Properties

Label 3822.2.a.bn.1.2
Level $3822$
Weight $2$
Character 3822.1
Self dual yes
Analytic conductor $30.519$
Analytic rank $1$
Dimension $2$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [3822,2,Mod(1,3822)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(3822, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("3822.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 3822 = 2 \cdot 3 \cdot 7^{2} \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 3822.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(30.5188236525\)
Analytic rank: \(1\)
Dimension: \(2\)
Coefficient field: \(\Q(\zeta_{8})^+\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - 2 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 546)
Fricke sign: \(1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.2
Root \(1.41421\) of defining polynomial
Character \(\chi\) \(=\) 3822.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+1.00000 q^{2} -1.00000 q^{3} +1.00000 q^{4} -0.585786 q^{5} -1.00000 q^{6} +1.00000 q^{8} +1.00000 q^{9} +O(q^{10})\) \(q+1.00000 q^{2} -1.00000 q^{3} +1.00000 q^{4} -0.585786 q^{5} -1.00000 q^{6} +1.00000 q^{8} +1.00000 q^{9} -0.585786 q^{10} -0.414214 q^{11} -1.00000 q^{12} +1.00000 q^{13} +0.585786 q^{15} +1.00000 q^{16} -2.41421 q^{17} +1.00000 q^{18} -2.17157 q^{19} -0.585786 q^{20} -0.414214 q^{22} +1.41421 q^{23} -1.00000 q^{24} -4.65685 q^{25} +1.00000 q^{26} -1.00000 q^{27} -1.82843 q^{29} +0.585786 q^{30} -8.48528 q^{31} +1.00000 q^{32} +0.414214 q^{33} -2.41421 q^{34} +1.00000 q^{36} +1.41421 q^{37} -2.17157 q^{38} -1.00000 q^{39} -0.585786 q^{40} -9.89949 q^{41} +6.48528 q^{43} -0.414214 q^{44} -0.585786 q^{45} +1.41421 q^{46} +1.00000 q^{47} -1.00000 q^{48} -4.65685 q^{50} +2.41421 q^{51} +1.00000 q^{52} +9.48528 q^{53} -1.00000 q^{54} +0.242641 q^{55} +2.17157 q^{57} -1.82843 q^{58} +2.07107 q^{59} +0.585786 q^{60} -4.41421 q^{61} -8.48528 q^{62} +1.00000 q^{64} -0.585786 q^{65} +0.414214 q^{66} +1.82843 q^{67} -2.41421 q^{68} -1.41421 q^{69} -5.00000 q^{71} +1.00000 q^{72} +1.41421 q^{73} +1.41421 q^{74} +4.65685 q^{75} -2.17157 q^{76} -1.00000 q^{78} -11.6569 q^{79} -0.585786 q^{80} +1.00000 q^{81} -9.89949 q^{82} +7.65685 q^{83} +1.41421 q^{85} +6.48528 q^{86} +1.82843 q^{87} -0.414214 q^{88} +2.58579 q^{89} -0.585786 q^{90} +1.41421 q^{92} +8.48528 q^{93} +1.00000 q^{94} +1.27208 q^{95} -1.00000 q^{96} -0.928932 q^{97} -0.414214 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q + 2 q^{2} - 2 q^{3} + 2 q^{4} - 4 q^{5} - 2 q^{6} + 2 q^{8} + 2 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 2 q + 2 q^{2} - 2 q^{3} + 2 q^{4} - 4 q^{5} - 2 q^{6} + 2 q^{8} + 2 q^{9} - 4 q^{10} + 2 q^{11} - 2 q^{12} + 2 q^{13} + 4 q^{15} + 2 q^{16} - 2 q^{17} + 2 q^{18} - 10 q^{19} - 4 q^{20} + 2 q^{22} - 2 q^{24} + 2 q^{25} + 2 q^{26} - 2 q^{27} + 2 q^{29} + 4 q^{30} + 2 q^{32} - 2 q^{33} - 2 q^{34} + 2 q^{36} - 10 q^{38} - 2 q^{39} - 4 q^{40} - 4 q^{43} + 2 q^{44} - 4 q^{45} + 2 q^{47} - 2 q^{48} + 2 q^{50} + 2 q^{51} + 2 q^{52} + 2 q^{53} - 2 q^{54} - 8 q^{55} + 10 q^{57} + 2 q^{58} - 10 q^{59} + 4 q^{60} - 6 q^{61} + 2 q^{64} - 4 q^{65} - 2 q^{66} - 2 q^{67} - 2 q^{68} - 10 q^{71} + 2 q^{72} - 2 q^{75} - 10 q^{76} - 2 q^{78} - 12 q^{79} - 4 q^{80} + 2 q^{81} + 4 q^{83} - 4 q^{86} - 2 q^{87} + 2 q^{88} + 8 q^{89} - 4 q^{90} + 2 q^{94} + 28 q^{95} - 2 q^{96} - 16 q^{97} + 2 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.00000 0.707107
\(3\) −1.00000 −0.577350
\(4\) 1.00000 0.500000
\(5\) −0.585786 −0.261972 −0.130986 0.991384i \(-0.541814\pi\)
−0.130986 + 0.991384i \(0.541814\pi\)
\(6\) −1.00000 −0.408248
\(7\) 0 0
\(8\) 1.00000 0.353553
\(9\) 1.00000 0.333333
\(10\) −0.585786 −0.185242
\(11\) −0.414214 −0.124890 −0.0624450 0.998048i \(-0.519890\pi\)
−0.0624450 + 0.998048i \(0.519890\pi\)
\(12\) −1.00000 −0.288675
\(13\) 1.00000 0.277350
\(14\) 0 0
\(15\) 0.585786 0.151249
\(16\) 1.00000 0.250000
\(17\) −2.41421 −0.585533 −0.292766 0.956184i \(-0.594576\pi\)
−0.292766 + 0.956184i \(0.594576\pi\)
\(18\) 1.00000 0.235702
\(19\) −2.17157 −0.498193 −0.249096 0.968479i \(-0.580134\pi\)
−0.249096 + 0.968479i \(0.580134\pi\)
\(20\) −0.585786 −0.130986
\(21\) 0 0
\(22\) −0.414214 −0.0883106
\(23\) 1.41421 0.294884 0.147442 0.989071i \(-0.452896\pi\)
0.147442 + 0.989071i \(0.452896\pi\)
\(24\) −1.00000 −0.204124
\(25\) −4.65685 −0.931371
\(26\) 1.00000 0.196116
\(27\) −1.00000 −0.192450
\(28\) 0 0
\(29\) −1.82843 −0.339530 −0.169765 0.985485i \(-0.554301\pi\)
−0.169765 + 0.985485i \(0.554301\pi\)
\(30\) 0.585786 0.106949
\(31\) −8.48528 −1.52400 −0.762001 0.647576i \(-0.775783\pi\)
−0.762001 + 0.647576i \(0.775783\pi\)
\(32\) 1.00000 0.176777
\(33\) 0.414214 0.0721053
\(34\) −2.41421 −0.414034
\(35\) 0 0
\(36\) 1.00000 0.166667
\(37\) 1.41421 0.232495 0.116248 0.993220i \(-0.462913\pi\)
0.116248 + 0.993220i \(0.462913\pi\)
\(38\) −2.17157 −0.352276
