Defining parameters
Level: | \( N \) | \(=\) | \( 384 = 2^{7} \cdot 3 \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 384.d (of order \(2\) and degree \(1\)) |
Character conductor: | \(\operatorname{cond}(\chi)\) | \(=\) | \( 8 \) |
Character field: | \(\Q\) | ||
Newform subspaces: | \( 3 \) | ||
Sturm bound: | \(128\) | ||
Trace bound: | \(7\) | ||
Distinguishing \(T_p\): | \(5\), \(7\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{2}(384, [\chi])\).
Total | New | Old | |
---|---|---|---|
Modular forms | 80 | 8 | 72 |
Cusp forms | 48 | 8 | 40 |
Eisenstein series | 32 | 0 | 32 |
Trace form
Decomposition of \(S_{2}^{\mathrm{new}}(384, [\chi])\) into newform subspaces
Label | Dim | $A$ | Field | CM | Traces | $q$-expansion | |||
---|---|---|---|---|---|---|---|---|---|
$a_{2}$ | $a_{3}$ | $a_{5}$ | $a_{7}$ | ||||||
384.2.d.a | $2$ | $3.066$ | \(\Q(\sqrt{-1}) \) | None | \(0\) | \(0\) | \(0\) | \(-8\) | \(q+iq^{3}-4q^{7}-q^{9}+4iq^{11}+4iq^{13}+\cdots\) |
384.2.d.b | $2$ | $3.066$ | \(\Q(\sqrt{-1}) \) | None | \(0\) | \(0\) | \(0\) | \(8\) | \(q+iq^{3}+4q^{7}-q^{9}+4iq^{11}-4iq^{13}+\cdots\) |
384.2.d.c | $4$ | $3.066$ | \(\Q(\zeta_{8})\) | None | \(0\) | \(0\) | \(0\) | \(0\) | \(q+\zeta_{8}q^{3}+\zeta_{8}^{2}q^{5}+\zeta_{8}^{3}q^{7}-q^{9}+\cdots\) |
Decomposition of \(S_{2}^{\mathrm{old}}(384, [\chi])\) into lower level spaces
\( S_{2}^{\mathrm{old}}(384, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(24, [\chi])\)\(^{\oplus 5}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(48, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(64, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(96, [\chi])\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(128, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(192, [\chi])\)\(^{\oplus 2}\)