Properties

Label 3822.2.a.w.1.1
Level $3822$
Weight $2$
Character 3822.1
Self dual yes
Analytic conductor $30.519$
Analytic rank $0$
Dimension $1$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Newspace parameters

Level: \( N \) \(=\) \( 3822 = 2 \cdot 3 \cdot 7^{2} \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 3822.a (trivial)

Newform invariants

Self dual: yes
Analytic conductor: \(30.5188236525\)
Analytic rank: \(0\)
Dimension: \(1\)
Coefficient field: \(\mathbb{Q}\)
Coefficient ring: \(\mathbb{Z}\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 546)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.1
Character \(\chi\) \(=\) 3822.1

$q$-expansion

\(f(q)\) \(=\) \(q+1.00000 q^{2} -1.00000 q^{3} +1.00000 q^{4} +1.00000 q^{5} -1.00000 q^{6} +1.00000 q^{8} +1.00000 q^{9} +O(q^{10})\) \(q+1.00000 q^{2} -1.00000 q^{3} +1.00000 q^{4} +1.00000 q^{5} -1.00000 q^{6} +1.00000 q^{8} +1.00000 q^{9} +1.00000 q^{10} +5.00000 q^{11} -1.00000 q^{12} +1.00000 q^{13} -1.00000 q^{15} +1.00000 q^{16} +3.00000 q^{17} +1.00000 q^{18} +1.00000 q^{19} +1.00000 q^{20} +5.00000 q^{22} +3.00000 q^{23} -1.00000 q^{24} -4.00000 q^{25} +1.00000 q^{26} -1.00000 q^{27} +9.00000 q^{29} -1.00000 q^{30} -4.00000 q^{31} +1.00000 q^{32} -5.00000 q^{33} +3.00000 q^{34} +1.00000 q^{36} -11.0000 q^{37} +1.00000 q^{38} -1.00000 q^{39} +1.00000 q^{40} -5.00000 q^{43} +5.00000 q^{44} +1.00000 q^{45} +3.00000 q^{46} +8.00000 q^{47} -1.00000 q^{48} -4.00000 q^{50} -3.00000 q^{51} +1.00000 q^{52} -2.00000 q^{53} -1.00000 q^{54} +5.00000 q^{55} -1.00000 q^{57} +9.00000 q^{58} -4.00000 q^{59} -1.00000 q^{60} +15.0000 q^{61} -4.00000 q^{62} +1.00000 q^{64} +1.00000 q^{65} -5.00000 q^{66} -2.00000 q^{67} +3.00000 q^{68} -3.00000 q^{69} -12.0000 q^{71} +1.00000 q^{72} -11.0000 q^{73} -11.0000 q^{74} +4.00000 q^{75} +1.00000 q^{76} -1.00000 q^{78} +10.0000 q^{79} +1.00000 q^{80} +1.00000 q^{81} +14.0000 q^{83} +3.00000 q^{85} -5.00000 q^{86} -9.00000 q^{87} +5.00000 q^{88} -6.00000 q^{89} +1.00000 q^{90} +3.00000 q^{92} +4.00000 q^{93} +8.00000 q^{94} +1.00000 q^{95} -1.00000 q^{96} +14.0000 q^{97} +5.00000 q^{99} +O(q^{100})\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.00000 0.707107
\(3\) −1.00000 −0.577350
\(4\) 1.00000 0.500000
\(5\) 1.00000 0.447214 0.223607 0.974679i \(-0.428217\pi\)
0.223607 + 0.974679i \(0.428217\pi\)
\(6\) −1.00000 −0.408248
\(7\) 0 0
\(8\) 1.00000 0.353553
\(9\) 1.00000 0.333333
\(10\) 1.00000 0.316228
\(11\) 5.00000 1.50756 0.753778 0.657129i \(-0.228229\pi\)
0.753778 + 0.657129i \(0.228229\pi\)
\(12\) −1.00000 −0.288675
\(13\) 1.00000 0.277350
\(14\) 0 0
\(15\) −1.00000 −0.258199
\(16\) 1.00000 0.250000
\(17\) 3.00000 0.727607 0.363803 0.931476i \(-0.381478\pi\)
0.363803 + 0.931476i \(0.381478\pi\)
\(18\) 1.00000 0.235702
\(19\) 1.00000 0.229416 0.114708 0.993399i \(-0.463407\pi\)
0.114708 + 0.993399i \(0.463407\pi\)
\(20\) 1.00000 0.223607
\(21\) 0 0
\(22\) 5.00000 1.06600
\(23\) 3.00000 0.625543 0.312772 0.949828i \(-0.398743\pi\)
0.312772 + 0.949828i \(0.398743\pi\)
\(24\) −1.00000 −0.204124
\(25\) −4.00000 −0.800000
\(26\) 1.00000 0.196116
\(27\) −1.00000 −0.192450
\(28\) 0 0
\(29\) 9.00000 1.67126 0.835629 0.549294i \(-0.185103\pi\)
0.835629 + 0.549294i \(0.185103\pi\)
\(30\) −1.00000 −0.182574
\(31\) −4.00000 −0.718421 −0.359211 0.933257i \(-0.616954\pi\)
−0.359211 + 0.933257i \(0.616954\pi\)
\(32\) 1.00000 0.176777
\(33\) −5.00000 −0.870388
\(34\) 3.00000 0.514496
\(35\) 0 0
\(36\) 1.00000 0.166667
\(37\) −11.0000 −1.80839 −0.904194 0.427121i \(-0.859528\pi\)
−0.904194 + 0.427121i \(0.859528\pi\)
\(38\) 1.00000 0.162221
\(39\) −1.00000 −0.160128
\(40\) 1.00000 0.158114
\(41\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(42\) 0 0
\(43\) −5.00000 −0.762493 −0.381246 0.924473i \(-0.624505\pi\)
−0.381246 + 0.924473i \(0.624505\pi\)
\(44\) 5.00000 0.753778
\(45\) 1.00000 0.149071
\(46\) 3.00000 0.442326
\(47\) 8.00000 1.16692 0.583460 0.812142i \(-0.301699\pi\)
0.583460 + 0.812142i \(0.301699\pi\)
\(48\) −1.00000 −0.144338
\(49\) 0 0
\(50\) −4.00000 −0.565685
\(51\) −3.00000 −0.420084
\(52\) 1.00000 0.138675
\(53\) −2.00000 −0.274721 −0.137361 0.990521i \(-0.543862\pi\)
−0.137361 + 0.990521i \(0.543862\pi\)
\(54\) −1.00000 −0.136083
\(55\) 5.00000 0.674200
\(56\) 0 0
\(57\) −1.00000 −0.132453
\(58\) 9.00000 1.18176
\(59\) −4.00000 −0.520756 −0.260378 0.965507i \(-0.583847\pi\)
−0.260378 + 0.965507i \(0.583847\pi\)
\(60\) −1.00000 −0.129099
\(61\) 15.0000 1.92055 0.960277 0.279050i \(-0.0900195\pi\)
0.960277 + 0.279050i \(0.0900195\pi\)
\(62\) −4.00000 −0.508001
\(63\) 0 0
\(64\) 1.00000 0.125000
\(65\) 1.00000 0.124035
\(66\) −5.00000 −0.615457
\(67\) −2.00000 −0.244339 −0.122169 0.992509i \(-0.538985\pi\)
−0.122169 + 0.992509i \(0.538985\pi\)
