 0.532152i \(-0.821383\pi\)
0.846649 0.532152i \(-0.178617\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) 0 0
\(120\) 0 0
\(121\) −25.0000 −2.27273
\(122\) 0 0
\(123\) −11.3137 + 16.0000i −1.02012 + 1.44267i
\(124\) 0 0
\(125\) 0 0
\(126\) 0 0
\(127\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(128\) 0 0
\(129\) −12.0000 8.48528i −1.05654 0.747087i
\(130\) 0 0
\(131\) 18.0000i 1.57267i −0.617802 0.786334i \(-0.711977\pi\)
0.617802 0.786334i \(-0.288023\pi\)
\(132\) 0 0
\(133\) 0 0
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) 22.6274i 1.93319i 0.256307 + 0.966595i \(0.417494\pi\)
−0.256307 + 0.966595i \(0.582506\pi\)
\(138\) 0 0
\(139\) −8.48528 −0.719712 −0.359856 0.933008i \(-0.617174\pi\)
−0.359856 + 0.933008i \(0.617174\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) 0 0
\(144\) 0 0
\(145\) 0 0
\(146\) 0 0
\(147\) −9.89949 7.00000i −0.816497 0.577350i
\(148\) 0 0
\(149\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(150\) 0 0
\(151\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(152\) 0 0
\(153\) 16.0000 5.65685i 1.29352 0.457330i
\(154\) 0 0
\(155\) 0 0
\(156\) 0 0
\(157\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) 0 0
\(162\) 0 0
\(163\) 25.4558 1.99386 0.996928 0.0783260i \(-0.0249575\pi\)
0.996928 + 0.0783260i \(0.0249575\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(168\) 0 0
\(169\) 13.0000 1.00000
\(170\) 0 0
\(171\) −8.48528 24.0000i −0.648886 1.83533i
\(172\) 0 0
\(173\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 0 0
\(177\) 6.00000 8.48528i 0.450988 0.637793i
\(178\) 0 0
\(179\) 18.0000i 1.34538i −0.739923 0.672692i \(-0.765138\pi\)
0.739923 0.672692i \(-0.234862\pi\)
\(180\) 0 0
\(181\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) 0 0
\(186\) 0 0
\(187\) −33.9411 −2.48202
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(192\) 0 0
\(193\) 22.0000 1.58359 0.791797 0.610784i \(-0.209146\pi\)
0.791797 + 0.610784i \(0.209146\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(198\) 0 0
\(199\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(200\) 0 0
\(201\) −12.0000 8.48528i −0.846415 0.598506i
\(202\) 0 0
\(203\) 0 0
\(204\) 0 0
\(205\) 0 0
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) 50.9117i 3.52164i
\(210\) 0 0
\(211\) −25.4558 −1.75245 −0.876226 0.481900i \(-0.839947\pi\)
−0.876226 + 0.481900i \(0.839947\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) 0 0
\(216\) 0 0
\(217\) 0 0
\(218\) 0 0
\(219\) 2.82843 + 2.00000i 0.191127 + 0.135147i
\(220\) 0 0
\(221\) 0 0
\(222\) 0 0
\(223\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(224\) 0 0
\(225\) −5.00000 14.1421i −0.333333 0.942809i
\(226\) 0 0
\(227\) 30.0000i 1.99117i −0.0938647 0.995585i \(-0.529922\pi\)
0.0938647 0.995585i \(-0.470078\pi\)
\(228\) 0 0
\(229\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) 5.65685i 0.370593i −0.982683 0.185296i \(-0.940675\pi\)
0.982683 0.185296i \(-0.0593245\pi\)
\(234\) 0 0
\(235\) 0 0
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(240\) 0 0
\(241\) −26.0000 −1.67481 −0.837404 0.546585i \(-0.815928\pi\)
−0.837404 + 0.546585i \(0.815928\pi\)
\(242\) 0 0
\(243\) 15.5563 1.00000i 0.997940 0.0641500i
\(244\) 0 0
\(245\) 0 0
\(246\) 0 0
\(247\) 0 0
\(248\) 0 0
