# Properties

 Label 3822.2.c.b Level $3822$ Weight $2$ Character orbit 3822.c Analytic conductor $30.519$ Analytic rank $0$ Dimension $2$ CM no Inner twists $2$

# Related objects

## Newspace parameters

 Level: $$N$$ $$=$$ $$3822 = 2 \cdot 3 \cdot 7^{2} \cdot 13$$ Weight: $$k$$ $$=$$ $$2$$ Character orbit: $$[\chi]$$ $$=$$ 3822.c (of order $$2$$, degree $$1$$, minimal)

## Newform invariants

 Self dual: no Analytic conductor: $$30.5188236525$$ Analytic rank: $$0$$ Dimension: $$2$$ Coefficient field: $$\Q(\sqrt{-1})$$ Defining polynomial: $$x^{2} + 1$$ x^2 + 1 Coefficient ring: $$\Z[a_1, a_2]$$ Coefficient ring index: $$1$$ Twist minimal: no (minimal twist has level 546) Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

## $q$-expansion

Coefficients of the $$q$$-expansion are expressed in terms of $$i = \sqrt{-1}$$. We also show the integral $$q$$-expansion of the trace form.

 $$f(q)$$ $$=$$ $$q + i q^{2} - q^{3} - q^{4} + i q^{5} - i q^{6} - i q^{8} + q^{9} +O(q^{10})$$ q + i * q^2 - q^3 - q^4 + i * q^5 - i * q^6 - i * q^8 + q^9 $$q + i q^{2} - q^{3} - q^{4} + i q^{5} - i q^{6} - i q^{8} + q^{9} - q^{10} + 3 i q^{11} + q^{12} + (2 i - 3) q^{13} - i q^{15} + q^{16} - 7 q^{17} + i q^{18} - 3 i q^{19} - i q^{20} - 3 q^{22} + q^{23} + i q^{24} + 4 q^{25} + ( - 3 i - 2) q^{26} - q^{27} - q^{29} + q^{30} + 8 i q^{31} + i q^{32} - 3 i q^{33} - 7 i q^{34} - q^{36} - i q^{37} + 3 q^{38} + ( - 2 i + 3) q^{39} + q^{40} - 4 i q^{41} - 5 q^{43} - 3 i q^{44} + i q^{45} + i q^{46} - q^{48} + 4 i q^{50} + 7 q^{51} + ( - 2 i + 3) q^{52} - 6 q^{53} - i q^{54} - 3 q^{55} + 3 i q^{57} - i q^{58} - 10 i q^{59} + i q^{60} + 13 q^{61} - 8 q^{62} - q^{64} + ( - 3 i - 2) q^{65} + 3 q^{66} - 8 i q^{67} + 7 q^{68} - q^{69} + 6 i q^{71} - i q^{72} + 13 i q^{73} + q^{74} - 4 q^{75} + 3 i q^{76} + (3 i + 2) q^{78} - 12 q^{79} + i q^{80} + q^{81} + 4 q^{82} - 2 i q^{83} - 7 i q^{85} - 5 i q^{86} + q^{87} + 3 q^{88} - 12 i q^{89} - q^{90} - q^{92} - 8 i q^{93} + 3 q^{95} - i q^{96} - 6 i q^{97} + 3 i q^{99} +O(q^{100})$$ q + i * q^2 - q^3 - q^4 + i * q^5 - i * q^6 - i * q^8 + q^9 - q^10 + 3*i * q^11 + q^12 + (2*i - 3) * q^13 - i * q^15 + q^16 - 7 * q^17 + i * q^18 - 3*i * q^19 - i * q^20 - 3 * q^22 + q^23 + i * q^24 + 4 * q^25 + (-3*i - 2) * q^26 - q^27 - q^29 + q^30 + 8*i * q^31 + i * q^32 - 3*i * q^33 - 7*i * q^34 - q^36 - i * q^37 + 3 * q^38 + (-2*i + 3) * q^39 + q^40 - 4*i * q^41 - 5 * q^43 - 3*i * q^44 + i * q^45 + i * q^46 - q^48 + 4*i * q^50 + 7 * q^51 + (-2*i + 3) * q^52 - 6 * q^53 - i * q^54 - 3 * q^55 + 3*i * q^57 - i * q^58 - 10*i * q^59 + i * q^60 + 13 * q^61 - 8 * q^62 - q^64 + (-3*i - 2) * q^65 + 3 * q^66 - 8*i * q^67 + 7 * q^68 - q^69 + 6*i * q^71 - i * q^72 + 13*i * q^73 + q^74 - 4 * q^75 + 3*i * q^76 + (3*i + 2) * q^78 - 12 * q^79 + i * q^80 + q^81 + 4 * q^82 - 2*i * q^83 - 7*i * q^85 - 5*i * q^86 + q^87 + 3 * q^88 - 12*i * q^89 - q^90 - q^92 - 8*i * q^93 + 3 * q^95 - i * q^96 - 6*i * q^97 + 3*i * q^99 $$\operatorname{Tr}(f)(q)$$ $$=$$ $$2 q - 2 q^{3} - 2 q^{4} + 2 q^{9}+O(q^{10})$$ 2 * q - 2 * q^3 - 2 * q^4 + 2 * q^9 $$2 q - 2 q^{3} - 2 q^{4} + 2 q^{9} - 2 q^{10} + 2 q^{12} - 6 q^{13} + 2 q^{16} - 14 q^{17} - 6 q^{22} + 2 q^{23} + 8 q^{25} - 4 q^{26} - 2 q^{27} - 2 q^{29} + 2 q^{30} - 2 q^{36} + 6 q^{38} + 6 q^{39} + 2 q^{40} - 10 q^{43} - 2 q^{48} + 14 q^{51} + 6 q^{52} - 12 q^{53} - 6 q^{55} + 26 q^{61} - 16 q^{62} - 2 q^{64} - 4 q^{65} + 6 q^{66} + 14 q^{68} - 2 q^{69} + 2 q^{74} - 8 q^{75} + 4 q^{78} - 24 q^{79} + 2 q^{81} + 8 q^{82} + 2 q^{87} + 6 q^{88} - 2 q^{90} - 2 q^{92} + 6 q^{95}+O(q^{100})$$ 2 * q - 2 * q^3 - 2 * q^4 + 2 * q^9 - 2 * q^10 + 2 * q^12 - 6 * q^13 + 2 * q^16 - 14 * q^17 - 6 * q^22 + 2 * q^23 + 8 * q^25 - 4 * q^26 - 2 * q^27 - 2 * q^29 + 2 * q^30 - 2 * q^36 + 6 * q^38 + 6 * q^39 + 2 * q^40 - 10 * q^43 - 2 * q^48 + 14 * q^51 + 6 * q^52 - 12 * q^53 - 6 * q^55 + 26 * q^61 - 16 * q^62 - 2 * q^64 - 4 * q^65 + 6 * q^66 + 14 * q^68 - 2 * q^69 + 2 * q^74 - 8 * q^75 + 4 * q^78 - 24 * q^79 + 2 * q^81 + 8 * q^82 + 2 * q^87 + 6 * q^88 - 2 * q^90 - 2 * q^92 + 6 * q^95