\(39\) −1.00000 −0.160128
\(40\) −0.585786 −0.0926210
\(41\) −9.89949 −1.54604 −0.773021 0.634381i \(-0.781255\pi\)
−0.773021 + 0.634381i \(0.781255\pi\)
\(42\) 0 0
\(43\) 6.48528 0.988996 0.494498 0.869179i \(-0.335352\pi\)
0.494498 + 0.869179i \(0.335352\pi\)
\(44\) −0.414214 −0.0624450
\(45\) −0.585786 −0.0873239
\(46\) 1.41421 0.208514
\(47\) 1.00000 0.145865 0.0729325 0.997337i \(-0.476764\pi\)
0.0729325 + 0.997337i \(0.476764\pi\)
\(48\) −1.00000 −0.144338
\(49\) 0 0
\(50\) −4.65685 −0.658579
\(51\) 2.41421 0.338058
\(52\) 1.00000 0.138675
\(53\) 9.48528 1.30290 0.651452 0.758690i \(-0.274160\pi\)
0.651452 + 0.758690i \(0.274160\pi\)
\(54\) −1.00000 −0.136083
\(55\) 0.242641 0.0327177
\(56\) 0 0
\(57\) 2.17157 0.287632
\(58\) −1.82843 −0.240084
\(59\) 2.07107 0.269630 0.134815 0.990871i \(-0.456956\pi\)
0.134815 + 0.990871i \(0.456956\pi\)
\(60\) 0.585786 0.0756247
\(61\) −4.41421 −0.565182 −0.282591 0.959240i \(-0.591194\pi\)
−0.282591 + 0.959240i \(0.591194\pi\)
\(62\) −8.48528 −1.07763
\(63\) 0 0
\(64\) 1.00000 0.125000
\(65\) −0.585786 −0.0726579
\(66\) 0.414214 0.0509862
\(67\) 1.82843 0.223378 0.111689 0.993743i \(-0.464374\pi\)
0.111689 + 0.993743i \(0.464374\pi\)
\(68\) −2.41421 −0.292766
\(69\) −1.41421 −0.170251
\(70\) 0 0
\(71\) −5.00000 −0.593391 −0.296695 0.954972i \(-0.595885\pi\)
−0.296695 + 0.954972i \(0.595885\pi\)
\(72\) 1.00000 0.117851
\(73\) 1.41421 0.165521 0.0827606 0.996569i \(-0.473626\pi\)
0.0827606 + 0.996569i \(0.473626\pi\)
\(74\) 1.41421 0.164399
\(75\) 4.65685 0.537727
\(76\) −2.17157 −0.249096
\(77\) 0 0
\(78\) −1.00000 −0.113228
\(79\) −11.6569 −1.31150 −0.655749 0.754979i \(-0.727647\pi\)
−0.655749 + 0.754979i \(0.727647\pi\)
\(80\) −0.585786 −0.0654929
\(81\) 1.00000 0.111111
\(82\) −9.89949 −1.09322
\(83\) 7.65685 0.840449 0.420224 0.907420i \(-0.361951\pi\)
0.420224 + 0.907420i \(0.361951\pi\)
\(84\) 0 0
\(85\) 1.41421 0.153393
\(86\) 6.48528 0.699326
\(87\) 1.82843 0.196028
\(88\) −0.414214 −0.0441553
\(89\) 2.58579 0.274093 0.137046 0.990565i \(-0.456239\pi\)
0.137046 + 0.990565i \(0.456239\pi\)
\(90\) −0.585786 −0.0617473
\(91\) 0 0
\(92\) 1.41421 0.147442
\(93\) 8.48528 0.879883
\(94\) 1.00000 0.103142
\(95\) 1.27208 0.130512
\(96\) −1.00000 −0.102062
\(97\) −0.928932 −0.0943188 −0.0471594 0.998887i \(-0.515017\pi\)
−0.0471594 + 0.998887i \(0.515017\pi\)
\(98\) 0 0
\(99\) −0.414214 −0.0416300
\(100\) −4.65685 −0.465685
\(101\) −14.8284 −1.47548 −0.737742 0.675083i \(-0.764108\pi\)
−0.737742 + 0.675083i \(0.764108\pi\)
\(102\) 2.41421 0.239043
\(103\) −16.8284 −1.65815 −0.829077 0.559134i \(-0.811134\pi\)
−0.829077 + 0.559134i \(0.811134\pi\)
\(104\) 1.00000 0.0980581
\(105\) 0 0
\(106\) 9.48528 0.921292
\(107\) −19.3137 −1.86713 −0.933563 0.358412i \(-0.883318\pi\)
−0.933563 + 0.358412i \(0.883318\pi\)
\(108\) −1.00000 −0.0962250
\(109\) −9.65685 −0.924959 −0.462479 0.886630i \(-0.653040\pi\)
−0.462479 + 0.886630i \(0.653040\pi\)
\(110\) 0.242641 0.0231349
\(111\) −1.41421 −0.134231
\(112\) 0 0
\(113\) 4.89949 0.460906 0.230453 0.973083i \(-0.425979\pi\)
0.230453 + 0.973083i \(0.425979\pi\)
\(114\) 2.17157 0.203386
\(115\) −0.828427 −0.0772512
\(116\) −1.82843 −0.169765
\(117\) 1.00000 0.0924500
\(118\) 2.07107 0.190657
\(119\) 0 0
\(120\) 0.585786 0.0534747
\(121\) −10.8284 −0.984402
\(122\) −4.41421 −0.399644
\(123\) 9.89949 0.892607
\(124\) −8.48528 −0.762001
\(125\) 5.65685 0.505964
\(126\) 0 0
\(127\) −7.89949 −0.700967 −0.350483 0.936569i \(-0.613983\pi\)
−0.350483 + 0.936569i \(0.613983\pi\)
\(128\) 1.00000 0.0883883
\(129\) −6.48528 −0.570997
\(130\) −0.585786 −0.0513769
\(131\) −9.55635 −0.834942 −0.417471 0.908690i \(-0.637083\pi\)
−0.417471 + 0.908690i \(0.637083\pi\)
\(132\) 0.414214 0.0360527
\(133\) 0 0
\(134\) 1.82843 0.157952
\(135\) 0.585786 0.0504165
\(136\) −2.41421 −0.207017
\(137\) 11.0711 0.945865 0.472933 0.881099i \(-0.343195\pi\)
0.472933 + 0.881099i \(0.343195\pi\)
\(138\) −1.41421 −0.120386
\(139\) −13.0711 −1.10867 −0.554337 0.832292i \(-0.687028\pi\)
−0.554337 + 0.832292i \(0.687028\pi\)
\(140\) 0 0
\(141\) −1.00000 −0.0842152
\(142\) −5.00000 −0.419591
\(143\) −0.414214 −0.0346383
\(144\) 1.00000 0.0833333
\(145\) 1.07107 0.0889473
\(146\) 1.41421 0.117041
\(147\) 0 0
\(148\) 1.41421 0.116248
\(149\) −4.92893 −0.403794 −0.201897 0.979407i \(-0.564711\pi\)
−0.201897 + 0.979407i \(0.564711\pi\)
\(150\) 4.65685 0.380231
\(151\) 4.07107 0.331299 0.165649 0.986185i \(-0.447028\pi\)
0.165649 + 0.986185i \(0.447028\pi\)
\(152\) −2.17157 −0.176138
\(153\) −2.41421 −0.195178
\(154\) 0 0
\(155\) 4.97056 0.399245
\(156\) −1.00000 −0.0800641
\(157\) 9.72792 0.776373 0.388186 0.921581i \(-0.373102\pi\)
0.388186 + 0.921581i \(0.373102\pi\)
\(158\) −11.6569 −0.927370
\(159\) −9.48528 −0.752232
\(160\) −0.585786 −0.0463105
\(161\) 0 0
\(162\) 1.00000 0.0785674
\(163\) −18.6569 −1.46132 −0.730659 0.682743i \(-0.760787\pi\)