\(249\) 18.0000 25.4558i 1.14070 1.61320i
\(250\) 0 0
\(251\) 6.00000i 0.378717i −0.981908 0.189358i \(-0.939359\pi\)
0.981908 0.189358i \(-0.0606408\pi\)
\(252\) 0 0
\(253\) 0 0
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) 11.3137i 0.705730i −0.935674 0.352865i \(-0.885208\pi\)
0.935674 0.352865i \(-0.114792\pi\)
\(258\) 0 0
\(259\) 0 0
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) 0 0
\(267\) −5.65685 + 8.00000i −0.346194 + 0.489592i
\(268\) 0 0
\(269\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(270\) 0 0
\(271\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) 30.0000i 1.80907i
\(276\) 0 0
\(277\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) 28.2843i 1.68730i 0.536895 + 0.843649i \(0.319597\pi\)
−0.536895 + 0.843649i \(0.680403\pi\)
\(282\) 0 0
\(283\) 25.4558 1.51319 0.756596 0.653882i \(-0.226861\pi\)
0.756596 + 0.653882i \(0.226861\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 0 0
\(288\) 0 0
\(289\) −15.0000 −0.882353
\(290\) 0 0
\(291\) −14.1421 10.0000i −0.829027 0.586210i
\(292\) 0 0
\(293\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(294\) 0 0
\(295\) 0 0
\(296\) 0 0
\(297\) −30.0000 8.48528i −1.74078 0.492366i
\(298\) 0 0
\(299\) 0 0
\(300\) 0 0
\(301\) 0 0
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) 0 0
\(306\) 0 0
\(307\) 8.48528 0.484281 0.242140 0.970241i \(-0.422151\pi\)
0.242140 + 0.970241i \(0.422151\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(312\) 0 0
\(313\) −10.0000 −0.565233 −0.282617 0.959233i \(-0.591202\pi\)
−0.282617 + 0.959233i \(0.591202\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(318\) 0 0
\(319\) 0 0
\(320\) 0 0
\(321\) 6.00000 8.48528i 0.334887 0.473602i
\(322\) 0 0
\(323\) 48.0000i 2.67079i
\(324\) 0 0
\(325\) 0 0
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) 0 0
\(330\) 0 0
\(331\) 25.4558 1.39918 0.699590 0.714545i \(-0.253366\pi\)
0.699590 + 0.714545i \(0.253366\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) 0 0
\(336\) 0 0
\(337\) 14.0000 0.762629 0.381314 0.924445i \(-0.375472\pi\)
0.381314 + 0.924445i \(0.375472\pi\)
\(338\) 0 0
\(339\) −11.3137 + 16.0000i −0.614476 + 0.869001i
\(340\) 0 0
\(341\) 0 0
\(342\) 0 0
\(343\) 0 0
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) 6.00000i 0.322097i −0.986947 0.161048i \(-0.948512\pi\)
0.986947 0.161048i \(-0.0514875\pi\)
\(348\) 0 0
\(349\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) 22.6274i 1.20434i 0.798369 + 0.602168i \(0.205696\pi\)
−0.798369 + 0.602168i \(0.794304\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(360\) 0 0
\(361\) 53.0000 2.78947
\(362\) 0 0
\(363\) 35.3553 + 25.0000i 1.85567 + 1.31216i
\(364\) 0 0
\(365\) 0 0
\(366\) 0 0
\(367\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(368\) 0 0
\(369\) 32.0000 11.3137i 1.66585 0.588968i
\(370\) 0 0
\(371\) 0 0
\(372\) 0 0
\(373\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) 0 0
\(378\) 0 0
\(379\) 8.48528 0.435860 0.217930 0.975964i \(-0.430070\pi\)
0.217930 + 0.975964i \(0.430070\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 0 0
\(387\) 8.48528 + 24.0000i 0.431331 + 1.21999i
\(388\) 0 0
\(389\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(390\) 0 0
\(391\) 0 0
\(392\) 0 0
\(393\) −18.0000 + 25.4558i −0.907980 + 1.28408i
