Properties

Label 3822.2.a.bu
Level $3822$
Weight $2$
Character orbit 3822.a
Self dual yes
Analytic conductor $30.519$
Analytic rank $0$
Dimension $2$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Newspace parameters

Level: \( N \) \(=\) \( 3822 = 2 \cdot 3 \cdot 7^{2} \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 3822.a (trivial)

Newform invariants

Self dual: yes
Analytic conductor: \(30.5188236525\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{2}) \)
Defining polynomial: \( x^{2} - 2 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 546)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

Coefficients of the \(q\)-expansion are expressed in terms of \(\beta = \sqrt{2}\). We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + q^{2} + q^{3} + q^{4} + (\beta + 2) q^{5} + q^{6} + q^{8} + q^{9}+O(q^{10}) \) Copy content Toggle raw display \( q + q^{2} + q^{3} + q^{4} + (\beta + 2) q^{5} + q^{6} + q^{8} + q^{9} + (\beta + 2) q^{10} + (\beta + 1) q^{11} + q^{12} - q^{13} + (\beta + 2) q^{15} + q^{16} + ( - \beta + 1) q^{17} + q^{18} + (2 \beta + 5) q^{19} + (\beta + 2) q^{20} + (\beta + 1) q^{22} - \beta q^{23} + q^{24} + (4 \beta + 1) q^{25} - q^{26} + q^{27} + (2 \beta + 1) q^{29} + (\beta + 2) q^{30} - 6 \beta q^{31} + q^{32} + (\beta + 1) q^{33} + ( - \beta + 1) q^{34} + q^{36} - \beta q^{37} + (2 \beta + 5) q^{38} - q^{39} + (\beta + 2) q^{40} - 7 \beta q^{41} + ( - 6 \beta - 2) q^{43} + (\beta + 1) q^{44} + (\beta + 2) q^{45} - \beta q^{46} - q^{47} + q^{48} + (4 \beta + 1) q^{50} + ( - \beta + 1) q^{51} - q^{52} + ( - 6 \beta + 1) q^{53} + q^{54} + (3 \beta + 4) q^{55} + (2 \beta + 5) q^{57} + (2 \beta + 1) q^{58} + (5 \beta + 5) q^{59} + (\beta + 2) q^{60} + ( - \beta + 3) q^{61} - 6 \beta q^{62} + q^{64} + ( - \beta - 2) q^{65} + (\beta + 1) q^{66} + ( - 2 \beta - 1) q^{67} + ( - \beta + 1) q^{68} - \beta q^{69} - 5 q^{71} + q^{72} + \beta q^{73} - \beta q^{74} + (4 \beta + 1) q^{75} + (2 \beta + 5) q^{76} - q^{78} + (4 \beta - 6) q^{79} + (\beta + 2) q^{80} + q^{81} - 7 \beta q^{82} + (4 \beta - 2) q^{83} - \beta q^{85} + ( - 6 \beta - 2) q^{86} + (2 \beta + 1) q^{87} + (\beta + 1) q^{88} + ( - \beta - 4) q^{89} + (\beta + 2) q^{90} - \beta q^{92} - 6 \beta q^{93} - q^{94} + (9 \beta + 14) q^{95} + q^{96} + (5 \beta + 8) q^{97} + (\beta + 1) q^{99} +O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q + 2 q^{2} + 2 q^{3} + 2 q^{4} + 4 q^{5} + 2 q^{6} + 2 q^{8} + 2 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 2 q + 2 q^{2} + 2 q^{3} + 2 q^{4} + 4 q^{5} + 2 q^{6} + 2 q^{8} + 2 q^{9} + 4 q^{10} + 2 q^{11} + 2 q^{12} - 2 q^{13} + 4 q^{15} + 2 q^{16} + 2 q^{17} + 2 q^{18} + 10 q^{19} + 4 q^{20} + 2 q^{22} + 2 q^{24} + 2 q^{25} - 2 q^{26} + 2 q^{27} + 2 q^{29} + 4 q^{30} + 2 q^{32} + 2 q^{33} + 2 q^{34} + 2 q^{36} + 10 q^{38} - 2 q^{39} + 4 q^{40} - 4 q^{43} + 2 q^{44} + 4 q^{45} - 2 q^{47} + 2 q^{48} + 2 q^{50} + 2 q^{51} - 2 q^{52} + 2 q^{53} + 2 q^{54} + 8 q^{55} + 10 q^{57} + 2 q^{58} + 10 q^{59} + 4 q^{60} + 6 q^{61} + 2 q^{64} - 4 q^{65} + 2 q^{66} - 2 q^{67} + 2 q^{68} - 10 q^{71} + 2 q^{72} + 2 q^{75} + 10 q^{76} - 2 q^{78} - 12 q^{79} + 4 q^{80} + 2 q^{81} - 4 q^{83} - 4 q^{86} + 2 q^{87} + 2 q^{88} - 8 q^{89} + 4 q^{90} - 2 q^{94} + 28 q^{95} + 2 q^{96} + 16 q^{97} + 2 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Label \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
−1.41421
1.41421
1.00000 1.00000 1.00000 0.585786 1.00000 0 1.00000 1.00000 0.585786
1.2 1.00000 1.00000 1.00000 3.41421 1.00000 0 1.00000 1.00000 3.41421
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(2\) \(-1\)
\(3\) \(-1\)
\(7\) \(-1\)
\(13\) \(1\)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 3822.2.a.bu 2
7.b odd 2 1 3822.2.a.bn 2
7.d odd 6 2 546.2.i.i 4
21.g even 6 2 1638.2.j.m 4
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
546.2.i.i 4 7.d odd 6 2
1638.2.j.m 4 21.g even 6 2
3822.2.a.bn 2 7.b odd 2 1
3822.2.a.bu 2 1.a even 1 1 trivial