\(68\) 3.00000 0.363803
\(69\) −3.00000 −0.361158
\(70\) 0 0
\(71\) −12.0000 −1.42414 −0.712069 0.702109i \(-0.752242\pi\)
−0.712069 + 0.702109i \(0.752242\pi\)
\(72\) 1.00000 0.117851
\(73\) −11.0000 −1.28745 −0.643726 0.765256i \(-0.722612\pi\)
−0.643726 + 0.765256i \(0.722612\pi\)
\(74\) −11.0000 −1.27872
\(75\) 4.00000 0.461880
\(76\) 1.00000 0.114708
\(77\) 0 0
\(78\) −1.00000 −0.113228
\(79\) 10.0000 1.12509 0.562544 0.826767i \(-0.309823\pi\)
0.562544 + 0.826767i \(0.309823\pi\)
\(80\) 1.00000 0.111803
\(81\) 1.00000 0.111111
\(82\) 0 0
\(83\) 14.0000 1.53670 0.768350 0.640030i \(-0.221078\pi\)
0.768350 + 0.640030i \(0.221078\pi\)
\(84\) 0 0
\(85\) 3.00000 0.325396
\(86\) −5.00000 −0.539164
\(87\) −9.00000 −0.964901
\(88\) 5.00000 0.533002
\(89\) −6.00000 −0.635999 −0.317999 0.948091i \(-0.603011\pi\)
−0.317999 + 0.948091i \(0.603011\pi\)
\(90\) 1.00000 0.105409
\(91\) 0 0
\(92\) 3.00000 0.312772
\(93\) 4.00000 0.414781
\(94\) 8.00000 0.825137
\(95\) 1.00000 0.102598
\(96\) −1.00000 −0.102062
\(97\) 14.0000 1.42148 0.710742 0.703452i \(-0.248359\pi\)
0.710742 + 0.703452i \(0.248359\pi\)
\(98\) 0 0
\(99\) 5.00000 0.502519
\(100\) −4.00000 −0.400000
\(101\) −4.00000 −0.398015 −0.199007 0.979998i \(-0.563772\pi\)
−0.199007 + 0.979998i \(0.563772\pi\)
\(102\) −3.00000 −0.297044
\(103\) 15.0000 1.47799 0.738997 0.673709i \(-0.235300\pi\)
0.738997 + 0.673709i \(0.235300\pi\)
\(104\) 1.00000 0.0980581
\(105\) 0 0
\(106\) −2.00000 −0.194257
\(107\) 10.0000 0.966736 0.483368 0.875417i \(-0.339413\pi\)
0.483368 + 0.875417i \(0.339413\pi\)
\(108\) −1.00000 −0.0962250
\(109\) −9.00000 −0.862044 −0.431022 0.902342i \(-0.641847\pi\)
−0.431022 + 0.902342i \(0.641847\pi\)
\(110\) 5.00000 0.476731
\(111\) 11.0000 1.04407
\(112\) 0 0
\(113\) 2.00000 0.188144 0.0940721 0.995565i \(-0.470012\pi\)
0.0940721 + 0.995565i \(0.470012\pi\)
\(114\) −1.00000 −0.0936586
\(115\) 3.00000 0.279751
\(116\) 9.00000 0.835629
\(117\) 1.00000 0.0924500
\(118\) −4.00000 −0.368230
\(119\) 0 0
\(120\) −1.00000 −0.0912871
\(121\) 14.0000 1.27273
\(122\) 15.0000 1.35804
\(123\) 0 0
\(124\) −4.00000 −0.359211
\(125\) −9.00000 −0.804984
\(126\) 0 0
\(127\) 2.00000 0.177471 0.0887357 0.996055i \(-0.471717\pi\)
0.0887357 + 0.996055i \(0.471717\pi\)
\(128\) 1.00000 0.0883883
\(129\) 5.00000 0.440225
\(130\) 1.00000 0.0877058
\(131\) −13.0000 −1.13582 −0.567908 0.823092i \(-0.692247\pi\)
−0.567908 + 0.823092i \(0.692247\pi\)
\(132\) −5.00000 −0.435194
\(133\) 0 0
\(134\) −2.00000 −0.172774
\(135\) −1.00000 −0.0860663
\(136\) 3.00000 0.257248
\(137\) 19.0000 1.62328 0.811640 0.584158i \(-0.198575\pi\)
0.811640 + 0.584158i \(0.198575\pi\)
\(138\) −3.00000 −0.255377
\(139\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(140\) 0 0
\(141\) −8.00000 −0.673722
\(142\) −12.0000 −1.00702
\(143\) 5.00000 0.418121
\(144\) 1.00000 0.0833333
\(145\) 9.00000 0.747409
\(146\) −11.0000 −0.910366
\(147\) 0 0
\(148\) −11.0000 −0.904194
\(149\) −4.00000 −0.327693 −0.163846 0.986486i \(-0.552390\pi\)
−0.163846 + 0.986486i \(0.552390\pi\)
\(150\) 4.00000 0.326599
\(151\) −23.0000 −1.87171 −0.935857 0.352381i \(-0.885372\pi\)
−0.935857 + 0.352381i \(0.885372\pi\)
\(152\) 1.00000 0.0811107
\(153\) 3.00000 0.242536
\(154\) 0 0
\(155\) −4.00000 −0.321288
\(156\) −1.00000 −0.0800641
\(157\) 3.00000 0.239426 0.119713 0.992809i \(-0.461803\pi\)
0.119713 + 0.992809i \(0.461803\pi\)
\(158\) 10.0000 0.795557
\(159\) 2.00000 0.158610
\(160\) 1.00000 0.0790569
\(161\) 0 0
\(162\) 1.00000 0.0785674
\(163\) 10.0000 0.783260 0.391630 0.920123i \(-0.371911\pi\)
0.391630 + 0.920123i \(0.371911\pi\)
\(164\) 0 0
\(165\) −5.00000 −0.389249
\(166\) 14.0000 1.08661
\(167\) 21.0000 1.62503 0.812514 0.582941i \(-0.198098\pi\)
0.812514 + 0.582941i \(0.198098\pi\)
\(168\) 0 0
\(169\) 1.00000 0.0769231
\(170\) 3.00000 0.230089
\(171\) 1.00000 0.0764719
\(172\) −5.00000 −0.381246
\(173\) −6.00000 −0.456172 −0.228086 0.973641i \(-0.573247\pi\)
−0.228086 + 0.973641i \(0.573247\pi\)
\(174\) −9.00000 −0.682288
\(175\) 0 0
\(176\) 5.00000 0.376889
\(177\) 4.00000 0.300658
\(178\) −6.00000 −0.449719
\(179\) 12.0000 0.896922 0.448461 0.893802i \(-0.351972\pi\)
0.448461 + 0.893802i \(0.351972\pi\)
\(180\) 1.00000 0.0745356
\(181\) −14.0000 −1.04061 −0.520306 0.853980i \(-0.674182\pi\)
−0.520306 + 0.853980i \(0.674182\pi\)
\(182\) 0 0
\(183\) −15.0000 −1.10883
\(184\) 3.00000 0.221163
\(185\) −11.0000 −0.808736
\(186\) 4.00000 0.293294
\(187\) 15.0000 1.09691
\(188\) 8.00000 0.583460
\(189\) 0 0
\(190\) 1.00000 0.0725476
\(191\) 3.00000 0.217072 0.108536 0.994092i \(-0.465384\pi\)
0.108536 + 0.994092i \(0.465384\pi\)
\(192\) −1.00000 −0.0721688
\(193\) 12.0000 0.863779 0.431889 0.901927i \(-0.357847\pi\)
0.431889 + 0.901927i \(0.357847\pi\)
\(194\) 14.0000 1.00514
