# Properties

 Label 3822.2.a.d Level $3822$ Weight $2$ Character orbit 3822.a Self dual yes Analytic conductor $30.519$ Analytic rank $1$ Dimension $1$ CM no Inner twists $1$

# Related objects

Show commands: Magma / PariGP / SageMath

## Newspace parameters

comment: Compute space of new eigenforms

[N,k,chi] = [3822,2,Mod(1,3822)]

mf = mfinit([N,k,chi],0)

lf = mfeigenbasis(mf)

from sage.modular.dirichlet import DirichletCharacter

H = DirichletGroup(3822, base_ring=CyclotomicField(2))

chi = DirichletCharacter(H, H._module([0, 0, 0]))

N = Newforms(chi, 2, names="a")

//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code

chi := DirichletCharacter("3822.1");

S:= CuspForms(chi, 2);

N := Newforms(S);

 Level: $$N$$ $$=$$ $$3822 = 2 \cdot 3 \cdot 7^{2} \cdot 13$$ Weight: $$k$$ $$=$$ $$2$$ Character orbit: $$[\chi]$$ $$=$$ 3822.a (trivial)

## Newform invariants

comment: select newform

sage: f = N[0] # Warning: the index may be different

gp: f = lf[1] \\ Warning: the index may be different

 Self dual: yes Analytic conductor: $$30.5188236525$$ Analytic rank: $$1$$ Dimension: $$1$$ Coefficient field: $$\mathbb{Q}$$ Coefficient ring: $$\mathbb{Z}$$ Coefficient ring index: $$1$$ Twist minimal: yes Fricke sign: $$+1$$ Sato-Tate group: $\mathrm{SU}(2)$

## $q$-expansion

comment: q-expansion

sage: f.q_expansion() # note that sage often uses an isomorphic number field

gp: mfcoefs(f, 20)

 $$f(q)$$ $$=$$ $$q - q^{2} - q^{3} + q^{4} - q^{5} + q^{6} - q^{8} + q^{9}+O(q^{10})$$ q - q^2 - q^3 + q^4 - q^5 + q^6 - q^8 + q^9 $$q - q^{2} - q^{3} + q^{4} - q^{5} + q^{6} - q^{8} + q^{9} + q^{10} + q^{11} - q^{12} + q^{13} + q^{15} + q^{16} + 5 q^{17} - q^{18} - q^{19} - q^{20} - q^{22} - 5 q^{23} + q^{24} - 4 q^{25} - q^{26} - q^{27} - 3 q^{29} - q^{30} - 2 q^{31} - q^{32} - q^{33} - 5 q^{34} + q^{36} - 11 q^{37} + q^{38} - q^{39} + q^{40} - q^{43} + q^{44} - q^{45} + 5 q^{46} + 12 q^{47} - q^{48} + 4 q^{50} - 5 q^{51} + q^{52} + 10 q^{53} + q^{54} - q^{55} + q^{57} + 3 q^{58} + 14 q^{59} + q^{60} + q^{61} + 2 q^{62} + q^{64} - q^{65} + q^{66} + 4 q^{67} + 5 q^{68} + 5 q^{69} - 2 q^{71} - q^{72} - q^{73} + 11 q^{74} + 4 q^{75} - q^{76} + q^{78} - 8 q^{79} - q^{80} + q^{81} - 2 q^{83} - 5 q^{85} + q^{86} + 3 q^{87} - q^{88} - 12 q^{89} + q^{90} - 5 q^{92} + 2 q^{93} - 12 q^{94} + q^{95} + q^{96} - 2 q^{97} + q^{99}+O(q^{100})$$ q - q^2 - q^3 + q^4 - q^5 + q^6 - q^8 + q^9 + q^10 + q^11 - q^12 + q^13 + q^15 + q^16 + 5 * q^17 - q^18 - q^19 - q^20 - q^22 - 5 * q^23 + q^24 - 4 * q^25 - q^26 - q^27 - 3 * q^29 - q^30 - 2 * q^31 - q^32 - q^33 - 5 * q^34 + q^36 - 11 * q^37 + q^38 - q^39 + q^40 - q^43 + q^44 - q^45 + 5 * q^46 + 12 * q^47 - q^48 + 4 * q^50 - 5 * q^51 + q^52 + 10 * q^53 + q^54 - q^55 + q^57 + 3 * q^58 + 14 * q^59 + q^60 + q^61 + 2 * q^62 + q^64 - q^65 + q^66 + 4 * q^67 + 5 * q^68 + 5 * q^69 - 2 * q^71 - q^72 - q^73 + 11 * q^74 + 4 * q^75 - q^76 + q^78 - 8 * q^79 - q^80 + q^81 - 2 * q^83 - 5 * q^85 + q^86 + 3 * q^87 - q^88 - 12 * q^89 + q^90 - 5 * q^92 + 2 * q^93 - 12 * q^94 + q^95 + q^96 - 2 * q^97 + q^99

## Embeddings

For each embedding $$\iota_m$$ of the coefficient field, the values $$\iota_m(a_n)$$ are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field

gp: mfembed(f)

Label   $$\iota_m(\nu)$$ $$a_{2}$$ $$a_{3}$$ $$a_{4}$$ $$a_{5}$$ $$a_{6}$$ $$a_{7}$$ $$a_{8}$$ $$a_{9}$$ $$a_{10}$$
1.1
 0
−1.00000 −1.00000 1.00000 −1.00000 1.00000 0 −1.00000 1.00000 1.00000
 $$n$$: e.g. 2-40 or 990-1000 Significant digits: Format: Complex embeddings Normalized embeddings Satake parameters Satake angles

## Atkin-Lehner signs

$$p$$ Sign
$$2$$ $$+1$$
$$3$$ $$+1$$
$$7$$ $$-1$$
$$13$$ $$-1$$

## Inner twists

This newform does not admit any (nontrivial) inner twists.

## Twists

By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 3822.2.a.d 1
7.b odd 2 1 3822.2.a.o yes 1

By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
3822.2.a.d 1 1.a even 1 1 trivial
3822.2.a.o yes 1 7.b odd 2 1

## Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on $$S_{2}^{\mathrm{new}}(\Gamma_0(3822))$$:

 $$T_{5} + 1$$ T5 + 1 $$T_{11} - 1$$ T11 - 1 $$T_{17} - 5$$ T17 - 5 $$T_{29} + 3$$ T29 + 3

## Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ $$T + 1$$
$3$ $$T + 1$$
$5$ $$T + 1$$
$7$ $$T$$
$11$ $$T - 1$$
$13$ $$T - 1$$
$17$ $$T - 5$$
$19$ $$T + 1$$
$23$ $$T + 5$$
$29$ $$T + 3$$
$31$ $$T + 2$$
$37$ $$T + 11$$
$41$ $$T$$
$43$ $$T + 1$$
$47$ $$T - 12$$
$53$ $$T - 10$$
$59$ $$T - 14$$
$61$ $$T - 1$$
$67$ $$T - 4$$
$71$ $$T + 2$$
$73$ $$T + 1$$
$79$ $$T + 8$$
$83$ $$T + 2$$
$89$ $$T + 12$$
$97$ $$T + 2$$