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(\Gamma_0(3822))\):

\( T_{5}^{2} - 4T_{5} + 2 \) Copy content Toggle raw display
\( T_{11}^{2} - 2T_{11} - 1 \) Copy content Toggle raw display
\( T_{17}^{2} - 2T_{17} - 1 \) Copy content Toggle raw display
\( T_{29}^{2} - 2T_{29} - 7 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( (T - 1)^{2} \) Copy content Toggle raw display
$3$ \( (T - 1)^{2} \) Copy content Toggle raw display
$5$ \( T^{2} - 4T + 2 \) Copy content Toggle raw display
$7$ \( T^{2} \) Copy content Toggle raw display
$11$ \( T^{2} - 2T - 1 \) Copy content Toggle raw display
$13$ \( (T + 1)^{2} \) Copy content Toggle raw display
$17$ \( T^{2} - 2T - 1 \) Copy content Toggle raw display
$19$ \( T^{2} - 10T + 17 \) Copy content Toggle raw display
$23$ \( T^{2} - 2 \) Copy content Toggle raw display
$29$ \( T^{2} - 2T - 7 \) Copy content Toggle raw display
$31$ \( T^{2} - 72 \) Copy content Toggle raw display
$37$ \( T^{2} - 2 \) Copy content Toggle raw display
$41$ \( T^{2} - 98 \) Copy content Toggle raw display
$43$ \( T^{2} + 4T - 68 \) Copy content Toggle raw display
$47$ \( (T + 1)^{2} \) Copy content Toggle raw display
$53$ \( T^{2} - 2T - 71 \) Copy content Toggle raw display
$59$ \( T^{2} - 10T - 25 \) Copy content Toggle raw display
$61$ \( T^{2} - 6T + 7 \) Copy content Toggle raw display
$67$ \( T^{2} + 2T - 7 \) Copy content Toggle raw display
$71$ \( (T + 5)^{2} \) Copy content Toggle raw display
$73$ \( T^{2} - 2 \) Copy content Toggle raw display
$79$ \( T^{2} + 12T + 4 \) Copy content Toggle raw display
$83$ \( T^{2} + 4T - 28 \) Copy content Toggle raw display
$89$ \( T^{2} + 8T + 14 \) Copy content Toggle raw display
$97$ \( T^{2} - 16T + 14 \) Copy content Toggle raw display
show more
show less