## Character values

We give the values of $$\chi$$ on generators for $$\left(\mathbb{Z}/3822\mathbb{Z}\right)^\times$$.

 $$n$$ $$1471$$ $$2549$$ $$3433$$ $$\chi(n)$$ $$-1$$ $$1$$ $$1$$

## Embeddings

For each embedding $$\iota_m$$ of the coefficient field, the values $$\iota_m(a_n)$$ are shown below.

For more information on an embedded modular form you can click on its label.

Label $$\iota_m(\nu)$$ $$a_{2}$$ $$a_{3}$$ $$a_{4}$$ $$a_{5}$$ $$a_{6}$$ $$a_{7}$$ $$a_{8}$$ $$a_{9}$$ $$a_{10}$$
883.1
 − 1.00000i 1.00000i
1.00000i −1.00000 −1.00000 1.00000i 1.00000i 0 1.00000i 1.00000 −1.00000
883.2 1.00000i −1.00000 −1.00000 1.00000i 1.00000i 0 1.00000i 1.00000 −1.00000
 $$n$$: e.g. 2-40 or 990-1000 Significant digits: Format: Complex embeddings Normalized embeddings Satake parameters Satake angles

## Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
13.b even 2 1 inner

## Twists

By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 3822.2.c.b 2
7.b odd 2 1 546.2.c.c 2
13.b even 2 1 inner 3822.2.c.b 2
21.c even 2 1 1638.2.c.e 2
28.d even 2 1 4368.2.h.h 2
91.b odd 2 1 546.2.c.c 2
91.i even 4 1 7098.2.a.o 1
91.i even 4 1 7098.2.a.y 1
273.g even 2 1 1638.2.c.e 2
364.h even 2 1 4368.2.h.h 2

By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
546.2.c.c 2 7.b odd 2 1
546.2.c.c 2 91.b odd 2 1
1638.2.c.e 2 21.c even 2 1
1638.2.c.e 2 273.g even 2 1
3822.2.c.b 2 1.a even 1 1 trivial
3822.2.c.b 2 13.b even 2 1 inner
4368.2.h.h 2 28.d even 2 1
4368.2.h.h 2 364.h even 2 1
7098.2.a.o 1 91.i even 4 1
7098.2.a.y 1 91.i even 4 1

## Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on $$S_{2}^{\mathrm{new}}(3822, [\chi])$$:

 $$T_{5}^{2} + 1$$ T5^2 + 1 $$T_{11}^{2} + 9$$ T11^2 + 9 $$T_{17} + 7$$ T17 + 7 $$T_{19}^{2} + 9$$ T19^2 + 9

## Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ $$T^{2} + 1$$
$3$ $$(T + 1)^{2}$$
$5$ $$T^{2} + 1$$
$7$ $$T^{2}$$
$11$ $$T^{2} + 9$$
$13$ $$T^{2} + 6T + 13$$
$17$ $$(T + 7)^{2}$$
$19$ $$T^{2} + 9$$
$23$ $$(T - 1)^{2}$$
$29$ $$(T + 1)^{2}$$
$31$ $$T^{2} + 64$$
$37$ $$T^{2} + 1$$
$41$ $$T^{2} + 16$$
$43$ $$(T + 5)^{2}$$
$47$ $$T^{2}$$
$53$ $$(T + 6)^{2}$$
$59$ $$T^{2} + 100$$
$61$ $$(T - 13)^{2}$$
$67$ $$T^{2} + 64$$
$71$ $$T^{2} + 36$$
$73$ $$T^{2} + 169$$
$79$ $$(T + 12)^{2}$$
$83$ $$T^{2} + 4$$
$89$ $$T^{2} + 144$$
$97$ $$T^{2} + 36$$