\(394\) 0 0
\(395\) 0 0
\(396\) 0 0
\(397\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) 39.5980i 1.97743i −0.149813 0.988714i \(-0.547867\pi\)
0.149813 0.988714i \(-0.452133\pi\)
\(402\) 0 0
\(403\) 0 0
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) 0 0
\(408\) 0 0
\(409\) −22.0000 −1.08783 −0.543915 0.839140i \(-0.683059\pi\)
−0.543915 + 0.839140i \(0.683059\pi\)
\(410\) 0 0
\(411\) 22.6274 32.0000i 1.11613 1.57844i
\(412\) 0 0
\(413\) 0 0
\(414\) 0 0
\(415\) 0 0
\(416\) 0 0
\(417\) 12.0000 + 8.48528i 0.587643 + 0.415526i
\(418\) 0 0
\(419\) 18.0000i 0.879358i 0.898155 + 0.439679i \(0.144908\pi\)
−0.898155 + 0.439679i \(0.855092\pi\)
\(420\) 0 0
\(421\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) 28.2843i 1.37199i
\(426\) 0 0
\(427\) 0 0
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(432\) 0 0
\(433\) −38.0000 −1.82616 −0.913082 0.407777i \(-0.866304\pi\)
−0.913082 + 0.407777i \(0.866304\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) 0 0
\(438\) 0 0
\(439\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(440\) 0 0
\(441\) 7.00000 + 19.7990i 0.333333 + 0.942809i
\(442\) 0 0
\(443\) 42.0000i 1.99548i 0.0671913 + 0.997740i \(0.478596\pi\)
−0.0671913 + 0.997740i \(0.521404\pi\)
\(444\) 0 0
\(445\) 0 0
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) 5.65685i 0.266963i −0.991051 0.133482i \(-0.957384\pi\)
0.991051 0.133482i \(-0.0426157\pi\)
\(450\) 0 0
\(451\) −67.8823 −3.19645
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) 26.0000 1.21623 0.608114 0.793849i \(-0.291926\pi\)
0.608114 + 0.793849i \(0.291926\pi\)
\(458\) 0 0
\(459\) −28.2843 8.00000i −1.32020 0.373408i
\(460\) 0 0
\(461\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(462\) 0 0
\(463\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) 30.0000i 1.38823i −0.719862 0.694117i \(-0.755795\pi\)
0.719862 0.694117i \(-0.244205\pi\)
\(468\) 0 0
\(469\) 0 0
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) 50.9117i 2.34092i
\(474\) 0 0
\(475\) 42.4264 1.94666
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(480\) 0 0
\(481\) 0 0
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) 0 0
\(486\) 0 0
\(487\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(488\) 0 0
\(489\) −36.0000 25.4558i −1.62798 1.15115i
\(490\) 0 0
\(491\) 42.0000i 1.89543i −0.319113 0.947717i \(-0.603385\pi\)
0.319113 0.947717i \(-0.396615\pi\)
\(492\) 0 0
\(493\) 0 0
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) 0 0
\(498\) 0 0
\(499\) 42.4264 1.89927 0.949633 0.313363i \(-0.101456\pi\)
0.949633 + 0.313363i \(0.101456\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(504\) 0 0
\(505\) 0 0
\(506\) 0 0
\(507\) −18.3848 13.0000i −0.816497 0.577350i
\(508\) 0 0
\(509\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(510\) 0 0
\(511\) 0 0
\(512\) 0 0
\(513\) −12.0000 + 42.4264i −0.529813 + 1.87317i
\(514\) 0 0
\(515\) 0 0
\(516\) 0 0
\(517\) 0 0
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) 45.2548i 1.98265i −0.131432 0.991325i \(-0.541958\pi\)
0.131432 0.991325i \(-0.458042\pi\)
\(522\) 0 0
\(523\) −25.4558 −1.11311 −0.556553 0.830812i \(-0.687876\pi\)
−0.556553 + 0.830812i \(0.687876\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 0 0
\(528\) 0 0
\(529\) −23.0000 −1.00000