\(195\) −1.00000 −0.0716115
\(196\) 0 0
\(197\) −12.0000 −0.854965 −0.427482 0.904024i \(-0.640599\pi\)
−0.427482 + 0.904024i \(0.640599\pi\)
\(198\) 5.00000 0.355335
\(199\) −11.0000 −0.779769 −0.389885 0.920864i \(-0.627485\pi\)
−0.389885 + 0.920864i \(0.627485\pi\)
\(200\) −4.00000 −0.282843
\(201\) 2.00000 0.141069
\(202\) −4.00000 −0.281439
\(203\) 0 0
\(204\) −3.00000 −0.210042
\(205\) 0 0
\(206\) 15.0000 1.04510
\(207\) 3.00000 0.208514
\(208\) 1.00000 0.0693375
\(209\) 5.00000 0.345857
\(210\) 0 0
\(211\) 9.00000 0.619586 0.309793 0.950804i \(-0.399740\pi\)
0.309793 + 0.950804i \(0.399740\pi\)
\(212\) −2.00000 −0.137361
\(213\) 12.0000 0.822226
\(214\) 10.0000 0.683586
\(215\) −5.00000 −0.340997
\(216\) −1.00000 −0.0680414
\(217\) 0 0
\(218\) −9.00000 −0.609557
\(219\) 11.0000 0.743311
\(220\) 5.00000 0.337100
\(221\) 3.00000 0.201802
\(222\) 11.0000 0.738272
\(223\) 14.0000 0.937509 0.468755 0.883328i \(-0.344703\pi\)
0.468755 + 0.883328i \(0.344703\pi\)
\(224\) 0 0
\(225\) −4.00000 −0.266667
\(226\) 2.00000 0.133038
\(227\) −18.0000 −1.19470 −0.597351 0.801980i \(-0.703780\pi\)
−0.597351 + 0.801980i \(0.703780\pi\)
\(228\) −1.00000 −0.0662266
\(229\) −6.00000 −0.396491 −0.198246 0.980152i \(-0.563524\pi\)
−0.198246 + 0.980152i \(0.563524\pi\)
\(230\) 3.00000 0.197814
\(231\) 0 0
\(232\) 9.00000 0.590879
\(233\) 24.0000 1.57229 0.786146 0.618041i \(-0.212073\pi\)
0.786146 + 0.618041i \(0.212073\pi\)
\(234\) 1.00000 0.0653720
\(235\) 8.00000 0.521862
\(236\) −4.00000 −0.260378
\(237\) −10.0000 −0.649570
\(238\) 0 0
\(239\) −12.0000 −0.776215 −0.388108 0.921614i \(-0.626871\pi\)
−0.388108 + 0.921614i \(0.626871\pi\)
\(240\) −1.00000 −0.0645497
\(241\) −18.0000 −1.15948 −0.579741 0.814801i \(-0.696846\pi\)
−0.579741 + 0.814801i \(0.696846\pi\)
\(242\) 14.0000 0.899954
\(243\) −1.00000 −0.0641500
\(244\) 15.0000 0.960277
\(245\) 0 0
\(246\) 0 0
\(247\) 1.00000 0.0636285
\(248\) −4.00000 −0.254000
\(249\) −14.0000 −0.887214
\(250\) −9.00000 −0.569210
\(251\) 7.00000 0.441836 0.220918 0.975292i \(-0.429095\pi\)
0.220918 + 0.975292i \(0.429095\pi\)
\(252\) 0 0
\(253\) 15.0000 0.943042
\(254\) 2.00000 0.125491
\(255\) −3.00000 −0.187867
\(256\) 1.00000 0.0625000
\(257\) −6.00000 −0.374270 −0.187135 0.982334i \(-0.559920\pi\)
−0.187135 + 0.982334i \(0.559920\pi\)
\(258\) 5.00000 0.311286
\(259\) 0 0
\(260\) 1.00000 0.0620174
\(261\) 9.00000 0.557086
\(262\) −13.0000 −0.803143
\(263\) 12.0000 0.739952 0.369976 0.929041i \(-0.379366\pi\)
0.369976 + 0.929041i \(0.379366\pi\)
\(264\) −5.00000 −0.307729
\(265\) −2.00000 −0.122859
\(266\) 0 0
\(267\) 6.00000 0.367194
\(268\) −2.00000 −0.122169
\(269\) −18.0000 −1.09748 −0.548740 0.835993i \(-0.684892\pi\)
−0.548740 + 0.835993i \(0.684892\pi\)
\(270\) −1.00000 −0.0608581
\(271\) 22.0000 1.33640 0.668202 0.743980i \(-0.267064\pi\)
0.668202 + 0.743980i \(0.267064\pi\)
\(272\) 3.00000 0.181902
\(273\) 0 0
\(274\) 19.0000 1.14783
\(275\) −20.0000 −1.20605
\(276\) −3.00000 −0.180579
\(277\) 26.0000 1.56219 0.781094 0.624413i \(-0.214662\pi\)
0.781094 + 0.624413i \(0.214662\pi\)
\(278\) 0 0
\(279\) −4.00000 −0.239474
\(280\) 0 0
\(281\) −26.0000 −1.55103 −0.775515 0.631329i \(-0.782510\pi\)
−0.775515 + 0.631329i \(0.782510\pi\)
\(282\) −8.00000 −0.476393
\(283\) −4.00000 −0.237775 −0.118888 0.992908i \(-0.537933\pi\)
−0.118888 + 0.992908i \(0.537933\pi\)
\(284\) −12.0000 −0.712069
\(285\) −1.00000 −0.0592349
\(286\) 5.00000 0.295656
\(287\) 0 0
\(288\) 1.00000 0.0589256
\(289\) −8.00000 −0.470588
\(290\) 9.00000 0.528498
\(291\) −14.0000 −0.820695
\(292\) −11.0000 −0.643726
\(293\) −14.0000 −0.817889 −0.408944 0.912559i \(-0.634103\pi\)
−0.408944 + 0.912559i \(0.634103\pi\)
\(294\) 0 0
\(295\) −4.00000 −0.232889
\(296\) −11.0000 −0.639362
\(297\) −5.00000 −0.290129
\(298\) −4.00000 −0.231714
\(299\) 3.00000 0.173494
\(300\) 4.00000 0.230940
\(301\) 0 0
\(302\) −23.0000 −1.32350
\(303\) 4.00000 0.229794
\(304\) 1.00000 0.0573539
\(305\) 15.0000 0.858898
\(306\) 3.00000 0.171499
\(307\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(308\) 0 0
\(309\) −15.0000 −0.853320
\(310\) −4.00000 −0.227185
\(311\) 10.0000 0.567048 0.283524 0.958965i \(-0.408496\pi\)
0.283524 + 0.958965i \(0.408496\pi\)
\(312\) −1.00000 −0.0566139
\(313\) 8.00000 0.452187 0.226093 0.974106i \(-0.427405\pi\)
0.226093 + 0.974106i \(0.427405\pi\)
\(314\) 3.00000 0.169300
\(315\) 0 0
\(316\) 10.0000 0.562544
\(317\) 24.0000 1.34797 0.673987 0.738743i \(-0.264580\pi\)
0.673987 + 0.738743i \(0.264580\pi\)
\(318\) 2.00000 0.112154
\(319\) 45.0000 2.51952
\(320\) 1.00000 0.0559017
\(321\) −10.0000 −0.558146
\(322\) 0 0
\(323\) 3.00000 0.166924
\(324\) 1.00000 0.0555556
\(325\) −4.00000 −0.221880
\(326\) 10.0000 0.553849
\(327\) 9.00000 0.497701
\(328\) 0 0
\(329\) 0 0
