Properties

Label 3822.2.a.bq
Level $3822$
Weight $2$
Character orbit 3822.a
Self dual yes
Analytic conductor $30.519$
Analytic rank $1$
Dimension $2$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Newspace parameters

Level: \( N \) \(=\) \( 3822 = 2 \cdot 3 \cdot 7^{2} \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 3822.a (trivial)

Newform invariants

Self dual: yes
Analytic conductor: \(30.5188236525\)
Analytic rank: \(1\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{2}) \)
Defining polynomial: \( x^{2} - 2 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Fricke sign: \(1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

Coefficients of the \(q\)-expansion are expressed in terms of \(\beta = \sqrt{2}\). We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + q^{2} - q^{3} + q^{4} + q^{5} - q^{6} + q^{8} + q^{9}+O(q^{10}) \) Copy content Toggle raw display \( q + q^{2} - q^{3} + q^{4} + q^{5} - q^{6} + q^{8} + q^{9} + q^{10} + ( - \beta - 5) q^{11} - q^{12} + q^{13} - q^{15} + q^{16} + ( - 3 \beta + 1) q^{17} + q^{18} + (4 \beta - 1) q^{19} + q^{20} + ( - \beta - 5) q^{22} + (2 \beta - 5) q^{23} - q^{24} - 4 q^{25} + q^{26} - q^{27} + (6 \beta - 1) q^{29} - q^{30} - \beta q^{31} + q^{32} + (\beta + 5) q^{33} + ( - 3 \beta + 1) q^{34} + q^{36} + ( - \beta - 7) q^{37} + (4 \beta - 1) q^{38} - q^{39} + q^{40} + ( - 2 \beta + 8) q^{41} + ( - 4 \beta - 3) q^{43} + ( - \beta - 5) q^{44} + q^{45} + (2 \beta - 5) q^{46} - 6 q^{47} - q^{48} - 4 q^{50} + (3 \beta - 1) q^{51} + q^{52} - 4 \beta q^{53} - q^{54} + ( - \beta - 5) q^{55} + ( - 4 \beta + 1) q^{57} + (6 \beta - 1) q^{58} + (5 \beta + 4) q^{59} - q^{60} + ( - \beta - 9) q^{61} - \beta q^{62} + q^{64} + q^{65} + (\beta + 5) q^{66} - 11 \beta q^{67} + ( - 3 \beta + 1) q^{68} + ( - 2 \beta + 5) q^{69} + (3 \beta - 10) q^{71} + q^{72} - 11 q^{73} + ( - \beta - 7) q^{74} + 4 q^{75} + (4 \beta - 1) q^{76} - q^{78} + (3 \beta - 2) q^{79} + q^{80} + q^{81} + ( - 2 \beta + 8) q^{82} + (4 \beta - 2) q^{83} + ( - 3 \beta + 1) q^{85} + ( - 4 \beta - 3) q^{86} + ( - 6 \beta + 1) q^{87} + ( - \beta - 5) q^{88} + (3 \beta + 10) q^{89} + q^{90} + (2 \beta - 5) q^{92} + \beta q^{93} - 6 q^{94} + (4 \beta - 1) q^{95} - q^{96} + ( - 8 \beta + 4) q^{97} + ( - \beta - 5) q^{99} +O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q + 2 q^{2} - 2 q^{3} + 2 q^{4} + 2 q^{5} - 2 q^{6} + 2 q^{8} + 2 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 2 q + 2 q^{2} - 2 q^{3} + 2 q^{4} + 2 q^{5} - 2 q^{6} + 2 q^{8} + 2 q^{9} + 2 q^{10} - 10 q^{11} - 2 q^{12} + 2 q^{13} - 2 q^{15} + 2 q^{16} + 2 q^{17} + 2 q^{18} - 2 q^{19} + 2 q^{20} - 10 q^{22} - 10 q^{23} - 2 q^{24} - 8 q^{25} + 2 q^{26} - 2 q^{27} - 2 q^{29} - 2 q^{30} + 2 q^{32} + 10 q^{33} + 2 q^{34} + 2 q^{36} - 14 q^{37} - 2 q^{38} - 2 q^{39} + 2 q^{40} + 16 q^{41} - 6 q^{43} - 10 q^{44} + 2 q^{45} - 10 q^{46} - 12 q^{47} - 2 q^{48} - 8 q^{50} - 2 q^{51} + 2 q^{52} - 2 q^{54} - 10 q^{55} + 2 q^{57} - 2 q^{58} + 8 q^{59} - 2 q^{60} - 18 q^{61} + 2 q^{64} + 2 q^{65} + 10 q^{66} + 2 q^{68} + 10 q^{69} - 20 q^{71} + 2 q^{72} - 22 q^{73} - 14 q^{74} + 8 q^{75} - 2 q^{76} - 2 q^{78} - 4 q^{79} + 2 q^{80} + 2 q^{81} + 16 q^{82} - 4 q^{83} + 2 q^{85} - 6 q^{86} + 2 q^{87} - 10 q^{88} + 20 q^{89} + 2 q^{90} - 10 q^{92} - 12 q^{94} - 2 q^{95} - 2 q^{96} + 8 q^{97} - 10 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Label \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
1.41421
−1.41421
1.00000 −1.00000 1.00000 1.00000 −1.00000 0 1.00000 1.00000 1.00000
1.2 1.00000 −1.00000 1.00000 1.00000 −1.00000 0 1.00000 1.00000 1.00000
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(2\) \(-1\)
\(3\) \(1\)
\(7\) \(1\)
\(13\) \(-1\)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 3822.2.a.bq 2
7.b odd 2 1 3822.2.a.br yes 2
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
3822.2.a.bq 2 1.a even 1 1 trivial
3822.2.a.br yes 2 7.b odd 2 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(\Gamma_0(3822))\):