−0.730659 + 0.682743i \(0.760787\pi\)
\(164\) −9.89949 −0.773021
\(165\) −0.242641 −0.0188896
\(166\) 7.65685 0.594287
\(167\) −0.656854 −0.0508289 −0.0254145 0.999677i \(-0.508091\pi\)
−0.0254145 + 0.999677i \(0.508091\pi\)
\(168\) 0 0
\(169\) 1.00000 0.0769231
\(170\) 1.41421 0.108465
\(171\) −2.17157 −0.166064
\(172\) 6.48528 0.494498
\(173\) 5.48528 0.417038 0.208519 0.978018i \(-0.433136\pi\)
0.208519 + 0.978018i \(0.433136\pi\)
\(174\) 1.82843 0.138613
\(175\) 0 0
\(176\) −0.414214 −0.0312225
\(177\) −2.07107 −0.155671
\(178\) 2.58579 0.193813
\(179\) 19.6569 1.46922 0.734611 0.678488i \(-0.237365\pi\)
0.734611 + 0.678488i \(0.237365\pi\)
\(180\) −0.585786 −0.0436619
\(181\) 2.89949 0.215518 0.107759 0.994177i \(-0.465633\pi\)
0.107759 + 0.994177i \(0.465633\pi\)
\(182\) 0 0
\(183\) 4.41421 0.326308
\(184\) 1.41421 0.104257
\(185\) −0.828427 −0.0609072
\(186\) 8.48528 0.622171
\(187\) 1.00000 0.0731272
\(188\) 1.00000 0.0729325
\(189\) 0 0
\(190\) 1.27208 0.0922862
\(191\) −10.3431 −0.748404 −0.374202 0.927347i \(-0.622083\pi\)
−0.374202 + 0.927347i \(0.622083\pi\)
\(192\) −1.00000 −0.0721688
\(193\) −2.92893 −0.210829 −0.105415 0.994428i \(-0.533617\pi\)
−0.105415 + 0.994428i \(0.533617\pi\)
\(194\) −0.928932 −0.0666934
\(195\) 0.585786 0.0419490
\(196\) 0 0
\(197\) −15.5563 −1.10834 −0.554172 0.832402i \(-0.686965\pi\)
−0.554172 + 0.832402i \(0.686965\pi\)
\(198\) −0.414214 −0.0294369
\(199\) 2.72792 0.193377 0.0966886 0.995315i \(-0.469175\pi\)
0.0966886 + 0.995315i \(0.469175\pi\)
\(200\) −4.65685 −0.329289
\(201\) −1.82843 −0.128967
\(202\) −14.8284 −1.04332
\(203\) 0 0
\(204\) 2.41421 0.169029
\(205\) 5.79899 0.405019
\(206\) −16.8284 −1.17249
\(207\) 1.41421 0.0982946
\(208\) 1.00000 0.0693375
\(209\) 0.899495 0.0622194
\(210\) 0 0
\(211\) −12.9289 −0.890064 −0.445032 0.895515i \(-0.646808\pi\)
−0.445032 + 0.895515i \(0.646808\pi\)
\(212\) 9.48528 0.651452
\(213\) 5.00000 0.342594
\(214\) −19.3137 −1.32026
\(215\) −3.79899 −0.259089
\(216\) −1.00000 −0.0680414
\(217\) 0 0
\(218\) −9.65685 −0.654045
\(219\) −1.41421 −0.0955637
\(220\) 0.242641 0.0163588
\(221\) −2.41421 −0.162398
\(222\) −1.41421 −0.0949158
\(223\) −7.92893 −0.530961 −0.265480 0.964116i \(-0.585531\pi\)
−0.265480 + 0.964116i \(0.585531\pi\)
\(224\) 0 0
\(225\) −4.65685 −0.310457
\(226\) 4.89949 0.325910
\(227\) −21.1716 −1.40521 −0.702603 0.711582i \(-0.747979\pi\)
−0.702603 + 0.711582i \(0.747979\pi\)
\(228\) 2.17157 0.143816
\(229\) 26.4853 1.75020 0.875098 0.483945i \(-0.160797\pi\)
0.875098 + 0.483945i \(0.160797\pi\)
\(230\) −0.828427 −0.0546249
\(231\) 0 0
\(232\) −1.82843 −0.120042
\(233\) −17.7279 −1.16139 −0.580697 0.814119i \(-0.697220\pi\)
−0.580697 + 0.814119i \(0.697220\pi\)
\(234\) 1.00000 0.0653720
\(235\) −0.585786 −0.0382125
\(236\) 2.07107 0.134815
\(237\) 11.6569 0.757194
\(238\) 0 0
\(239\) 4.51472 0.292033 0.146016 0.989282i \(-0.453355\pi\)
0.146016 + 0.989282i \(0.453355\pi\)
\(240\) 0.585786 0.0378124
\(241\) −2.14214 −0.137987 −0.0689935 0.997617i \(-0.521979\pi\)
−0.0689935 + 0.997617i \(0.521979\pi\)
\(242\) −10.8284 −0.696078
\(243\) −1.00000 −0.0641500
\(244\) −4.41421 −0.282591
\(245\) 0 0
\(246\) 9.89949 0.631169
\(247\) −2.17157 −0.138174
\(248\) −8.48528 −0.538816
\(249\) −7.65685 −0.485233
\(250\) 5.65685 0.357771
\(251\) 24.8284 1.56716 0.783578 0.621293i \(-0.213392\pi\)
0.783578 + 0.621293i \(0.213392\pi\)
\(252\) 0 0
\(253\) −0.585786 −0.0368281
\(254\) −7.89949 −0.495658
\(255\) −1.41421 −0.0885615
\(256\) 1.00000 0.0625000
\(257\) 26.4853 1.65211 0.826053 0.563592i \(-0.190581\pi\)
0.826053 + 0.563592i \(0.190581\pi\)
\(258\) −6.48528 −0.403756
\(259\) 0 0
\(260\) −0.585786 −0.0363289
\(261\) −1.82843 −0.113177
\(262\) −9.55635 −0.590393
\(263\) 20.5858 1.26937 0.634687 0.772769i \(-0.281129\pi\)
0.634687 + 0.772769i \(0.281129\pi\)
\(264\) 0.414214 0.0254931
\(265\) −5.55635 −0.341324
\(266\) 0 0
\(267\) −2.58579 −0.158248
\(268\) 1.82843 0.111689
\(269\) −9.14214 −0.557406 −0.278703 0.960377i \(-0.589904\pi\)
−0.278703 + 0.960377i \(0.589904\pi\)
\(270\) 0.585786 0.0356498
\(271\) 26.2132 1.59234 0.796169 0.605074i \(-0.206856\pi\)
0.796169 + 0.605074i \(0.206856\pi\)
\(272\) −2.41421 −0.146383
\(273\) 0 0
\(274\) 11.0711 0.668828
\(275\) 1.92893 0.116319
\(276\) −1.41421 −0.0851257
\(277\) 18.0711 1.08579 0.542893 0.839802i \(-0.317329\pi\)
0.542893 + 0.839802i \(0.317329\pi\)
\(278\) −13.0711 −0.783951
\(279\) −8.48528 −0.508001
\(280\) 0 0
\(281\) 0.686292 0.0409407 0.0204704 0.999790i \(-0.493484\pi\)
0.0204704 + 0.999790i \(0.493484\pi\)
\(282\) −1.00000 −0.0595491
\(283\) −15.7574 −0.936678 −0.468339 0.883549i \(-0.655147\pi\)
−0.468339 + 0.883549i \(0.655147\pi\)
\(284\) −5.00000 −0.296695
\(285\) −1.27208 −0.0753514
\(286\) −0.414214 −0.0244930
\(287\) 0 0
\(288\) 1.00000 0.0589256
\(289\) −11.1716 −0.657151
\(290\) 1.07107 0.0628953
\(291\) 0.928932 0.0544550