\(330\) −5.00000 −0.275241
\(331\) 10.0000 0.549650 0.274825 0.961494i \(-0.411380\pi\)
0.274825 + 0.961494i \(0.411380\pi\)
\(332\) 14.0000 0.768350
\(333\) −11.0000 −0.602796
\(334\) 21.0000 1.14907
\(335\) −2.00000 −0.109272
\(336\) 0 0
\(337\) −5.00000 −0.272367 −0.136184 0.990684i \(-0.543484\pi\)
−0.136184 + 0.990684i \(0.543484\pi\)
\(338\) 1.00000 0.0543928
\(339\) −2.00000 −0.108625
\(340\) 3.00000 0.162698
\(341\) −20.0000 −1.08306
\(342\) 1.00000 0.0540738
\(343\) 0 0
\(344\) −5.00000 −0.269582
\(345\) −3.00000 −0.161515
\(346\) −6.00000 −0.322562
\(347\) −16.0000 −0.858925 −0.429463 0.903085i \(-0.641297\pi\)
−0.429463 + 0.903085i \(0.641297\pi\)
\(348\) −9.00000 −0.482451
\(349\) −14.0000 −0.749403 −0.374701 0.927146i \(-0.622255\pi\)
−0.374701 + 0.927146i \(0.622255\pi\)
\(350\) 0 0
\(351\) −1.00000 −0.0533761
\(352\) 5.00000 0.266501
\(353\) −18.0000 −0.958043 −0.479022 0.877803i \(-0.659008\pi\)
−0.479022 + 0.877803i \(0.659008\pi\)
\(354\) 4.00000 0.212598
\(355\) −12.0000 −0.636894
\(356\) −6.00000 −0.317999
\(357\) 0 0
\(358\) 12.0000 0.634220
\(359\) −4.00000 −0.211112 −0.105556 0.994413i \(-0.533662\pi\)
−0.105556 + 0.994413i \(0.533662\pi\)
\(360\) 1.00000 0.0527046
\(361\) −18.0000 −0.947368
\(362\) −14.0000 −0.735824
\(363\) −14.0000 −0.734809
\(364\) 0 0
\(365\) −11.0000 −0.575766
\(366\) −15.0000 −0.784063
\(367\) −32.0000 −1.67039 −0.835193 0.549957i \(-0.814644\pi\)
−0.835193 + 0.549957i \(0.814644\pi\)
\(368\) 3.00000 0.156386
\(369\) 0 0
\(370\) −11.0000 −0.571863
\(371\) 0 0
\(372\) 4.00000 0.207390
\(373\) −4.00000 −0.207112 −0.103556 0.994624i \(-0.533022\pi\)
−0.103556 + 0.994624i \(0.533022\pi\)
\(374\) 15.0000 0.775632
\(375\) 9.00000 0.464758
\(376\) 8.00000 0.412568
\(377\) 9.00000 0.463524
\(378\) 0 0
\(379\) 16.0000 0.821865 0.410932 0.911666i \(-0.365203\pi\)
0.410932 + 0.911666i \(0.365203\pi\)
\(380\) 1.00000 0.0512989
\(381\) −2.00000 −0.102463
\(382\) 3.00000 0.153493
\(383\) 29.0000 1.48183 0.740915 0.671598i \(-0.234392\pi\)
0.740915 + 0.671598i \(0.234392\pi\)
\(384\) −1.00000 −0.0510310
\(385\) 0 0
\(386\) 12.0000 0.610784
\(387\) −5.00000 −0.254164
\(388\) 14.0000 0.710742
\(389\) −2.00000 −0.101404 −0.0507020 0.998714i \(-0.516146\pi\)
−0.0507020 + 0.998714i \(0.516146\pi\)
\(390\) −1.00000 −0.0506370
\(391\) 9.00000 0.455150
\(392\) 0 0
\(393\) 13.0000 0.655763
\(394\) −12.0000 −0.604551
\(395\) 10.0000 0.503155
\(396\) 5.00000 0.251259
\(397\) −6.00000 −0.301131 −0.150566 0.988600i \(-0.548110\pi\)
−0.150566 + 0.988600i \(0.548110\pi\)
\(398\) −11.0000 −0.551380
\(399\) 0 0
\(400\) −4.00000 −0.200000
\(401\) −18.0000 −0.898877 −0.449439 0.893311i \(-0.648376\pi\)
−0.449439 + 0.893311i \(0.648376\pi\)
\(402\) 2.00000 0.0997509
\(403\) −4.00000 −0.199254
\(404\) −4.00000 −0.199007
\(405\) 1.00000 0.0496904
\(406\) 0 0
\(407\) −55.0000 −2.72625
\(408\) −3.00000 −0.148522
\(409\) −25.0000 −1.23617 −0.618085 0.786111i \(-0.712091\pi\)
−0.618085 + 0.786111i \(0.712091\pi\)
\(410\) 0 0
\(411\) −19.0000 −0.937201
\(412\) 15.0000 0.738997
\(413\) 0 0
\(414\) 3.00000 0.147442
\(415\) 14.0000 0.687233
\(416\) 1.00000 0.0490290
\(417\) 0 0
\(418\) 5.00000 0.244558
\(419\) −7.00000 −0.341972 −0.170986 0.985273i \(-0.554695\pi\)
−0.170986 + 0.985273i \(0.554695\pi\)
\(420\) 0 0
\(421\) 30.0000 1.46211 0.731055 0.682318i \(-0.239028\pi\)
0.731055 + 0.682318i \(0.239028\pi\)
\(422\) 9.00000 0.438113
\(423\) 8.00000 0.388973
\(424\) −2.00000 −0.0971286
\(425\) −12.0000 −0.582086
\(426\) 12.0000 0.581402
\(427\) 0 0
\(428\) 10.0000 0.483368
\(429\) −5.00000 −0.241402
\(430\) −5.00000 −0.241121
\(431\) −2.00000 −0.0963366 −0.0481683 0.998839i \(-0.515338\pi\)
−0.0481683 + 0.998839i \(0.515338\pi\)
\(432\) −1.00000 −0.0481125
\(433\) −28.0000 −1.34559 −0.672797 0.739827i \(-0.734907\pi\)
−0.672797 + 0.739827i \(0.734907\pi\)
\(434\) 0 0
\(435\) −9.00000 −0.431517
\(436\) −9.00000 −0.431022
\(437\) 3.00000 0.143509
\(438\) 11.0000 0.525600
\(439\) −13.0000 −0.620456 −0.310228 0.950662i \(-0.600405\pi\)
−0.310228 + 0.950662i \(0.600405\pi\)
\(440\) 5.00000 0.238366
\(441\) 0 0
\(442\) 3.00000 0.142695
\(443\) −18.0000 −0.855206 −0.427603 0.903967i \(-0.640642\pi\)
−0.427603 + 0.903967i \(0.640642\pi\)
\(444\) 11.0000 0.522037
\(445\) −6.00000 −0.284427
\(446\) 14.0000 0.662919
\(447\) 4.00000 0.189194
\(448\) 0 0
\(449\) 23.0000 1.08544 0.542719 0.839915i \(-0.317395\pi\)
0.542719 + 0.839915i \(0.317395\pi\)
\(450\) −4.00000 −0.188562
\(451\) 0 0
\(452\) 2.00000 0.0940721
\(453\) 23.0000 1.08063
\(454\) −18.0000 −0.844782
\(455\) 0 0
\(456\) −1.00000 −0.0468293
\(457\) −32.0000 −1.49690 −0.748448 0.663193i \(-0.769201\pi\)
−0.748448 + 0.663193i \(0.769201\pi\)
\(458\) −6.00000 −0.280362
\(459\) −3.00000 −0.140028
\(460\) 3.00000 0.139876