\( T_{5} - 1 \) Copy content Toggle raw display
\( T_{11}^{2} + 10T_{11} + 23 \) Copy content Toggle raw display
\( T_{17}^{2} - 2T_{17} - 17 \) Copy content Toggle raw display
\( T_{29}^{2} + 2T_{29} - 71 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( (T - 1)^{2} \) Copy content Toggle raw display
$3$ \( (T + 1)^{2} \) Copy content Toggle raw display
$5$ \( (T - 1)^{2} \) Copy content Toggle raw display
$7$ \( T^{2} \) Copy content Toggle raw display
$11$ \( T^{2} + 10T + 23 \) Copy content Toggle raw display
$13$ \( (T - 1)^{2} \) Copy content Toggle raw display
$17$ \( T^{2} - 2T - 17 \) Copy content Toggle raw display
$19$ \( T^{2} + 2T - 31 \) Copy content Toggle raw display
$23$ \( T^{2} + 10T + 17 \) Copy content Toggle raw display
$29$ \( T^{2} + 2T - 71 \) Copy content Toggle raw display
$31$ \( T^{2} - 2 \) Copy content Toggle raw display
$37$ \( T^{2} + 14T + 47 \) Copy content Toggle raw display
$41$ \( T^{2} - 16T + 56 \) Copy content Toggle raw display
$43$ \( T^{2} + 6T - 23 \) Copy content Toggle raw display
$47$ \( (T + 6)^{2} \) Copy content Toggle raw display
$53$ \( T^{2} - 32 \) Copy content Toggle raw display
$59$ \( T^{2} - 8T - 34 \) Copy content Toggle raw display
$61$ \( T^{2} + 18T + 79 \) Copy content Toggle raw display
$67$ \( T^{2} - 242 \) Copy content Toggle raw display
$71$ \( T^{2} + 20T + 82 \) Copy content Toggle raw display
$73$ \( (T + 11)^{2} \) Copy content Toggle raw display
$79$ \( T^{2} + 4T - 14 \) Copy content Toggle raw display
$83$ \( T^{2} + 4T - 28 \) Copy content Toggle raw display
$89$ \( T^{2} - 20T + 82 \) Copy content Toggle raw display
$97$ \( T^{2} - 8T - 112 \) Copy content Toggle raw display
show more
show less