\(292\) 1.41421 0.0827606
\(293\) −9.89949 −0.578335 −0.289167 0.957279i \(-0.593378\pi\)
−0.289167 + 0.957279i \(0.593378\pi\)
\(294\) 0 0
\(295\) −1.21320 −0.0706354
\(296\) 1.41421 0.0821995
\(297\) 0.414214 0.0240351
\(298\) −4.92893 −0.285525
\(299\) 1.41421 0.0817861
\(300\) 4.65685 0.268864
\(301\) 0 0
\(302\) 4.07107 0.234264
\(303\) 14.8284 0.851871
\(304\) −2.17157 −0.124548
\(305\) 2.58579 0.148062
\(306\) −2.41421 −0.138011
\(307\) −28.1127 −1.60448 −0.802238 0.597004i \(-0.796358\pi\)
−0.802238 + 0.597004i \(0.796358\pi\)
\(308\) 0 0
\(309\) 16.8284 0.957336
\(310\) 4.97056 0.282309
\(311\) −8.10051 −0.459338 −0.229669 0.973269i \(-0.573764\pi\)
−0.229669 + 0.973269i \(0.573764\pi\)
\(312\) −1.00000 −0.0566139
\(313\) 3.51472 0.198664 0.0993318 0.995054i \(-0.468329\pi\)
0.0993318 + 0.995054i \(0.468329\pi\)
\(314\) 9.72792 0.548978
\(315\) 0 0
\(316\) −11.6569 −0.655749
\(317\) 29.7990 1.67368 0.836839 0.547449i \(-0.184401\pi\)
0.836839 + 0.547449i \(0.184401\pi\)
\(318\) −9.48528 −0.531908
\(319\) 0.757359 0.0424040
\(320\) −0.585786 −0.0327465
\(321\) 19.3137 1.07799
\(322\) 0 0
\(323\) 5.24264 0.291708
\(324\) 1.00000 0.0555556
\(325\) −4.65685 −0.258316
\(326\) −18.6569 −1.03331
\(327\) 9.65685 0.534025
\(328\) −9.89949 −0.546608
\(329\) 0 0
\(330\) −0.242641 −0.0133569
\(331\) −22.4853 −1.23590 −0.617951 0.786216i \(-0.712037\pi\)
−0.617951 + 0.786216i \(0.712037\pi\)
\(332\) 7.65685 0.420224
\(333\) 1.41421 0.0774984
\(334\) −0.656854 −0.0359415
\(335\) −1.07107 −0.0585187
\(336\) 0 0
\(337\) −20.3137 −1.10656 −0.553279 0.832996i \(-0.686624\pi\)
−0.553279 + 0.832996i \(0.686624\pi\)
\(338\) 1.00000 0.0543928
\(339\) −4.89949 −0.266104
\(340\) 1.41421 0.0766965
\(341\) 3.51472 0.190333
\(342\) −2.17157 −0.117425
\(343\) 0 0
\(344\) 6.48528 0.349663
\(345\) 0.828427 0.0446010
\(346\) 5.48528 0.294891
\(347\) −8.72792 −0.468539 −0.234270 0.972172i \(-0.575270\pi\)
−0.234270 + 0.972172i \(0.575270\pi\)
\(348\) 1.82843 0.0980140
\(349\) −6.72792 −0.360137 −0.180069 0.983654i \(-0.557632\pi\)
−0.180069 + 0.983654i \(0.557632\pi\)
\(350\) 0 0
\(351\) −1.00000 −0.0533761
\(352\) −0.414214 −0.0220777
\(353\) 12.6274 0.672090 0.336045 0.941846i \(-0.390911\pi\)
0.336045 + 0.941846i \(0.390911\pi\)
\(354\) −2.07107 −0.110076
\(355\) 2.92893 0.155452
\(356\) 2.58579 0.137046
\(357\) 0 0
\(358\) 19.6569 1.03890
\(359\) −0.828427 −0.0437227 −0.0218614 0.999761i \(-0.506959\pi\)
−0.0218614 + 0.999761i \(0.506959\pi\)
\(360\) −0.585786 −0.0308737
\(361\) −14.2843 −0.751804
\(362\) 2.89949 0.152394
\(363\) 10.8284 0.568345
\(364\) 0 0
\(365\) −0.828427 −0.0433619
\(366\) 4.41421 0.230735
\(367\) 12.6274 0.659146 0.329573 0.944130i \(-0.393095\pi\)
0.329573 + 0.944130i \(0.393095\pi\)
\(368\) 1.41421 0.0737210
\(369\) −9.89949 −0.515347
\(370\) −0.828427 −0.0430679
\(371\) 0 0
\(372\) 8.48528 0.439941
\(373\) −5.58579 −0.289221 −0.144611 0.989489i \(-0.546193\pi\)
−0.144611 + 0.989489i \(0.546193\pi\)
\(374\) 1.00000 0.0517088
\(375\) −5.65685 −0.292119
\(376\) 1.00000 0.0515711
\(377\) −1.82843 −0.0941688
\(378\) 0 0
\(379\) 18.6274 0.956826 0.478413 0.878135i \(-0.341212\pi\)
0.478413 + 0.878135i \(0.341212\pi\)
\(380\) 1.27208 0.0652562
\(381\) 7.89949 0.404703
\(382\) −10.3431 −0.529201
\(383\) 11.1716 0.570841 0.285420 0.958402i \(-0.407867\pi\)
0.285420 + 0.958402i \(0.407867\pi\)
\(384\) −1.00000 −0.0510310
\(385\) 0 0
\(386\) −2.92893 −0.149079
\(387\) 6.48528 0.329665
\(388\) −0.928932 −0.0471594
\(389\) −4.51472 −0.228905 −0.114453 0.993429i \(-0.536511\pi\)
−0.114453 + 0.993429i \(0.536511\pi\)
\(390\) 0.585786 0.0296624
\(391\) −3.41421 −0.172664
\(392\) 0 0
\(393\) 9.55635 0.482054
\(394\) −15.5563 −0.783718
\(395\) 6.82843 0.343575
\(396\) −0.414214 −0.0208150
\(397\) −9.55635 −0.479619 −0.239810 0.970820i \(-0.577085\pi\)
−0.239810 + 0.970820i \(0.577085\pi\)
\(398\) 2.72792 0.136738
\(399\) 0 0
\(400\) −4.65685 −0.232843
\(401\) 19.8995 0.993733 0.496867 0.867827i \(-0.334484\pi\)
0.496867 + 0.867827i \(0.334484\pi\)
\(402\) −1.82843 −0.0911937
\(403\) −8.48528 −0.422682
\(404\) −14.8284 −0.737742
\(405\) −0.585786 −0.0291080
\(406\) 0 0
\(407\) −0.585786 −0.0290364
\(408\) 2.41421 0.119521
\(409\) 32.5858 1.61126 0.805632 0.592417i \(-0.201826\pi\)
0.805632 + 0.592417i \(0.201826\pi\)
\(410\) 5.79899 0.286392
\(411\) −11.0711 −0.546096
\(412\) −16.8284 −0.829077
\(413\) 0 0
\(414\) 1.41421 0.0695048
\(415\) −4.48528 −0.220174
\(416\) 1.00000 0.0490290
\(417\) 13.0711 0.640093
\(418\) 0.899495 0.0439957
\(419\) 27.4558 1.34131 0.670653 0.741771i \(-0.266014\pi\)
0.670653 + 0.741771i \(0.266014\pi\)
\(420\) 0 0
\(421\) 1.07107 0.0522007 0.0261003 0.999659i \(-0.491691\pi\)
0.0261003 + 0.999659i \(0.491691\pi\)
\(422\) −12.9289 −0.629371
\(423\) 1.00000 0.0486217
\(424\) 9.48528 0.460646
\(425\) 11.2426 0.545348
\(426\) 5.00000 0.242251
\(427\) 0 0
\(428\) −19.3137 −0.933563