\(461\) 35.0000 1.63011 0.815056 0.579382i \(-0.196706\pi\)
0.815056 + 0.579382i \(0.196706\pi\)
\(462\) 0 0
\(463\) 9.00000 0.418265 0.209133 0.977887i \(-0.432936\pi\)
0.209133 + 0.977887i \(0.432936\pi\)
\(464\) 9.00000 0.417815
\(465\) 4.00000 0.185496
\(466\) 24.0000 1.11178
\(467\) 15.0000 0.694117 0.347059 0.937843i \(-0.387180\pi\)
0.347059 + 0.937843i \(0.387180\pi\)
\(468\) 1.00000 0.0462250
\(469\) 0 0
\(470\) 8.00000 0.369012
\(471\) −3.00000 −0.138233
\(472\) −4.00000 −0.184115
\(473\) −25.0000 −1.14950
\(474\) −10.0000 −0.459315
\(475\) −4.00000 −0.183533
\(476\) 0 0
\(477\) −2.00000 −0.0915737
\(478\) −12.0000 −0.548867
\(479\) 31.0000 1.41643 0.708213 0.705999i \(-0.249502\pi\)
0.708213 + 0.705999i \(0.249502\pi\)
\(480\) −1.00000 −0.0456435
\(481\) −11.0000 −0.501557
\(482\) −18.0000 −0.819878
\(483\) 0 0
\(484\) 14.0000 0.636364
\(485\) 14.0000 0.635707
\(486\) −1.00000 −0.0453609
\(487\) −16.0000 −0.725029 −0.362515 0.931978i \(-0.618082\pi\)
−0.362515 + 0.931978i \(0.618082\pi\)
\(488\) 15.0000 0.679018
\(489\) −10.0000 −0.452216
\(490\) 0 0
\(491\) −26.0000 −1.17336 −0.586682 0.809818i \(-0.699566\pi\)
−0.586682 + 0.809818i \(0.699566\pi\)
\(492\) 0 0
\(493\) 27.0000 1.21602
\(494\) 1.00000 0.0449921
\(495\) 5.00000 0.224733
\(496\) −4.00000 −0.179605
\(497\) 0 0
\(498\) −14.0000 −0.627355
\(499\) −4.00000 −0.179065 −0.0895323 0.995984i \(-0.528537\pi\)
−0.0895323 + 0.995984i \(0.528537\pi\)
\(500\) −9.00000 −0.402492
\(501\) −21.0000 −0.938211
\(502\) 7.00000 0.312425
\(503\) −42.0000 −1.87269 −0.936344 0.351085i \(-0.885813\pi\)
−0.936344 + 0.351085i \(0.885813\pi\)
\(504\) 0 0
\(505\) −4.00000 −0.177998
\(506\) 15.0000 0.666831
\(507\) −1.00000 −0.0444116
\(508\) 2.00000 0.0887357
\(509\) −13.0000 −0.576215 −0.288107 0.957598i \(-0.593026\pi\)
−0.288107 + 0.957598i \(0.593026\pi\)
\(510\) −3.00000 −0.132842
\(511\) 0 0
\(512\) 1.00000 0.0441942
\(513\) −1.00000 −0.0441511
\(514\) −6.00000 −0.264649
\(515\) 15.0000 0.660979
\(516\) 5.00000 0.220113
\(517\) 40.0000 1.75920
\(518\) 0 0
\(519\) 6.00000 0.263371
\(520\) 1.00000 0.0438529
\(521\) 17.0000 0.744784 0.372392 0.928076i \(-0.378538\pi\)
0.372392 + 0.928076i \(0.378538\pi\)
\(522\) 9.00000 0.393919
\(523\) 8.00000 0.349816 0.174908 0.984585i \(-0.444037\pi\)
0.174908 + 0.984585i \(0.444037\pi\)
\(524\) −13.0000 −0.567908
\(525\) 0 0
\(526\) 12.0000 0.523225
\(527\) −12.0000 −0.522728
\(528\) −5.00000 −0.217597
\(529\) −14.0000 −0.608696
\(530\) −2.00000 −0.0868744
\(531\) −4.00000 −0.173585
\(532\) 0 0
\(533\) 0 0
\(534\) 6.00000 0.259645
\(535\) 10.0000 0.432338
\(536\) −2.00000 −0.0863868
\(537\) −12.0000 −0.517838
\(538\) −18.0000 −0.776035
\(539\) 0 0
\(540\) −1.00000 −0.0430331
\(541\) −25.0000 −1.07483 −0.537417 0.843317i \(-0.680600\pi\)
−0.537417 + 0.843317i \(0.680600\pi\)
\(542\) 22.0000 0.944981
\(543\) 14.0000 0.600798
\(544\) 3.00000 0.128624
\(545\) −9.00000 −0.385518
\(546\) 0 0
\(547\) −12.0000 −0.513083 −0.256541 0.966533i \(-0.582583\pi\)
−0.256541 + 0.966533i \(0.582583\pi\)
\(548\) 19.0000 0.811640
\(549\) 15.0000 0.640184
\(550\) −20.0000 −0.852803
\(551\) 9.00000 0.383413
\(552\) −3.00000 −0.127688
\(553\) 0 0
\(554\) 26.0000 1.10463
\(555\) 11.0000 0.466924
\(556\) 0 0
\(557\) −44.0000 −1.86434 −0.932170 0.362021i \(-0.882087\pi\)
−0.932170 + 0.362021i \(0.882087\pi\)
\(558\) −4.00000 −0.169334
\(559\) −5.00000 −0.211477
\(560\) 0 0
\(561\) −15.0000 −0.633300
\(562\) −26.0000 −1.09674
\(563\) 3.00000 0.126435 0.0632175 0.998000i \(-0.479864\pi\)
0.0632175 + 0.998000i \(0.479864\pi\)
\(564\) −8.00000 −0.336861
\(565\) 2.00000 0.0841406
\(566\) −4.00000 −0.168133
\(567\) 0 0
\(568\) −12.0000 −0.503509
\(569\) −46.0000 −1.92842 −0.964210 0.265139i \(-0.914582\pi\)
−0.964210 + 0.265139i \(0.914582\pi\)
\(570\) −1.00000 −0.0418854
\(571\) 40.0000 1.67395 0.836974 0.547243i \(-0.184323\pi\)
0.836974 + 0.547243i \(0.184323\pi\)
\(572\) 5.00000 0.209061
\(573\) −3.00000 −0.125327
\(574\) 0 0
\(575\) −12.0000 −0.500435
\(576\) 1.00000 0.0416667
\(577\) 38.0000 1.58196 0.790980 0.611842i \(-0.209571\pi\)
0.790980 + 0.611842i \(0.209571\pi\)
\(578\) −8.00000 −0.332756
\(579\) −12.0000 −0.498703
\(580\) 9.00000 0.373705
\(581\) 0 0
\(582\) −14.0000 −0.580319
\(583\) −10.0000 −0.414158
\(584\) −11.0000 −0.455183
\(585\) 1.00000 0.0413449
\(586\) −14.0000 −0.578335
\(587\) −14.0000 −0.577842 −0.288921 0.957353i \(-0.593296\pi\)
−0.288921 + 0.957353i \(0.593296\pi\)
\(588\) 0 0
\(589\) −4.00000 −0.164817
\(590\) −4.00000 −0.164677
\(591\) 12.0000 0.493614
\(592\) −11.0000 −0.452097
\(593\) −6.00000 −0.246390 −0.123195 0.992382i \(-0.539314\pi\)
−0.123195 + 0.992382i \(0.539314\pi\)
\(594\) −5.00000 −0.205152
\(595\) 0 0
\(596\) −4.00000 −0.163846
\(597\) 11.0000 0.450200
\(598\) 3.00000 0.122679
