Properties

Label 3822.2.a.bw
Level $3822$
Weight $2$
Character orbit 3822.a
Self dual yes
Analytic conductor $30.519$
Analytic rank $1$
Dimension $3$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [3822,2,Mod(1,3822)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(3822, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("3822.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 3822 = 2 \cdot 3 \cdot 7^{2} \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 3822.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(30.5188236525\)
Analytic rank: \(1\)
Dimension: \(3\)
Coefficient field: 3.3.2700.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{3} - 15x - 20 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 546)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\beta_2\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q - q^{2} + q^{3} + q^{4} + (\beta_1 - 1) q^{5} - q^{6} - q^{8} + q^{9}+O(q^{10}) \) Copy content Toggle raw display \( q - q^{2} + q^{3} + q^{4} + (\beta_1 - 1) q^{5} - q^{6} - q^{8} + q^{9} + ( - \beta_1 + 1) q^{10} + (\beta_{2} - \beta_1 - 1) q^{11} + q^{12} - q^{13} + (\beta_1 - 1) q^{15} + q^{16} + ( - 2 \beta_{2} - \beta_1 - 2) q^{17} - q^{18} + ( - \beta_{2} - 2) q^{19} + (\beta_1 - 1) q^{20} + ( - \beta_{2} + \beta_1 + 1) q^{22} + (\beta_{2} - \beta_1) q^{23} - q^{24} + (\beta_{2} + 6) q^{25} + q^{26} + q^{27} - 3 q^{29} + ( - \beta_1 + 1) q^{30} + (\beta_{2} + 5) q^{31} - q^{32} + (\beta_{2} - \beta_1 - 1) q^{33} + (2 \beta_{2} + \beta_1 + 2) q^{34} + q^{36} + ( - \beta_{2} - \beta_1 + 2) q^{37} + (\beta_{2} + 2) q^{38} - q^{39} + ( - \beta_1 + 1) q^{40} + (\beta_{2} + \beta_1 - 6) q^{41} + ( - 2 \beta_1 - 4) q^{43} + (\beta_{2} - \beta_1 - 1) q^{44} + (\beta_1 - 1) q^{45} + ( - \beta_{2} + \beta_1) q^{46} + ( - \beta_{2} + 2 \beta_1 + 2) q^{47} + q^{48} + ( - \beta_{2} - 6) q^{50} + ( - 2 \beta_{2} - \beta_1 - 2) q^{51} - q^{52} + ( - 2 \beta_{2} - 2 \beta_1 + 1) q^{53} - q^{54} + ( - 4 \beta_{2} - \beta_1 - 9) q^{55} + ( - \beta_{2} - 2) q^{57} + 3 q^{58} + (\beta_{2} + \beta_1 + 1) q^{59} + (\beta_1 - 1) q^{60} + (2 \beta_{2} - \beta_1) q^{61} + ( - \beta_{2} - 5) q^{62} + q^{64} + ( - \beta_1 + 1) q^{65} + ( - \beta_{2} + \beta_1 + 1) q^{66} + ( - 3 \beta_{2} + 2) q^{67} + ( - 2 \beta_{2} - \beta_1 - 2) q^{68} + (\beta_{2} - \beta_1) q^{69} + ( - \beta_{2} - 12) q^{71} - q^{72} + (\beta_{2} - \beta_1 - 8) q^{73} + (\beta_{2} + \beta_1 - 2) q^{74} + (\beta_{2} + 6) q^{75} + ( - \beta_{2} - 2) q^{76} + q^{78} + (\beta_{2} + 2 \beta_1 + 5) q^{79} + (\beta_1 - 1) q^{80} + q^{81} + ( - \beta_{2} - \beta_1 + 6) q^{82} + (3 \beta_{2} - 3) q^{83} + (5 \beta_{2} - 5 \beta_1 - 8) q^{85} + (2 \beta_1 + 4) q^{86} - 3 q^{87} + ( - \beta_{2} + \beta_1 + 1) q^{88} + ( - \beta_{2} - \beta_1 - 10) q^{89} + ( - \beta_1 + 1) q^{90} + (\beta_{2} - \beta_1) q^{92} + (\beta_{2} + 5) q^{93} + (\beta_{2} - 2 \beta_1 - 2) q^{94} + (3 \beta_{2} - 3 \beta_1 + 2) q^{95} - q^{96} + (2 \beta_{2} + \beta_1 - 1) q^{97} + (\beta_{2} - \beta_1 - 1) q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 3 q - 3 q^{2} + 3 q^{3} + 3 q^{4} - 3 q^{5} - 3 q^{6} - 3 q^{8} + 3 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 3 q - 3 q^{2} + 3 q^{3} + 3 q^{4} - 3 q^{5} - 3 q^{6} - 3 q^{8} + 3 q^{9} + 3 q^{10} - 3 q^{11} + 3 q^{12} - 3 q^{13} - 3 q^{15} + 3 q^{16} - 6 q^{17} - 3 q^{18} - 6 q^{19} - 3 q^{20} + 3 q^{22} - 3 q^{24} + 18 q^{25} + 3 q^{26} + 3 q^{27} - 9 q^{29} + 3 q^{30} + 15 q^{31} - 3 q^{32} - 3 q^{33} + 6 q^{34} + 3 q^{36} + 6 q^{37} + 6 q^{38} - 3 q^{39} + 3 q^{40} - 18 q^{41} - 12 q^{43} - 3 q^{44} - 3 q^{45} + 6 q^{47} + 3 q^{48} - 18 q^{50} - 6 q^{51} - 3 q^{52} + 3 q^{53} - 3 q^{54} - 27 q^{55} - 6 q^{57} + 9 q^{58} + 3 q^{59} - 3 q^{60} - 15 q^{62} + 3 q^{64} + 3 q^{65} + 3 q^{66} + 6 q^{67} - 6 q^{68} - 36 q^{71} - 3 q^{72} - 24 q^{73} - 6 q^{74} + 18 q^{75} - 6 q^{76} + 3 q^{78} + 15 q^{79} - 3 q^{80} + 3 q^{81} + 18 q^{82} - 9 q^{83} - 24 q^{85} + 12 q^{86} - 9 q^{87} + 3 q^{88} - 30 q^{89} + 3 q^{90} + 15 q^{93} - 6 q^{94} + 6 q^{95} - 3 q^{96} - 3 q^{97} - 3 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{3} - 15x - 20 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( \nu \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( \nu^{2} - 2\nu - 10 \) Copy content Toggle raw display
\(\nu\)\(=\) \( \beta_1 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( \beta_{2} + 2\beta _1 + 10 \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
−2.80560
−1.61323
4.41883
−1.00000 1.00000 1.00000 −3.80560 −1.00000 0 −1.00000 1.00000 3.80560
1.2 −1.00000 1.00000 1.00000 −2.61323 −1.00000 0 −1.00000 1.00000 2.61323
1.3 −1.00000 1.00000 1.00000 3.41883 −1.00000 0 −1.00000 1.00000 −3.41883
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(2\) \( +1 \)
\(3\) \( -1 \)
\(7\) \( -1 \)
\(13\) \( +1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 3822.2.a.bw 3
7.b odd 2 1 3822.2.a.bv 3
7.d odd 6 2 546.2.i.k 6
21.g even 6 2 1638.2.j.q 6
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
546.2.i.k 6 7.d odd 6 2
1638.2.j.q 6 21.g even 6 2
3822.2.a.bv 3 7.b odd 2 1
3822.2.a.bw 3 1.a even 1 1 trivial

