Properties

Label 3822.2.c.c
Level $3822$
Weight $2$
Character orbit 3822.c
Analytic conductor $30.519$
Analytic rank $0$
Dimension $2$
CM no
Inner twists $2$

Related objects

Downloads

Learn more

Newspace parameters

Level: \( N \) \(=\) \( 3822 = 2 \cdot 3 \cdot 7^{2} \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 3822.c (of order \(2\), degree \(1\), minimal)

Newform invariants

Self dual: no
Analytic conductor: \(30.5188236525\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{-1}) \)
Defining polynomial: \(x^{2} + 1\)
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 546)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

$q$-expansion

Coefficients of the \(q\)-expansion are expressed in terms of \(i = \sqrt{-1}\). We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q -i q^{2} - q^{3} - q^{4} + 2 i q^{5} + i q^{6} + i q^{8} + q^{9} +O(q^{10})\) \( q -i q^{2} - q^{3} - q^{4} + 2 i q^{5} + i q^{6} + i q^{8} + q^{9} + 2 q^{10} + q^{12} + ( -2 + 3 i ) q^{13} -2 i q^{15} + q^{16} + 2 q^{17} -i q^{18} + 4 i q^{19} -2 i q^{20} -6 q^{23} -i q^{24} + q^{25} + ( 3 + 2 i ) q^{26} - q^{27} -2 q^{30} -i q^{32} -2 i q^{34} - q^{36} + 2 i q^{37} + 4 q^{38} + ( 2 - 3 i ) q^{39} -2 q^{40} + 4 q^{43} + 2 i q^{45} + 6 i q^{46} + 8 i q^{47} - q^{48} -i q^{50} -2 q^{51} + ( 2 - 3 i ) q^{52} + 4 q^{53} + i q^{54} -4 i q^{57} -6 i q^{59} + 2 i q^{60} -12 q^{61} - q^{64} + ( -6 - 4 i ) q^{65} + 2 i q^{67} -2 q^{68} + 6 q^{69} + i q^{72} -14 i q^{73} + 2 q^{74} - q^{75} -4 i q^{76} + ( -3 - 2 i ) q^{78} + 2 i q^{80} + q^{81} -14 i q^{83} + 4 i q^{85} -4 i q^{86} + 4 i q^{89} + 2 q^{90} + 6 q^{92} + 8 q^{94} -8 q^{95} + i q^{96} -2 i q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2q - 2q^{3} - 2q^{4} + 2q^{9} + O(q^{10}) \) \( 2q - 2q^{3} - 2q^{4} + 2q^{9} + 4q^{10} + 2q^{12} - 4q^{13} + 2q^{16} + 4q^{17} - 12q^{23} + 2q^{25} + 6q^{26} - 2q^{27} - 4q^{30} - 2q^{36} + 8q^{38} + 4q^{39} - 4q^{40} + 8q^{43} - 2q^{48} - 4q^{51} + 4q^{52} + 8q^{53} - 24q^{61} - 2q^{64} - 12q^{65} - 4q^{68} + 12q^{69} + 4q^{74} - 2q^{75} - 6q^{78} + 2q^{81} + 4q^{90} + 12q^{92} + 16q^{94} - 16q^{95} + O(q^{100}) \)

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/3822\mathbb{Z}\right)^\times\).

\(n\) \(1471\) \(2549\) \(3433\)
\(\chi(n)\) \(-1\) \(1\) \(1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Label \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
883.1
1.00000i
1.00000i
1.00000i −1.00000 −1.00000 2.00000i 1.00000i 0 1.00000i 1.00000 2.00000
883.2 1.00000i −1.00000 −1.00000 2.00000i 1.00000i 0 1.00000i 1.00000 2.00000
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
13.b even 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 3822.2.c.c 2
7.b odd 2 1 546.2.c.b 2
13.b even 2 1 inner 3822.2.c.c 2
21.c even 2 1 1638.2.c.b 2
28.d even 2 1 4368.2.h.f 2
91.b odd 2 1 546.2.c.b 2
91.i even 4 1 7098.2.a.k 1
91.i even 4 1 7098.2.a.bc 1
273.g even 2 1 1638.2.c.b 2
364.h even 2 1 4368.2.h.f 2
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
546.2.c.b 2 7.b odd 2 1
546.2.c.b 2 91.b odd 2 1
1638.2.c.b 2 21.c even 2 1
1638.2.c.b 2 273.g even 2 1
3822.2.c.c 2 1.a even 1 1 trivial
3822.2.c.c 2 13.b even 2 1 inner
4368.2.h.f 2 28.d even 2 1
4368.2.h.f 2 364.h even 2 1
7098.2.a.k 1 91.i even 4 1
7098.2.a.bc 1 91.i even 4 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(3822, [\chi])\):

\( T_{5}^{2} + 4 \)
\( T_{11} \)
\( T_{17} - 2 \)
\( T_{19}^{2} + 16 \)

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( 1 + T^{2} \)
$3$ \( ( 1 + T )^{2} \)
$5$ \( 4 + T^{2} \)
$7$ \( T^{2} \)
$11$ \( T^{2} \)
$13$ \( 13 + 4 T + T^{2} \)
$17$ \( ( -2 + T )^{2} \)
$19$ \( 16 + T^{2} \)
$23$ \( ( 6 + T )^{2} \)
$29$ \( T^{2} \)
$31$ \( T^{2} \)
$37$ \( 4 + T^{2} \)
$41$ \( T^{2} \)
$43$ \( ( -4 + T )^{2} \)
$47$ \( 64 + T^{2} \)
$53$ \( ( -4 + T )^{2} \)
$59$ \( 36 + T^{2} \)
$61$ \( ( 12 + T )^{2} \)
$67$ \( 4 + T^{2} \)
$71$ \( T^{2} \)
$73$ \( 196 + T^{2} \)
$79$ \( T^{2} \)
$83$ \( 196 + T^{2} \)
$89$ \( 16 + T^{2} \)
$97$ \( 4 + T^{2} \)
show more
show less