\(599\) 5.00000 0.204294 0.102147 0.994769i \(-0.467429\pi\)
0.102147 + 0.994769i \(0.467429\pi\)
\(600\) 4.00000 0.163299
\(601\) 28.0000 1.14214 0.571072 0.820900i \(-0.306528\pi\)
0.571072 + 0.820900i \(0.306528\pi\)
\(602\) 0 0
\(603\) −2.00000 −0.0814463
\(604\) −23.0000 −0.935857
\(605\) 14.0000 0.569181
\(606\) 4.00000 0.162489
\(607\) 43.0000 1.74532 0.872658 0.488332i \(-0.162394\pi\)
0.872658 + 0.488332i \(0.162394\pi\)
\(608\) 1.00000 0.0405554
\(609\) 0 0
\(610\) 15.0000 0.607332
\(611\) 8.00000 0.323645
\(612\) 3.00000 0.121268
\(613\) −9.00000 −0.363507 −0.181753 0.983344i \(-0.558177\pi\)
−0.181753 + 0.983344i \(0.558177\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) 9.00000 0.362326 0.181163 0.983453i \(-0.442014\pi\)
0.181163 + 0.983453i \(0.442014\pi\)
\(618\) −15.0000 −0.603388
\(619\) 17.0000 0.683288 0.341644 0.939829i \(-0.389016\pi\)
0.341644 + 0.939829i \(0.389016\pi\)
\(620\) −4.00000 −0.160644
\(621\) −3.00000 −0.120386
\(622\) 10.0000 0.400963
\(623\) 0 0
\(624\) −1.00000 −0.0400320
\(625\) 11.0000 0.440000
\(626\) 8.00000 0.319744
\(627\) −5.00000 −0.199681
\(628\) 3.00000 0.119713
\(629\) −33.0000 −1.31580
\(630\) 0 0
\(631\) 37.0000 1.47295 0.736473 0.676467i \(-0.236490\pi\)
0.736473 + 0.676467i \(0.236490\pi\)
\(632\) 10.0000 0.397779
\(633\) −9.00000 −0.357718
\(634\) 24.0000 0.953162
\(635\) 2.00000 0.0793676
\(636\) 2.00000 0.0793052
\(637\) 0 0
\(638\) 45.0000 1.78157
\(639\) −12.0000 −0.474713
\(640\) 1.00000 0.0395285
\(641\) −30.0000 −1.18493 −0.592464 0.805597i \(-0.701845\pi\)
−0.592464 + 0.805597i \(0.701845\pi\)
\(642\) −10.0000 −0.394669
\(643\) 7.00000 0.276053 0.138027 0.990429i \(-0.455924\pi\)
0.138027 + 0.990429i \(0.455924\pi\)
\(644\) 0 0
\(645\) 5.00000 0.196875
\(646\) 3.00000 0.118033
\(647\) −32.0000 −1.25805 −0.629025 0.777385i \(-0.716546\pi\)
−0.629025 + 0.777385i \(0.716546\pi\)
\(648\) 1.00000 0.0392837
\(649\) −20.0000 −0.785069
\(650\) −4.00000 −0.156893
\(651\) 0 0
\(652\) 10.0000 0.391630
\(653\) 31.0000 1.21312 0.606562 0.795036i \(-0.292548\pi\)
0.606562 + 0.795036i \(0.292548\pi\)
\(654\) 9.00000 0.351928
\(655\) −13.0000 −0.507952
\(656\) 0 0
\(657\) −11.0000 −0.429151
\(658\) 0 0
\(659\) 30.0000 1.16863 0.584317 0.811525i \(-0.301362\pi\)
0.584317 + 0.811525i \(0.301362\pi\)
\(660\) −5.00000 −0.194625
\(661\) −46.0000 −1.78919 −0.894596 0.446875i \(-0.852537\pi\)
−0.894596 + 0.446875i \(0.852537\pi\)
\(662\) 10.0000 0.388661
\(663\) −3.00000 −0.116510
\(664\) 14.0000 0.543305
\(665\) 0 0
\(666\) −11.0000 −0.426241
\(667\) 27.0000 1.04544
\(668\) 21.0000 0.812514
\(669\) −14.0000 −0.541271
\(670\) −2.00000 −0.0772667
\(671\) 75.0000 2.89534
\(672\) 0 0
\(673\) −33.0000 −1.27206 −0.636028 0.771666i \(-0.719424\pi\)
−0.636028 + 0.771666i \(0.719424\pi\)
\(674\) −5.00000 −0.192593
\(675\) 4.00000 0.153960
\(676\) 1.00000 0.0384615
\(677\) −34.0000 −1.30673 −0.653363 0.757045i \(-0.726642\pi\)
−0.653363 + 0.757045i \(0.726642\pi\)
\(678\) −2.00000 −0.0768095
\(679\) 0 0
\(680\) 3.00000 0.115045
\(681\) 18.0000 0.689761
\(682\) −20.0000 −0.765840
\(683\) −9.00000 −0.344375 −0.172188 0.985064i \(-0.555084\pi\)
−0.172188 + 0.985064i \(0.555084\pi\)
\(684\) 1.00000 0.0382360
\(685\) 19.0000 0.725953
\(686\) 0 0
\(687\) 6.00000 0.228914
\(688\) −5.00000 −0.190623
\(689\) −2.00000 −0.0761939
\(690\) −3.00000 −0.114208
\(691\) −20.0000 −0.760836 −0.380418 0.924815i \(-0.624220\pi\)
−0.380418 + 0.924815i \(0.624220\pi\)
\(692\) −6.00000 −0.228086
\(693\) 0 0
\(694\) −16.0000 −0.607352
\(695\) 0 0
\(696\) −9.00000 −0.341144
\(697\) 0 0
\(698\) −14.0000 −0.529908
\(699\) −24.0000 −0.907763
\(700\) 0 0
\(701\) 2.00000 0.0755390 0.0377695 0.999286i \(-0.487975\pi\)
0.0377695 + 0.999286i \(0.487975\pi\)
\(702\) −1.00000 −0.0377426
\(703\) −11.0000 −0.414873
\(704\) 5.00000 0.188445
\(705\) −8.00000 −0.301297
\(706\) −18.0000 −0.677439
\(707\) 0 0
\(708\) 4.00000 0.150329
\(709\) −18.0000 −0.676004 −0.338002 0.941145i \(-0.609751\pi\)
−0.338002 + 0.941145i \(0.609751\pi\)
\(710\) −12.0000 −0.450352
\(711\) 10.0000 0.375029
\(712\) −6.00000 −0.224860
\(713\) −12.0000 −0.449404
\(714\) 0 0
\(715\) 5.00000 0.186989
\(716\) 12.0000 0.448461
\(717\) 12.0000 0.448148
\(718\) −4.00000 −0.149279
\(719\) −34.0000 −1.26799 −0.633993 0.773339i \(-0.718585\pi\)
−0.633993 + 0.773339i \(0.718585\pi\)
\(720\) 1.00000 0.0372678
\(721\) 0 0
\(722\) −18.0000 −0.669891
\(723\) 18.0000 0.669427
\(724\) −14.0000 −0.520306
\(725\) −36.0000 −1.33701
\(726\) −14.0000 −0.519589
\(727\) 35.0000 1.29808 0.649039 0.760755i \(-0.275171\pi\)
0.649039 + 0.760755i \(0.275171\pi\)
\(728\) 0 0
\(729\) 1.00000 0.0370370
\(730\) −11.0000 −0.407128
\(731\) −15.0000 −0.554795
\(732\) −15.0000 −0.554416
\(733\) −20.0000 −0.738717 −0.369358 0.929287i \(-0.620423\pi\)
