Properties

Label 3825.2.s
Level $3825$
Weight $2$
Character orbit 3825.s
Rep. character $\chi_{3825}(557,\cdot)$
Character field $\Q(\zeta_{4})$
Dimension $216$
Sturm bound $1080$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 3825 = 3^{2} \cdot 5^{2} \cdot 17 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 3825.s (of order \(4\) and degree \(2\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 255 \)
Character field: \(\Q(i)\)
Sturm bound: \(1080\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(3825, [\chi])\).

Total New Old
Modular forms 1128 216 912
Cusp forms 1032 216 816
Eisenstein series 96 0 96

Trace form

\( 216 q + 8 q^{13} - 248 q^{16} - 64 q^{31} + 16 q^{34} + 24 q^{43} - 32 q^{46} + 216 q^{49} + 32 q^{52} - 96 q^{61} - 88 q^{73} + 96 q^{79} + 96 q^{88} + 32 q^{91} - 32 q^{94}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(3825, [\chi])\) into newform subspaces

The newforms in this space have not yet been added to the LMFDB.

Decomposition of \(S_{2}^{\mathrm{old}}(3825, [\chi])\) into lower level spaces

\( S_{2}^{\mathrm{old}}(3825, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(255, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(765, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(1275, [\chi])\)\(^{\oplus 2}\)