Properties

Label 3825.2.da
Level $3825$
Weight $2$
Character orbit 3825.da
Rep. character $\chi_{3825}(32,\cdot)$
Character field $\Q(\zeta_{24})$
Dimension $2560$
Sturm bound $1080$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 3825 = 3^{2} \cdot 5^{2} \cdot 17 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 3825.da (of order \(24\) and degree \(8\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 765 \)
Character field: \(\Q(\zeta_{24})\)
Sturm bound: \(1080\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(3825, [\chi])\).

Total New Old
Modular forms 4416 2624 1792
Cusp forms 4224 2560 1664
Eisenstein series 192 64 128

Trace form

\( 2560 q + 8 q^{3} - 1264 q^{4} - 16 q^{6} + 4 q^{7} - 24 q^{11} - 12 q^{12} - 1248 q^{16} + 16 q^{18} - 12 q^{22} + 12 q^{23} - 32 q^{24} + 20 q^{27} - 32 q^{28} - 8 q^{31} + 16 q^{33} - 16 q^{34} + 16 q^{36}+ \cdots - 24 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(3825, [\chi])\) into newform subspaces

The newforms in this space have not yet been added to the LMFDB.

Decomposition of \(S_{2}^{\mathrm{old}}(3825, [\chi])\) into lower level spaces

\( S_{2}^{\mathrm{old}}(3825, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(765, [\chi])\)\(^{\oplus 2}\)