−0.369358 + 0.929287i \(0.620423\pi\)
\(734\) −32.0000 −1.18114
\(735\) 0 0
\(736\) 3.00000 0.110581
\(737\) −10.0000 −0.368355
\(738\) 0 0
\(739\) −2.00000 −0.0735712 −0.0367856 0.999323i \(-0.511712\pi\)
−0.0367856 + 0.999323i \(0.511712\pi\)
\(740\) −11.0000 −0.404368
\(741\) −1.00000 −0.0367359
\(742\) 0 0
\(743\) −26.0000 −0.953847 −0.476924 0.878945i \(-0.658248\pi\)
−0.476924 + 0.878945i \(0.658248\pi\)
\(744\) 4.00000 0.146647
\(745\) −4.00000 −0.146549
\(746\) −4.00000 −0.146450
\(747\) 14.0000 0.512233
\(748\) 15.0000 0.548454
\(749\) 0 0
\(750\) 9.00000 0.328634
\(751\) −32.0000 −1.16770 −0.583848 0.811863i \(-0.698454\pi\)
−0.583848 + 0.811863i \(0.698454\pi\)
\(752\) 8.00000 0.291730
\(753\) −7.00000 −0.255094
\(754\) 9.00000 0.327761
\(755\) −23.0000 −0.837056
\(756\) 0 0
\(757\) −26.0000 −0.944986 −0.472493 0.881334i \(-0.656646\pi\)
−0.472493 + 0.881334i \(0.656646\pi\)
\(758\) 16.0000 0.581146
\(759\) −15.0000 −0.544466
\(760\) 1.00000 0.0362738
\(761\) −20.0000 −0.724999 −0.362500 0.931984i \(-0.618077\pi\)
−0.362500 + 0.931984i \(0.618077\pi\)
\(762\) −2.00000 −0.0724524
\(763\) 0 0
\(764\) 3.00000 0.108536
\(765\) 3.00000 0.108465
\(766\) 29.0000 1.04781
\(767\) −4.00000 −0.144432
\(768\) −1.00000 −0.0360844
\(769\) −49.0000 −1.76699 −0.883493 0.468445i \(-0.844814\pi\)
−0.883493 + 0.468445i \(0.844814\pi\)
\(770\) 0 0
\(771\) 6.00000 0.216085
\(772\) 12.0000 0.431889
\(773\) 3.00000 0.107903 0.0539513 0.998544i \(-0.482818\pi\)
0.0539513 + 0.998544i \(0.482818\pi\)
\(774\) −5.00000 −0.179721
\(775\) 16.0000 0.574737
\(776\) 14.0000 0.502571
\(777\) 0 0
\(778\) −2.00000 −0.0717035
\(779\) 0 0
\(780\) −1.00000 −0.0358057
\(781\) −60.0000 −2.14697
\(782\) 9.00000 0.321839
\(783\) −9.00000 −0.321634
\(784\) 0 0
\(785\) 3.00000 0.107075
\(786\) 13.0000 0.463695
\(787\) −39.0000 −1.39020 −0.695100 0.718913i \(-0.744640\pi\)
−0.695100 + 0.718913i \(0.744640\pi\)
\(788\) −12.0000 −0.427482
\(789\) −12.0000 −0.427211
\(790\) 10.0000 0.355784
\(791\) 0 0
\(792\) 5.00000 0.177667
\(793\) 15.0000 0.532666
\(794\) −6.00000 −0.212932
\(795\) 2.00000 0.0709327
\(796\) −11.0000 −0.389885
\(797\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(798\) 0 0
\(799\) 24.0000 0.849059
\(800\) −4.00000 −0.141421
\(801\) −6.00000 −0.212000
\(802\) −18.0000 −0.635602
\(803\) −55.0000 −1.94091
\(804\) 2.00000 0.0705346
\(805\) 0 0
\(806\) −4.00000 −0.140894
\(807\) 18.0000 0.633630
\(808\) −4.00000 −0.140720
\(809\) 54.0000 1.89854 0.949269 0.314464i \(-0.101825\pi\)
0.949269 + 0.314464i \(0.101825\pi\)
\(810\) 1.00000 0.0351364
\(811\) −35.0000 −1.22902 −0.614508 0.788911i \(-0.710645\pi\)
−0.614508 + 0.788911i \(0.710645\pi\)
\(812\) 0 0
\(813\) −22.0000 −0.771574
\(814\) −55.0000 −1.92775
\(815\) 10.0000 0.350285
\(816\) −3.00000 −0.105021
\(817\) −5.00000 −0.174928
\(818\) −25.0000 −0.874105
\(819\) 0 0
\(820\) 0 0
\(821\) −32.0000 −1.11681 −0.558404 0.829569i \(-0.688586\pi\)
−0.558404 + 0.829569i \(0.688586\pi\)
\(822\) −19.0000 −0.662701
\(823\) −16.0000 −0.557725 −0.278862 0.960331i \(-0.589957\pi\)
−0.278862 + 0.960331i \(0.589957\pi\)
\(824\) 15.0000 0.522550
\(825\) 20.0000 0.696311
\(826\) 0 0
\(827\) −19.0000 −0.660695 −0.330347 0.943859i \(-0.607166\pi\)
−0.330347 + 0.943859i \(0.607166\pi\)
\(828\) 3.00000 0.104257
\(829\) −25.0000 −0.868286 −0.434143 0.900844i \(-0.642949\pi\)
−0.434143 + 0.900844i \(0.642949\pi\)
\(830\) 14.0000 0.485947
\(831\) −26.0000 −0.901930
\(832\) 1.00000 0.0346688
\(833\) 0 0
\(834\) 0 0
\(835\) 21.0000 0.726735
\(836\) 5.00000 0.172929
\(837\) 4.00000 0.138260
\(838\) −7.00000 −0.241811
\(839\) 28.0000 0.966667 0.483334 0.875436i \(-0.339426\pi\)
0.483334 + 0.875436i \(0.339426\pi\)
\(840\) 0 0
\(841\) 52.0000 1.79310
\(842\) 30.0000 1.03387
\(843\) 26.0000 0.895488
\(844\) 9.00000 0.309793
\(845\) 1.00000 0.0344010
\(846\) 8.00000 0.275046
\(847\) 0 0
\(848\) −2.00000 −0.0686803
\(849\) 4.00000 0.137280
\(850\) −12.0000 −0.411597
\(851\) −33.0000 −1.13123
\(852\) 12.0000 0.411113
\(853\) 28.0000 0.958702 0.479351 0.877623i \(-0.340872\pi\)
0.479351 + 0.877623i \(0.340872\pi\)
\(854\) 0 0
\(855\) 1.00000 0.0341993
\(856\) 10.0000 0.341793
\(857\) −18.0000 −0.614868 −0.307434 0.951569i \(-0.599470\pi\)
−0.307434 + 0.951569i \(0.599470\pi\)
\(858\) −5.00000 −0.170697
\(859\) 8.00000 0.272956 0.136478 0.990643i \(-0.456422\pi\)
0.136478 + 0.990643i \(0.456422\pi\)
\(860\) −5.00000 −0.170499
\(861\) 0 0
\(862\) −2.00000 −0.0681203
\(863\) 38.0000 1.29354 0.646768 0.762687i \(-0.276120\pi\)
0.646768 + 0.762687i \(0.276120\pi\)
\(864\) −1.00000 −0.0340207
\(865\) −6.00000 −0.204006
\(866\) −28.0000 −0.951479
\(867\) 8.00000 0.271694
\(868\) 0 0
\(869\) 50.0000 1.69613
\(870\) −9.00000 −0.305129
\(871\) −2.00000 −0.0677674
