Properties

Label 3822.2.c.b
Level $3822$
Weight $2$
Character orbit 3822.c
Analytic conductor $30.519$
Analytic rank $0$
Dimension $2$
CM no
Inner twists $2$

Related objects

Downloads

Learn more

Newspace parameters

Level: \( N \) \(=\) \( 3822 = 2 \cdot 3 \cdot 7^{2} \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 3822.c (of order \(2\), degree \(1\), minimal)

Newform invariants

Self dual: no
Analytic conductor: \(30.5188236525\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{-1}) \)
Defining polynomial: \(x^{2} + 1\)
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 546)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

$q$-expansion

Coefficients of the \(q\)-expansion are expressed in terms of \(i = \sqrt{-1}\). We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + i q^{2} - q^{3} - q^{4} + i q^{5} -i q^{6} -i q^{8} + q^{9} +O(q^{10})\) \( q + i q^{2} - q^{3} - q^{4} + i q^{5} -i q^{6} -i q^{8} + q^{9} - q^{10} + 3 i q^{11} + q^{12} + ( -3 + 2 i ) q^{13} -i q^{15} + q^{16} -7 q^{17} + i q^{18} -3 i q^{19} -i q^{20} -3 q^{22} + q^{23} + i q^{24} + 4 q^{25} + ( -2 - 3 i ) q^{26} - q^{27} - q^{29} + q^{30} + 8 i q^{31} + i q^{32} -3 i q^{33} -7 i q^{34} - q^{36} -i q^{37} + 3 q^{38} + ( 3 - 2 i ) q^{39} + q^{40} -4 i q^{41} -5 q^{43} -3 i q^{44} + i q^{45} + i q^{46} - q^{48} + 4 i q^{50} + 7 q^{51} + ( 3 - 2 i ) q^{52} -6 q^{53} -i q^{54} -3 q^{55} + 3 i q^{57} -i q^{58} -10 i q^{59} + i q^{60} + 13 q^{61} -8 q^{62} - q^{64} + ( -2 - 3 i ) q^{65} + 3 q^{66} -8 i q^{67} + 7 q^{68} - q^{69} + 6 i q^{71} -i q^{72} + 13 i q^{73} + q^{74} -4 q^{75} + 3 i q^{76} + ( 2 + 3 i ) q^{78} -12 q^{79} + i q^{80} + q^{81} + 4 q^{82} -2 i q^{83} -7 i q^{85} -5 i q^{86} + q^{87} + 3 q^{88} -12 i q^{89} - q^{90} - q^{92} -8 i q^{93} + 3 q^{95} -i q^{96} -6 i q^{97} + 3 i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2q - 2q^{3} - 2q^{4} + 2q^{9} + O(q^{10}) \) \( 2q - 2q^{3} - 2q^{4} + 2q^{9} - 2q^{10} + 2q^{12} - 6q^{13} + 2q^{16} - 14q^{17} - 6q^{22} + 2q^{23} + 8q^{25} - 4q^{26} - 2q^{27} - 2q^{29} + 2q^{30} - 2q^{36} + 6q^{38} + 6q^{39} + 2q^{40} - 10q^{43} - 2q^{48} + 14q^{51} + 6q^{52} - 12q^{53} - 6q^{55} + 26q^{61} - 16q^{62} - 2q^{64} - 4q^{65} + 6q^{66} + 14q^{68} - 2q^{69} + 2q^{74} - 8q^{75} + 4q^{78} - 24q^{79} + 2q^{81} + 8q^{82} + 2q^{87} + 6q^{88} - 2q^{90} - 2q^{92} + 6q^{95} + O(q^{100}) \)

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/3822\mathbb{Z}\right)^\times\).

\(n\) \(1471\) \(2549\) \(3433\)
\(\chi(n)\) \(-1\) \(1\) \(1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Label \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
883.1
1.00000i
1.00000i
1.00000i −1.00000 −1.00000 1.00000i 1.00000i 0 1.00000i 1.00000 −1.00000
883.2 1.00000i −1.00000 −1.00000 1.00000i 1.00000i 0 1.00000i 1.00000 −1.00000
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
13.b even 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 3822.2.c.b 2
7.b odd 2 1 546.2.c.c 2
13.b even 2 1 inner 3822.2.c.b 2
21.c even 2 1 1638.2.c.e 2
28.d even 2 1 4368.2.h.h 2
91.b odd 2 1 546.2.c.c 2
91.i even 4 1 7098.2.a.o 1
91.i even 4 1 7098.2.a.y 1
273.g even 2 1 1638.2.c.e 2
364.h even 2 1 4368.2.h.h 2
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
546.2.c.c 2 7.b odd 2 1
546.2.c.c 2 91.b odd 2 1
1638.2.c.e 2 21.c even 2 1
1638.2.c.e 2 273.g even 2 1
3822.2.c.b 2 1.a even 1 1 trivial
3822.2.c.b 2 13.b even 2 1 inner
4368.2.h.h 2 28.d even 2 1
4368.2.h.h 2 364.h even 2 1
7098.2.a.o 1 91.i even 4 1
7098.2.a.y 1 91.i even 4 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(3822, [\chi])\):

\( T_{5}^{2} + 1 \)
\( T_{11}^{2} + 9 \)
\( T_{17} + 7 \)
\( T_{19}^{2} + 9 \)

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( 1 + T^{2} \)
$3$ \( ( 1 + T )^{2} \)
$5$ \( 1 + T^{2} \)
$7$ \( T^{2} \)
$11$ \( 9 + T^{2} \)
$13$ \( 13 + 6 T + T^{2} \)
$17$ \( ( 7 + T )^{2} \)
$19$ \( 9 + T^{2} \)
$23$ \( ( -1 + T )^{2} \)
$29$ \( ( 1 + T )^{2} \)
$31$ \( 64 + T^{2} \)
$37$ \( 1 + T^{2} \)
$41$ \( 16 + T^{2} \)
$43$ \( ( 5 + T )^{2} \)
$47$ \( T^{2} \)
$53$ \( ( 6 + T )^{2} \)
$59$ \( 100 + T^{2} \)
$61$ \( ( -13 + T )^{2} \)
$67$ \( 64 + T^{2} \)
$71$ \( 36 + T^{2} \)
$73$ \( 169 + T^{2} \)
$79$ \( ( 12 + T )^{2} \)
$83$ \( 4 + T^{2} \)
$89$ \( 144 + T^{2} \)
$97$ \( 36 + T^{2} \)
show more
show less