\(530\) 0 0
\(531\) −16.9706 + 6.00000i −0.736460 + 0.260378i
\(532\) 0 0
\(533\) 0 0
\(534\) 0 0
\(535\) 0 0
\(536\) 0 0
\(537\) −18.0000 + 25.4558i −0.776757 + 1.09850i
\(538\) 0 0
\(539\) 42.0000i 1.80907i
\(540\) 0 0
\(541\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) 0 0
\(546\) 0 0
\(547\) −8.48528 −0.362804 −0.181402 0.983409i \(-0.558064\pi\)
−0.181402 + 0.983409i \(0.558064\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) 0 0
\(552\) 0 0
\(553\) 0 0
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(558\) 0 0
\(559\) 0 0
\(560\) 0 0
\(561\) 48.0000 + 33.9411i 2.02656 + 1.43300i
\(562\) 0 0
\(563\) 30.0000i 1.26435i −0.774826 0.632175i \(-0.782163\pi\)
0.774826 0.632175i \(-0.217837\pi\)
\(564\) 0 0
\(565\) 0 0
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) 22.6274i 0.948591i 0.880366 + 0.474295i \(0.157297\pi\)
−0.880366 + 0.474295i \(0.842703\pi\)
\(570\) 0 0
\(571\) −42.4264 −1.77549 −0.887745 0.460336i \(-0.847729\pi\)
−0.887745 + 0.460336i \(0.847729\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) 0 0
\(576\) 0 0
\(577\) −34.0000 −1.41544 −0.707719 0.706494i \(-0.750276\pi\)
−0.707719 + 0.706494i \(0.750276\pi\)
\(578\) 0 0
\(579\) −31.1127 22.0000i −1.29300 0.914289i
\(580\) 0 0
\(581\) 0 0
\(582\) 0 0
\(583\) 0 0
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) 6.00000i 0.247647i 0.992304 + 0.123823i \(0.0395156\pi\)
−0.992304 + 0.123823i \(0.960484\pi\)
\(588\) 0 0
\(589\) 0 0
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) 45.2548i 1.85839i −0.369586 0.929197i \(-0.620500\pi\)
0.369586 0.929197i \(-0.379500\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(600\) 0 0
\(601\) 46.0000 1.87638 0.938190 0.346122i \(-0.112502\pi\)
0.938190 + 0.346122i \(0.112502\pi\)
\(602\) 0 0
\(603\) 8.48528 + 24.0000i 0.345547 + 0.977356i
\(604\) 0 0
\(605\) 0 0
\(606\) 0 0
\(607\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) 0 0
\(612\) 0 0
\(613\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) 39.5980i 1.59415i −0.603877 0.797077i \(-0.706378\pi\)
0.603877 0.797077i \(-0.293622\pi\)
\(618\) 0 0
\(619\) −42.4264 −1.70526 −0.852631 0.522514i \(-0.824994\pi\)
−0.852631 + 0.522514i \(0.824994\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) 0 0
\(624\) 0 0
\(625\) 25.0000 1.00000
\(626\) 0 0
\(627\) 50.9117 72.0000i 2.03322 2.87540i
\(628\) 0 0
\(629\) 0 0
\(630\) 0 0
\(631\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(632\) 0 0
\(633\) 36.0000 + 25.4558i 1.43087 + 1.01178i
\(634\) 0 0
\(635\) 0 0
\(636\) 0 0
\(637\) 0 0
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) 28.2843i 1.11716i 0.829450 + 0.558581i \(0.188654\pi\)
−0.829450 + 0.558581i \(0.811346\pi\)
\(642\) 0 0
\(643\) −8.48528 −0.334627 −0.167313 0.985904i \(-0.553509\pi\)
−0.167313 + 0.985904i \(0.553509\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(648\) 0 0
\(649\) 36.0000 1.41312
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) 0 0
\(657\) −2.00000 5.65685i −0.0780274 0.220695i
\(658\) 0 0
\(659\) 18.0000i 0.701180i −0.936529 0.350590i \(-0.885981\pi\)
0.936529 0.350590i \(-0.114019\pi\)
\(660\) 0 0
\(661\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) 0 0
\(666\) 0 0
\(667\) 0 0
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) 0 0