\(872\) −9.00000 −0.304778
\(873\) 14.0000 0.473828
\(874\) 3.00000 0.101477
\(875\) 0 0
\(876\) 11.0000 0.371656
\(877\) −18.0000 −0.607817 −0.303908 0.952701i \(-0.598292\pi\)
−0.303908 + 0.952701i \(0.598292\pi\)
\(878\) −13.0000 −0.438729
\(879\) 14.0000 0.472208
\(880\) 5.00000 0.168550
\(881\) −21.0000 −0.707508 −0.353754 0.935339i \(-0.615095\pi\)
−0.353754 + 0.935339i \(0.615095\pi\)
\(882\) 0 0
\(883\) 51.0000 1.71629 0.858143 0.513410i \(-0.171618\pi\)
0.858143 + 0.513410i \(0.171618\pi\)
\(884\) 3.00000 0.100901
\(885\) 4.00000 0.134459
\(886\) −18.0000 −0.604722
\(887\) −48.0000 −1.61168 −0.805841 0.592132i \(-0.798286\pi\)
−0.805841 + 0.592132i \(0.798286\pi\)
\(888\) 11.0000 0.369136
\(889\) 0 0
\(890\) −6.00000 −0.201120
\(891\) 5.00000 0.167506
\(892\) 14.0000 0.468755
\(893\) 8.00000 0.267710
\(894\) 4.00000 0.133780
\(895\) 12.0000 0.401116
\(896\) 0 0
\(897\) −3.00000 −0.100167
\(898\) 23.0000 0.767520
\(899\) −36.0000 −1.20067
\(900\) −4.00000 −0.133333
\(901\) −6.00000 −0.199889
\(902\) 0 0
\(903\) 0 0
\(904\) 2.00000 0.0665190
\(905\) −14.0000 −0.465376
\(906\) 23.0000 0.764124
\(907\) 12.0000 0.398453 0.199227 0.979953i \(-0.436157\pi\)
0.199227 + 0.979953i \(0.436157\pi\)
\(908\) −18.0000 −0.597351
\(909\) −4.00000 −0.132672
\(910\) 0 0
\(911\) −19.0000 −0.629498 −0.314749 0.949175i \(-0.601920\pi\)
−0.314749 + 0.949175i \(0.601920\pi\)
\(912\) −1.00000 −0.0331133
\(913\) 70.0000 2.31666
\(914\) −32.0000 −1.05847
\(915\) −15.0000 −0.495885
\(916\) −6.00000 −0.198246
\(917\) 0 0
\(918\) −3.00000 −0.0990148
\(919\) 38.0000 1.25350 0.626752 0.779219i \(-0.284384\pi\)
0.626752 + 0.779219i \(0.284384\pi\)
\(920\) 3.00000 0.0989071
\(921\) 0 0
\(922\) 35.0000 1.15266
\(923\) −12.0000 −0.394985
\(924\) 0 0
\(925\) 44.0000 1.44671
\(926\) 9.00000 0.295758
\(927\) 15.0000 0.492665
\(928\) 9.00000 0.295439
\(929\) 8.00000 0.262471 0.131236 0.991351i \(-0.458106\pi\)
0.131236 + 0.991351i \(0.458106\pi\)
\(930\) 4.00000 0.131165
\(931\) 0 0
\(932\) 24.0000 0.786146
\(933\) −10.0000 −0.327385
\(934\) 15.0000 0.490815
\(935\) 15.0000 0.490552
\(936\) 1.00000 0.0326860
\(937\) −14.0000 −0.457360 −0.228680 0.973502i \(-0.573441\pi\)
−0.228680 + 0.973502i \(0.573441\pi\)
\(938\) 0 0
\(939\) −8.00000 −0.261070
\(940\) 8.00000 0.260931
\(941\) −18.0000 −0.586783 −0.293392 0.955992i \(-0.594784\pi\)
−0.293392 + 0.955992i \(0.594784\pi\)
\(942\) −3.00000 −0.0977453
\(943\) 0 0
\(944\) −4.00000 −0.130189
\(945\) 0 0
\(946\) −25.0000 −0.812820
\(947\) −39.0000 −1.26733 −0.633665 0.773608i \(-0.718450\pi\)
−0.633665 + 0.773608i \(0.718450\pi\)
\(948\) −10.0000 −0.324785
\(949\) −11.0000 −0.357075
\(950\) −4.00000 −0.129777
\(951\) −24.0000 −0.778253
\(952\) 0 0
\(953\) 16.0000 0.518291 0.259145 0.965838i \(-0.416559\pi\)
0.259145 + 0.965838i \(0.416559\pi\)
\(954\) −2.00000 −0.0647524
\(955\) 3.00000 0.0970777
\(956\) −12.0000 −0.388108
\(957\) −45.0000 −1.45464
\(958\) 31.0000 1.00156
\(959\) 0 0
\(960\) −1.00000 −0.0322749
\(961\) −15.0000 −0.483871
\(962\) −11.0000 −0.354654
\(963\) 10.0000 0.322245
\(964\) −18.0000 −0.579741
\(965\) 12.0000 0.386294
\(966\) 0 0
\(967\) −5.00000 −0.160789 −0.0803946 0.996763i \(-0.525618\pi\)
−0.0803946 + 0.996763i \(0.525618\pi\)
\(968\) 14.0000 0.449977
\(969\) −3.00000 −0.0963739
\(970\) 14.0000 0.449513
\(971\) 8.00000 0.256732 0.128366 0.991727i \(-0.459027\pi\)
0.128366 + 0.991727i \(0.459027\pi\)
\(972\) −1.00000 −0.0320750
\(973\) 0 0
\(974\) −16.0000 −0.512673
\(975\) 4.00000 0.128103
\(976\) 15.0000 0.480138
\(977\) −51.0000 −1.63163 −0.815817 0.578310i \(-0.803713\pi\)
−0.815817 + 0.578310i \(0.803713\pi\)
\(978\) −10.0000 −0.319765
\(979\) −30.0000 −0.958804
\(980\) 0 0
\(981\) −9.00000 −0.287348
\(982\) −26.0000 −0.829693
\(983\) −25.0000 −0.797376 −0.398688 0.917087i \(-0.630534\pi\)
−0.398688 + 0.917087i \(0.630534\pi\)
\(984\) 0 0
\(985\) −12.0000 −0.382352
\(986\) 27.0000 0.859855
\(987\) 0 0
\(988\) 1.00000 0.0318142
\(989\) −15.0000 −0.476972
\(990\) 5.00000 0.158910
\(991\) −2.00000 −0.0635321 −0.0317660 0.999495i \(-0.510113\pi\)
−0.0317660 + 0.999495i \(0.510113\pi\)
\(992\) −4.00000 −0.127000
\(993\) −10.0000 −0.317340
\(994\) 0 0
\(995\) −11.0000 −0.348723
\(996\) −14.0000 −0.443607
\(997\) 10.0000 0.316703 0.158352 0.987383i \(-0.449382\pi\)
0.158352 + 0.987383i \(0.449382\pi\)
\(998\) −4.00000 −0.126618
\(999\) 11.0000 0.348025
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 3822.2.a.w.1.1 1
7.6 odd 2 546.2.a.f.1.1 1
21.20 even 2 1638.2.a.h.1.1 1
28.27 even 2 4368.2.a.e.1.1 1
91.90 odd 2 7098.2.a.n.1.1 1
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
546.2.a.f.1.1 1 7.6 odd 2
1638.2.a.h.1.1 1 21.20 even 2
3822.2.a.w.1.1 1 1.1 even 1 trivial
4368.2.a.e.1.1 1 28.27 even 2
7098.2.a.n.1.1 1 91.90 odd 2