\(429\) 0.414214 0.0199984
\(430\) −3.79899 −0.183204
\(431\) 30.4853 1.46842 0.734212 0.678920i \(-0.237552\pi\)
0.734212 + 0.678920i \(0.237552\pi\)
\(432\) −1.00000 −0.0481125
\(433\) 29.9706 1.44029 0.720147 0.693822i \(-0.244074\pi\)
0.720147 + 0.693822i \(0.244074\pi\)
\(434\) 0 0
\(435\) −1.07107 −0.0513538
\(436\) −9.65685 −0.462479
\(437\) −3.07107 −0.146909
\(438\) −1.41421 −0.0675737
\(439\) 16.5858 0.791596 0.395798 0.918338i \(-0.370468\pi\)
0.395798 + 0.918338i \(0.370468\pi\)
\(440\) 0.242641 0.0115674
\(441\) 0 0
\(442\) −2.41421 −0.114832
\(443\) −33.6985 −1.60106 −0.800532 0.599290i \(-0.795449\pi\)
−0.800532 + 0.599290i \(0.795449\pi\)
\(444\) −1.41421 −0.0671156
\(445\) −1.51472 −0.0718045
\(446\) −7.92893 −0.375446
\(447\) 4.92893 0.233130
\(448\) 0 0
\(449\) 24.9706 1.17843 0.589217 0.807975i \(-0.299436\pi\)
0.589217 + 0.807975i \(0.299436\pi\)
\(450\) −4.65685 −0.219526
\(451\) 4.10051 0.193085
\(452\) 4.89949 0.230453
\(453\) −4.07107 −0.191275
\(454\) −21.1716 −0.993631
\(455\) 0 0
\(456\) 2.17157 0.101693
\(457\) −3.07107 −0.143658 −0.0718292 0.997417i \(-0.522884\pi\)
−0.0718292 + 0.997417i \(0.522884\pi\)
\(458\) 26.4853 1.23758
\(459\) 2.41421 0.112686
\(460\) −0.828427 −0.0386256
\(461\) −4.48528 −0.208900 −0.104450 0.994530i \(-0.533308\pi\)
−0.104450 + 0.994530i \(0.533308\pi\)
\(462\) 0 0
\(463\) −20.9706 −0.974585 −0.487292 0.873239i \(-0.662015\pi\)
−0.487292 + 0.873239i \(0.662015\pi\)
\(464\) −1.82843 −0.0848826
\(465\) −4.97056 −0.230504
\(466\) −17.7279 −0.821230
\(467\) −11.4142 −0.528187 −0.264093 0.964497i \(-0.585073\pi\)
−0.264093 + 0.964497i \(0.585073\pi\)
\(468\) 1.00000 0.0462250
\(469\) 0 0
\(470\) −0.585786 −0.0270203
\(471\) −9.72792 −0.448239
\(472\) 2.07107 0.0953286
\(473\) −2.68629 −0.123516
\(474\) 11.6569 0.535417
\(475\) 10.1127 0.464002
\(476\) 0 0
\(477\) 9.48528 0.434301
\(478\) 4.51472 0.206498
\(479\) −32.1127 −1.46727 −0.733633 0.679546i \(-0.762177\pi\)
−0.733633 + 0.679546i \(0.762177\pi\)
\(480\) 0.585786 0.0267374
\(481\) 1.41421 0.0644826
\(482\) −2.14214 −0.0975716
\(483\) 0 0
\(484\) −10.8284 −0.492201
\(485\) 0.544156 0.0247088
\(486\) −1.00000 −0.0453609
\(487\) 16.2132 0.734690 0.367345 0.930085i \(-0.380267\pi\)
0.367345 + 0.930085i \(0.380267\pi\)
\(488\) −4.41421 −0.199822
\(489\) 18.6569 0.843692
\(490\) 0 0
\(491\) 23.6569 1.06762 0.533809 0.845605i \(-0.320760\pi\)
0.533809 + 0.845605i \(0.320760\pi\)
\(492\) 9.89949 0.446304
\(493\) 4.41421 0.198806
\(494\) −2.17157 −0.0977037
\(495\) 0.242641 0.0109059
\(496\) −8.48528 −0.381000
\(497\) 0 0
\(498\) −7.65685 −0.343112
\(499\) 3.65685 0.163703 0.0818516 0.996645i \(-0.473917\pi\)
0.0818516 + 0.996645i \(0.473917\pi\)
\(500\) 5.65685 0.252982
\(501\) 0.656854 0.0293461
\(502\) 24.8284 1.10815
\(503\) 26.1421 1.16562 0.582810 0.812608i \(-0.301953\pi\)
0.582810 + 0.812608i \(0.301953\pi\)
\(504\) 0 0
\(505\) 8.68629 0.386535
\(506\) −0.585786 −0.0260414
\(507\) −1.00000 −0.0444116
\(508\) −7.89949 −0.350483
\(509\) 10.6274 0.471052 0.235526 0.971868i \(-0.424319\pi\)
0.235526 + 0.971868i \(0.424319\pi\)
\(510\) −1.41421 −0.0626224
\(511\) 0 0
\(512\) 1.00000 0.0441942
\(513\) 2.17157 0.0958773
\(514\) 26.4853 1.16822
\(515\) 9.85786 0.434389
\(516\) −6.48528 −0.285499
\(517\) −0.414214 −0.0182171
\(518\) 0 0
\(519\) −5.48528 −0.240777
\(520\) −0.585786 −0.0256884
\(521\) 40.6274 1.77992 0.889960 0.456039i \(-0.150732\pi\)
0.889960 + 0.456039i \(0.150732\pi\)
\(522\) −1.82843 −0.0800281
\(523\) −16.8284 −0.735856 −0.367928 0.929854i \(-0.619933\pi\)
−0.367928 + 0.929854i \(0.619933\pi\)
\(524\) −9.55635 −0.417471
\(525\) 0 0
\(526\) 20.5858 0.897583
\(527\) 20.4853 0.892353
\(528\) 0.414214 0.0180263
\(529\) −21.0000 −0.913043
\(530\) −5.55635 −0.241352
\(531\) 2.07107 0.0898767
\(532\) 0 0
\(533\) −9.89949 −0.428795
\(534\) −2.58579 −0.111898
\(535\) 11.3137 0.489134
\(536\) 1.82843 0.0789760
\(537\) −19.6569 −0.848256
\(538\) −9.14214 −0.394145
\(539\) 0 0
\(540\) 0.585786 0.0252082
\(541\) 23.0711 0.991903 0.495951 0.868350i \(-0.334819\pi\)
0.495951 + 0.868350i \(0.334819\pi\)
\(542\) 26.2132 1.12595
\(543\) −2.89949 −0.124429
\(544\) −2.41421 −0.103509
\(545\) 5.65685 0.242313
\(546\) 0 0
\(547\) −30.8701 −1.31991 −0.659954 0.751306i \(-0.729424\pi\)
−0.659954 + 0.751306i \(0.729424\pi\)
\(548\) 11.0711 0.472933
\(549\) −4.41421 −0.188394
\(550\) 1.92893 0.0822499
\(551\) 3.97056 0.169152
\(552\) −1.41421 −0.0601929
\(553\) 0 0
\(554\) 18.0711 0.767766
\(555\) 0.828427 0.0351648
\(556\) −13.0711 −0.554337
\(557\) −32.6274 −1.38247 −0.691234 0.722631i \(-0.742933\pi\)
−0.691234 + 0.722631i \(0.742933\pi\)
\(558\) −8.48528 −0.359211
\(559\) 6.48528 0.274298
\(560\) 0 0
\(561\) −1.00000 −0.0422200
\(562\) 0.686292 0.0289495
\(563\) −32.7696 −1.38107 −0.690536 0.723298i \(-0.742625\pi\)
−0.690536 + 0.723298i \(0.742625\pi\)
\(564\) −1.00000 −0.0421076