\(672\) 0 0
\(673\) 10.0000 0.385472 0.192736 0.981251i \(-0.438264\pi\)
0.192736 + 0.981251i \(0.438264\pi\)
\(674\) 0 0
\(675\) −7.07107 + 25.0000i −0.272166 + 0.962250i
\(676\) 0 0
\(677\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(678\) 0 0
\(679\) 0 0
\(680\) 0 0
\(681\) −30.0000 + 42.4264i −1.14960 + 1.62578i
\(682\) 0 0
\(683\) 42.0000i 1.60709i 0.595247 + 0.803543i \(0.297054\pi\)
−0.595247 + 0.803543i \(0.702946\pi\)
\(684\) 0 0
\(685\) 0 0
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) 0 0
\(690\) 0 0
\(691\) 25.4558 0.968386 0.484193 0.874961i \(-0.339113\pi\)
0.484193 + 0.874961i \(0.339113\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) 0 0
\(696\) 0 0
\(697\) −64.0000 −2.42417
\(698\) 0 0
\(699\) −5.65685 + 8.00000i −0.213962 + 0.302588i
\(700\) 0 0
\(701\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(702\) 0 0
\(703\) 0 0
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) 0 0
\(708\) 0 0
\(709\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) 0 0
\(714\) 0 0
\(715\) 0 0
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(720\) 0 0
\(721\) 0 0
\(722\) 0 0
\(723\) 36.7696 + 26.0000i 1.36747 + 0.966950i
\(724\) 0 0
\(725\) 0 0
\(726\) 0 0
\(727\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(728\) 0 0
\(729\) −23.0000 14.1421i −0.851852 0.523783i
\(730\) 0 0
\(731\) 48.0000i 1.77534i
\(732\) 0 0
\(733\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 50.9117i 1.87536i
\(738\) 0 0
\(739\) 42.4264 1.56068 0.780340 0.625355i \(-0.215046\pi\)
0.780340 + 0.625355i \(0.215046\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(744\) 0 0
\(745\) 0 0
\(746\) 0 0
\(747\) −50.9117 + 18.0000i −1.86276 + 0.658586i
\(748\) 0 0
\(749\) 0 0
\(750\) 0 0
\(751\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(752\) 0 0
\(753\) −6.00000 + 8.48528i −0.218652 + 0.309221i
\(754\) 0 0
\(755\) 0 0
\(756\) 0 0
\(757\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) 11.3137i 0.410122i −0.978749 0.205061i \(-0.934261\pi\)
0.978749 0.205061i \(-0.0657392\pi\)
\(762\) 0 0
\(763\) 0 0
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) 0 0
\(768\) 0 0
\(769\) 22.0000 0.793340 0.396670 0.917961i \(-0.370166\pi\)
0.396670 + 0.917961i \(0.370166\pi\)
\(770\) 0 0
\(771\) −11.3137 + 16.0000i −0.407453 + 0.576226i
\(772\) 0 0
\(773\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(774\) 0 0
\(775\) 0 0
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) 96.0000i 3.43956i
\(780\) 0 0
\(781\) 0 0
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) 0 0
\(786\) 0 0
\(787\) 25.4558 0.907403 0.453701 0.891154i \(-0.350103\pi\)
0.453701 + 0.891154i \(0.350103\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) 0 0
\(792\) 0 0
\(793\) 0 0
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(798\) 0 0
\(799\) 0 0
\(800\) 0 0
\(801\) 16.0000 5.65685i 0.565332 0.199875i
\(802\) 0 0
\(803\) 12.0000i 0.423471i
\(804\) 0 0
\(805\) 0 0
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) 56.5685i 1.98884i 0.105474 + 0.994422i \(0.466364\pi\)
−0.105474 + 0.994422i \(0.533636\pi\)
\(810\) 0 0
\(811\) 42.4264 1.48979 0.744896 0.667180i \(-0.232499\pi\)
0.744896 + 0.667180i \(0.232499\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0