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(\Gamma_0(3822))\):

\( T_{5}^{3} + 3T_{5}^{2} - 12T_{5} - 34 \) Copy content Toggle raw display
\( T_{11}^{3} + 3T_{11}^{2} - 27T_{11} - 89 \) Copy content Toggle raw display
\( T_{17}^{3} + 6T_{17}^{2} - 63T_{17} - 382 \) Copy content Toggle raw display
\( T_{29} + 3 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( (T + 1)^{3} \) Copy content Toggle raw display
$3$ \( (T - 1)^{3} \) Copy content Toggle raw display
$5$ \( T^{3} + 3 T^{2} + \cdots - 34 \) Copy content Toggle raw display
$7$ \( T^{3} \) Copy content Toggle raw display
$11$ \( T^{3} + 3 T^{2} + \cdots - 89 \) Copy content Toggle raw display
$13$ \( (T + 1)^{3} \) Copy content Toggle raw display
$17$ \( T^{3} + 6 T^{2} + \cdots - 382 \) Copy content Toggle raw display
$19$ \( T^{3} + 6 T^{2} + \cdots - 32 \) Copy content Toggle raw display
$23$ \( T^{3} - 30T - 60 \) Copy content Toggle raw display
$29$ \( (T + 3)^{3} \) Copy content Toggle raw display
$31$ \( T^{3} - 15 T^{2} + \cdots - 40 \) Copy content Toggle raw display
$37$ \( T^{3} - 6 T^{2} + \cdots + 32 \) Copy content Toggle raw display
$41$ \( T^{3} + 18 T^{2} + \cdots + 56 \) Copy content Toggle raw display
$43$ \( T^{3} + 12 T^{2} + \cdots - 16 \) Copy content Toggle raw display
$47$ \( T^{3} - 6 T^{2} + \cdots + 212 \) Copy content Toggle raw display
$53$ \( T^{3} - 3 T^{2} + \cdots - 41 \) Copy content Toggle raw display
$59$ \( T^{3} - 3 T^{2} + \cdots + 49 \) Copy content Toggle raw display
$61$ \( T^{3} - 75T - 200 \) Copy content Toggle raw display
$67$ \( T^{3} - 6 T^{2} + \cdots - 8 \) Copy content Toggle raw display
$71$ \( T^{3} + 36 T^{2} + \cdots + 1538 \) Copy content Toggle raw display
$73$ \( T^{3} + 24 T^{2} + \cdots + 212 \) Copy content Toggle raw display
$79$ \( T^{3} - 15T^{2} + 100 \) Copy content Toggle raw display
$83$ \( T^{3} + 9 T^{2} + \cdots - 108 \) Copy content Toggle raw display
$89$ \( T^{3} + 30 T^{2} + \cdots + 680 \) Copy content Toggle raw display
$97$ \( T^{3} + 3 T^{2} + \cdots + 166 \) Copy content Toggle raw display
show more
show less