\(565\) −2.87006 −0.120744
\(566\) −15.7574 −0.662331
\(567\) 0 0
\(568\) −5.00000 −0.209795
\(569\) 23.7279 0.994726 0.497363 0.867542i \(-0.334302\pi\)
0.497363 + 0.867542i \(0.334302\pi\)
\(570\) −1.27208 −0.0532815
\(571\) −31.3137 −1.31044 −0.655219 0.755439i \(-0.727424\pi\)
−0.655219 + 0.755439i \(0.727424\pi\)
\(572\) −0.414214 −0.0173191
\(573\) 10.3431 0.432091
\(574\) 0 0
\(575\) −6.58579 −0.274646
\(576\) 1.00000 0.0416667
\(577\) 16.3431 0.680374 0.340187 0.940358i \(-0.389510\pi\)
0.340187 + 0.940358i \(0.389510\pi\)
\(578\) −11.1716 −0.464676
\(579\) 2.92893 0.121722
\(580\) 1.07107 0.0444737
\(581\) 0 0
\(582\) 0.928932 0.0385055
\(583\) −3.92893 −0.162720
\(584\) 1.41421 0.0585206
\(585\) −0.585786 −0.0242193
\(586\) −9.89949 −0.408944
\(587\) −1.58579 −0.0654524 −0.0327262 0.999464i \(-0.510419\pi\)
−0.0327262 + 0.999464i \(0.510419\pi\)
\(588\) 0 0
\(589\) 18.4264 0.759247
\(590\) −1.21320 −0.0499468
\(591\) 15.5563 0.639903
\(592\) 1.41421 0.0581238
\(593\) −34.3848 −1.41201 −0.706007 0.708205i \(-0.749505\pi\)
−0.706007 + 0.708205i \(0.749505\pi\)
\(594\) 0.414214 0.0169954
\(595\) 0 0
\(596\) −4.92893 −0.201897
\(597\) −2.72792 −0.111646
\(598\) 1.41421 0.0578315
\(599\) 1.55635 0.0635907 0.0317954 0.999494i \(-0.489878\pi\)
0.0317954 + 0.999494i \(0.489878\pi\)
\(600\) 4.65685 0.190115
\(601\) 1.20101 0.0489902 0.0244951 0.999700i \(-0.492202\pi\)
0.0244951 + 0.999700i \(0.492202\pi\)
\(602\) 0 0
\(603\) 1.82843 0.0744593
\(604\) 4.07107 0.165649
\(605\) 6.34315 0.257886
\(606\) 14.8284 0.602364
\(607\) 34.5269 1.40140 0.700702 0.713454i \(-0.252870\pi\)
0.700702 + 0.713454i \(0.252870\pi\)
\(608\) −2.17157 −0.0880689
\(609\) 0 0
\(610\) 2.58579 0.104695
\(611\) 1.00000 0.0404557
\(612\) −2.41421 −0.0975888
\(613\) −7.79899 −0.314998 −0.157499 0.987519i \(-0.550343\pi\)
−0.157499 + 0.987519i \(0.550343\pi\)
\(614\) −28.1127 −1.13454
\(615\) −5.79899 −0.233838
\(616\) 0 0
\(617\) −24.1421 −0.971926 −0.485963 0.873979i \(-0.661531\pi\)
−0.485963 + 0.873979i \(0.661531\pi\)
\(618\) 16.8284 0.676939
\(619\) 20.8284 0.837165 0.418583 0.908179i \(-0.362527\pi\)
0.418583 + 0.908179i \(0.362527\pi\)
\(620\) 4.97056 0.199623
\(621\) −1.41421 −0.0567504
\(622\) −8.10051 −0.324801
\(623\) 0 0
\(624\) −1.00000 −0.0400320
\(625\) 19.9706 0.798823
\(626\) 3.51472 0.140476
\(627\) −0.899495 −0.0359224
\(628\) 9.72792 0.388186
\(629\) −3.41421 −0.136134
\(630\) 0 0
\(631\) 32.6274 1.29888 0.649438 0.760414i \(-0.275004\pi\)
0.649438 + 0.760414i \(0.275004\pi\)
\(632\) −11.6569 −0.463685
\(633\) 12.9289 0.513879
\(634\) 29.7990 1.18347
\(635\) 4.62742 0.183633
\(636\) −9.48528 −0.376116
\(637\) 0 0
\(638\) 0.757359 0.0299841
\(639\) −5.00000 −0.197797
\(640\) −0.585786 −0.0231552
\(641\) 31.7990 1.25598 0.627992 0.778220i \(-0.283877\pi\)
0.627992 + 0.778220i \(0.283877\pi\)
\(642\) 19.3137 0.762251
\(643\) −2.51472 −0.0991708 −0.0495854 0.998770i \(-0.515790\pi\)
−0.0495854 + 0.998770i \(0.515790\pi\)
\(644\) 0 0
\(645\) 3.79899 0.149585
\(646\) 5.24264 0.206269
\(647\) −9.02944 −0.354984 −0.177492 0.984122i \(-0.556798\pi\)
−0.177492 + 0.984122i \(0.556798\pi\)
\(648\) 1.00000 0.0392837
\(649\) −0.857864 −0.0336741
\(650\) −4.65685 −0.182657
\(651\) 0 0
\(652\) −18.6569 −0.730659
\(653\) 22.1421 0.866489 0.433244 0.901276i \(-0.357369\pi\)
0.433244 + 0.901276i \(0.357369\pi\)
\(654\) 9.65685 0.377613
\(655\) 5.59798 0.218731
\(656\) −9.89949 −0.386510
\(657\) 1.41421 0.0551737
\(658\) 0 0
\(659\) 10.5858 0.412364 0.206182 0.978514i \(-0.433896\pi\)
0.206182 + 0.978514i \(0.433896\pi\)
\(660\) −0.242641 −0.00944478
\(661\) 40.2426 1.56526 0.782629 0.622489i \(-0.213878\pi\)
0.782629 + 0.622489i \(0.213878\pi\)
\(662\) −22.4853 −0.873915
\(663\) 2.41421 0.0937603
\(664\) 7.65685 0.297144
\(665\) 0 0
\(666\) 1.41421 0.0547997
\(667\) −2.58579 −0.100122
\(668\) −0.656854 −0.0254145
\(669\) 7.92893 0.306550
\(670\) −1.07107 −0.0413790
\(671\) 1.82843 0.0705856
\(672\) 0 0
\(673\) 42.1421 1.62446 0.812230 0.583337i \(-0.198253\pi\)
0.812230 + 0.583337i \(0.198253\pi\)
\(674\) −20.3137 −0.782455
\(675\) 4.65685 0.179242
\(676\) 1.00000 0.0384615
\(677\) 15.0000 0.576497 0.288248 0.957556i \(-0.406927\pi\)
0.288248 + 0.957556i \(0.406927\pi\)
\(678\) −4.89949 −0.188164
\(679\) 0 0
\(680\) 1.41421 0.0542326
\(681\) 21.1716 0.811296
\(682\) 3.51472 0.134586
\(683\) −14.1421 −0.541134 −0.270567 0.962701i \(-0.587211\pi\)
−0.270567 + 0.962701i \(0.587211\pi\)
\(684\) −2.17157 −0.0830322
\(685\) −6.48528 −0.247790
\(686\) 0 0
\(687\) −26.4853 −1.01048
\(688\) 6.48528 0.247249
\(689\) 9.48528 0.361360
\(690\) 0.828427 0.0315377
\(691\) −20.6569 −0.785824 −0.392912 0.919576i \(-0.628532\pi\)
−0.392912 + 0.919576i \(0.628532\pi\)
\(692\) 5.48528 0.208519
\(693\) 0 0
\(694\) −8.72792 −0.331307
\(695\) 7.65685 0.290441
\(696\) 1.82843 0.0693064
\(697\) 23.8995 0.905258
\(698\) −6.72792 −0.254656
