Properties

Label 3825.2.bl
Level $3825$
Weight $2$
Character orbit 3825.bl
Rep. character $\chi_{3825}(271,\cdot)$
Character field $\Q(\zeta_{10})$
Dimension $888$
Sturm bound $1080$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 3825 = 3^{2} \cdot 5^{2} \cdot 17 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 3825.bl (of order \(10\) and degree \(4\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 425 \)
Character field: \(\Q(\zeta_{10})\)
Sturm bound: \(1080\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(3825, [\chi])\).

Total New Old
Modular forms 2192 904 1288
Cusp forms 2128 888 1240
Eisenstein series 64 16 48

Trace form

\( 888 q + 4 q^{2} - 224 q^{4} - 8 q^{8} - 18 q^{13} - 208 q^{16} + 20 q^{17} - 20 q^{19} + 2 q^{25} - 28 q^{26} + 68 q^{32} + 26 q^{34} - 50 q^{35} - 22 q^{38} + 16 q^{43} + 32 q^{47} - 820 q^{49} - 42 q^{50}+ \cdots + 12 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(3825, [\chi])\) into newform subspaces

The newforms in this space have not yet been added to the LMFDB.

Decomposition of \(S_{2}^{\mathrm{old}}(3825, [\chi])\) into lower level spaces

\( S_{2}^{\mathrm{old}}(3825, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(425, [\chi])\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(1275, [\chi])\)\(^{\oplus 2}\)