\(699\) 17.7279 0.670532
\(700\) 0 0
\(701\) −29.1716 −1.10180 −0.550898 0.834573i \(-0.685715\pi\)
−0.550898 + 0.834573i \(0.685715\pi\)
\(702\) −1.00000 −0.0377426
\(703\) −3.07107 −0.115828
\(704\) −0.414214 −0.0156113
\(705\) 0.585786 0.0220620
\(706\) 12.6274 0.475239
\(707\) 0 0
\(708\) −2.07107 −0.0778355
\(709\) −36.8701 −1.38468 −0.692342 0.721569i \(-0.743421\pi\)
−0.692342 + 0.721569i \(0.743421\pi\)
\(710\) 2.92893 0.109921
\(711\) −11.6569 −0.437166
\(712\) 2.58579 0.0969064
\(713\) −12.0000 −0.449404
\(714\) 0 0
\(715\) 0.242641 0.00907425
\(716\) 19.6569 0.734611
\(717\) −4.51472 −0.168605
\(718\) −0.828427 −0.0309166
\(719\) 9.31371 0.347343 0.173671 0.984804i \(-0.444437\pi\)
0.173671 + 0.984804i \(0.444437\pi\)
\(720\) −0.585786 −0.0218310
\(721\) 0 0
\(722\) −14.2843 −0.531606
\(723\) 2.14214 0.0796669
\(724\) 2.89949 0.107759
\(725\) 8.51472 0.316229
\(726\) 10.8284 0.401881
\(727\) −50.4264 −1.87021 −0.935106 0.354368i \(-0.884696\pi\)
−0.935106 + 0.354368i \(0.884696\pi\)
\(728\) 0 0
\(729\) 1.00000 0.0370370
\(730\) −0.828427 −0.0306615
\(731\) −15.6569 −0.579090
\(732\) 4.41421 0.163154
\(733\) −28.5858 −1.05584 −0.527920 0.849294i \(-0.677028\pi\)
−0.527920 + 0.849294i \(0.677028\pi\)
\(734\) 12.6274 0.466086
\(735\) 0 0
\(736\) 1.41421 0.0521286
\(737\) −0.757359 −0.0278977
\(738\) −9.89949 −0.364405
\(739\) −30.0000 −1.10357 −0.551784 0.833987i \(-0.686053\pi\)
−0.551784 + 0.833987i \(0.686053\pi\)
\(740\) −0.828427 −0.0304536
\(741\) 2.17157 0.0797747
\(742\) 0 0
\(743\) 12.1716 0.446532 0.223266 0.974758i \(-0.428328\pi\)
0.223266 + 0.974758i \(0.428328\pi\)
\(744\) 8.48528 0.311086
\(745\) 2.88730 0.105783
\(746\) −5.58579 −0.204510
\(747\) 7.65685 0.280150
\(748\) 1.00000 0.0365636
\(749\) 0 0
\(750\) −5.65685 −0.206559
\(751\) −19.3137 −0.704767 −0.352384 0.935856i \(-0.614629\pi\)
−0.352384 + 0.935856i \(0.614629\pi\)
\(752\) 1.00000 0.0364662
\(753\) −24.8284 −0.904798
\(754\) −1.82843 −0.0665874
\(755\) −2.38478 −0.0867909
\(756\) 0 0
\(757\) −30.7574 −1.11790 −0.558948 0.829203i \(-0.688795\pi\)
−0.558948 + 0.829203i \(0.688795\pi\)
\(758\) 18.6274 0.676578
\(759\) 0.585786 0.0212627
\(760\) 1.27208 0.0461431
\(761\) 43.1127 1.56283 0.781417 0.624009i \(-0.214497\pi\)
0.781417 + 0.624009i \(0.214497\pi\)
\(762\) 7.89949 0.286169
\(763\) 0 0
\(764\) −10.3431 −0.374202
\(765\) 1.41421 0.0511310
\(766\) 11.1716 0.403645
\(767\) 2.07107 0.0747819
\(768\) −1.00000 −0.0360844
\(769\) 9.89949 0.356985 0.178492 0.983941i \(-0.442878\pi\)
0.178492 + 0.983941i \(0.442878\pi\)
\(770\) 0 0
\(771\) −26.4853 −0.953844
\(772\) −2.92893 −0.105415
\(773\) 18.9706 0.682324 0.341162 0.940005i \(-0.389180\pi\)
0.341162 + 0.940005i \(0.389180\pi\)
\(774\) 6.48528 0.233109
\(775\) 39.5147 1.41941
\(776\) −0.928932 −0.0333467
\(777\) 0 0
\(778\) −4.51472 −0.161861
\(779\) 21.4975 0.770227
\(780\) 0.585786 0.0209745
\(781\) 2.07107 0.0741086
\(782\) −3.41421 −0.122092
\(783\) 1.82843 0.0653427
\(784\) 0 0
\(785\) −5.69848 −0.203388
\(786\) 9.55635 0.340864
\(787\) −26.3137 −0.937982 −0.468991 0.883203i \(-0.655382\pi\)
−0.468991 + 0.883203i \(0.655382\pi\)
\(788\) −15.5563 −0.554172
\(789\) −20.5858 −0.732873
\(790\) 6.82843 0.242945
\(791\) 0 0
\(792\) −0.414214 −0.0147184
\(793\) −4.41421 −0.156753
\(794\) −9.55635 −0.339142
\(795\) 5.55635 0.197063
\(796\) 2.72792 0.0966886
\(797\) 34.3431 1.21650 0.608248 0.793747i \(-0.291872\pi\)
0.608248 + 0.793747i \(0.291872\pi\)
\(798\) 0 0
\(799\) −2.41421 −0.0854087
\(800\) −4.65685 −0.164645
\(801\) 2.58579 0.0913643
\(802\) 19.8995 0.702676
\(803\) −0.585786 −0.0206720
\(804\) −1.82843 −0.0644837
\(805\) 0 0
\(806\) −8.48528 −0.298881
\(807\) 9.14214 0.321818
\(808\) −14.8284 −0.521662
\(809\) −17.5858 −0.618283 −0.309142 0.951016i \(-0.600042\pi\)
−0.309142 + 0.951016i \(0.600042\pi\)
\(810\) −0.585786 −0.0205824
\(811\) 55.4558 1.94732 0.973659 0.228009i \(-0.0732216\pi\)
0.973659 + 0.228009i \(0.0732216\pi\)
\(812\) 0 0
\(813\) −26.2132 −0.919337
\(814\) −0.585786 −0.0205318
\(815\) 10.9289 0.382824
\(816\) 2.41421 0.0845144
\(817\) −14.0833 −0.492711
\(818\) 32.5858 1.13934
\(819\) 0 0
\(820\) 5.79899 0.202510
\(821\) 47.8995 1.67170 0.835852 0.548955i \(-0.184974\pi\)
0.835852 + 0.548955i \(0.184974\pi\)
\(822\) −11.0711 −0.386148
\(823\) −43.8406 −1.52819 −0.764094 0.645105i \(-0.776814\pi\)
−0.764094 + 0.645105i \(0.776814\pi\)
\(824\) −16.8284 −0.586246
\(825\) −1.92893 −0.0671568
\(826\) 0 0
\(827\) 46.3553 1.61193 0.805967 0.591961i \(-0.201646\pi\)
0.805967 + 0.591961i \(0.201646\pi\)
\(828\) 1.41421 0.0491473
\(829\) −26.6985 −0.927277 −0.463638 0.886025i \(-0.653456\pi\)
−0.463638 + 0.886025i \(0.653456\pi\)
\(830\) −4.48528 −0.155686
\(831\) −18.0711 −0.626878
\(832\) 1.00000 0.0346688
\(833\) 0 0
\(834\) 13.0711 0.452614
\(835\) 0.384776 0.0133157
\(836\) 0.899495 0.0311097
\(837\) 8.48528 0.293294
\(838\) 27.4558 0.948446
\(839\) −31.8284 −1.09884 −0.549420 0.835547i \(-0.685151\pi\)
−0.549420 + 0.835547i \(0.685151\pi\)
\(840\) 0 0
\(841\) −25.6569 −0.884719
\(842\) 1.07107 0.0369114
\(843\) −0.686292 −0.0236371
\(844\) −12.9289 −0.445032
\(845\) −0.585786 −0.0201517
\(846\) 1.00000 0.0343807
\(847\) 0 0
\(848\) 9.48528 0.325726
\(849\) 15.7574 0.540791
\(850\) 11.2426 0.385619
\(851\) 2.00000 0.0685591
\(852\) 5.00000 0.171297
\(853\) 6.72792 0.230360 0.115180 0.993345i \(-0.463256\pi\)
0.115180 + 0.993345i \(0.463256\pi\)
\(854\) 0 0
\(855\) 1.27208 0.0435041
\(856\) −19.3137 −0.660129
\(857\) 20.5563 0.702192 0.351096 0.936340i \(-0.385809\pi\)
0.351096 + 0.936340i \(0.385809\pi\)
\(858\) 0.414214 0.0141410
\(859\) −11.7990 −0.402576 −0.201288 0.979532i \(-0.564513\pi\)
−0.201288 + 0.979532i \(0.564513\pi\)
\(860\) −3.79899 −0.129544
\(861\) 0 0
\(862\) 30.4853 1.03833
\(863\) 39.3137 1.33825 0.669127 0.743148i \(-0.266668\pi\)
0.669127 + 0.743148i \(0.266668\pi\)
\(864\) −1.00000 −0.0340207
\(865\) −3.21320 −0.109252
\(866\) 29.9706 1.01844
\(867\) 11.1716 0.379407
\(868\) 0 0
\(869\) 4.82843 0.163793
\(870\) −1.07107 −0.0363126
\(871\) 1.82843 0.0619539
\(872\) −9.65685 −0.327022
\(873\) −0.928932 −0.0314396
\(874\) −3.07107 −0.103880
\(875\) 0 0
\(876\) −1.41421 −0.0477818
\(877\) −40.0416 −1.35211 −0.676055 0.736851i \(-0.736312\pi\)
−0.676055 + 0.736851i \(0.736312\pi\)
\(878\) 16.5858 0.559743
\(879\) 9.89949 0.333902
\(880\) 0.242641 0.00817942
\(881\) 18.4853 0.622785 0.311392 0.950281i \(-0.399205\pi\)
0.311392 + 0.950281i \(0.399205\pi\)
\(882\) 0 0
\(883\) −9.75736 −0.328361 −0.164181 0.986430i \(-0.552498\pi\)
−0.164181 + 0.986430i \(0.552498\pi\)
\(884\) −2.41421 −0.0811988
\(885\) 1.21320 0.0407814
\(886\) −33.6985 −1.13212
\(887\) 48.9117 1.64229 0.821147 0.570717i \(-0.193335\pi\)
0.821147 + 0.570717i \(0.193335\pi\)
\(888\) −1.41421 −0.0474579
\(889\) 0 0
\(890\) −1.51472 −0.0507735
\(891\) −0.414214 −0.0138767
\(892\) −7.92893 −0.265480
\(893\) −2.17157 −0.0726689
\(894\) 4.92893 0.164848
\(895\) −11.5147 −0.384895
\(896\) 0 0
\(897\) −1.41421 −0.0472192
\(898\) 24.9706 0.833278
\(899\) 15.5147 0.517445
\(900\) −4.65685 −0.155228
\(901\) −22.8995 −0.762893
\(902\) 4.10051 0.136532
\(903\) 0 0
\(904\) 4.89949 0.162955
\(905\) −1.69848 −0.0564595
\(906\) −4.07107 −0.135252
\(907\) 54.3848 1.80582 0.902908 0.429833i \(-0.141428\pi\)
0.902908 + 0.429833i \(0.141428\pi\)
\(908\) −21.1716 −0.702603
\(909\) −14.8284 −0.491828
\(910\) 0 0
\(911\) −4.34315 −0.143895 −0.0719474 0.997408i \(-0.522921\pi\)
−0.0719474 + 0.997408i \(0.522921\pi\)
\(912\) 2.17157 0.0719080
\(913\) −3.17157 −0.104964
\(914\) −3.07107 −0.101582
\(915\) −2.58579 −0.0854835
\(916\) 26.4853 0.875098
\(917\) 0 0
\(918\) 2.41421 0.0796809
\(919\) 1.79899 0.0593432 0.0296716 0.999560i \(-0.490554\pi\)
0.0296716 + 0.999560i \(0.490554\pi\)
\(920\) −0.828427 −0.0273124
\(921\) 28.1127 0.926345
\(922\) −4.48528 −0.147715
\(923\) −5.00000 −0.164577
\(924\) 0 0
\(925\) −6.58579 −0.216539
\(926\) −20.9706 −0.689135
\(927\) −16.8284 −0.552718
\(928\) −1.82843 −0.0600211
\(929\) 34.6863 1.13802 0.569010 0.822330i \(-0.307327\pi\)
0.569010 + 0.822330i \(0.307327\pi\)
\(930\) −4.97056 −0.162991
\(931\) 0 0
\(932\) −17.7279 −0.580697
\(933\) 8.10051 0.265199
\(934\) −11.4142 −0.373484
\(935\) −0.585786 −0.0191573
\(936\) 1.00000 0.0326860
\(937\) 42.6569 1.39354 0.696769 0.717295i \(-0.254620\pi\)
0.696769 + 0.717295i \(0.254620\pi\)
\(938\) 0 0
\(939\) −3.51472 −0.114699
\(940\) −0.585786 −0.0191062
\(941\) −12.9706 −0.422828 −0.211414 0.977397i \(-0.567807\pi\)
−0.211414 + 0.977397i \(0.567807\pi\)
\(942\) −9.72792 −0.316953
\(943\) −14.0000 −0.455903
\(944\) 2.07107 0.0674075
\(945\) 0 0
\(946\) −2.68629 −0.0873389
\(947\) 8.41421 0.273425 0.136713 0.990611i \(-0.456346\pi\)
0.136713 + 0.990611i \(0.456346\pi\)
\(948\) 11.6569 0.378597
\(949\) 1.41421 0.0459073
\(950\) 10.1127 0.328099
\(951\) −29.7990 −0.966298
\(952\) 0 0
\(953\) −41.5858 −1.34710 −0.673548 0.739144i \(-0.735230\pi\)
−0.673548 + 0.739144i \(0.735230\pi\)
\(954\) 9.48528 0.307097
\(955\) 6.05887 0.196061
\(956\) 4.51472 0.146016
\(957\) −0.757359 −0.0244819
\(958\) −32.1127 −1.03751
\(959\) 0 0
\(960\) 0.585786 0.0189062
\(961\) 41.0000 1.32258
\(962\) 1.41421 0.0455961
\(963\) −19.3137 −0.622376
\(964\) −2.14214 −0.0689935
\(965\) 1.71573 0.0552313
\(966\) 0 0
\(967\) −13.5858 −0.436889 −0.218445 0.975849i \(-0.570098\pi\)
−0.218445 + 0.975849i \(0.570098\pi\)
\(968\) −10.8284 −0.348039
\(969\) −5.24264 −0.168418
\(970\) 0.544156 0.0174718
\(971\) −32.5269 −1.04384 −0.521919 0.852995i \(-0.674784\pi\)
−0.521919 + 0.852995i \(0.674784\pi\)
\(972\) −1.00000 −0.0320750
\(973\) 0 0
\(974\) 16.2132 0.519505
\(975\) 4.65685 0.149139
\(976\) −4.41421 −0.141296
\(977\) 43.1716 1.38118 0.690590 0.723246i \(-0.257351\pi\)
0.690590 + 0.723246i \(0.257351\pi\)
\(978\) 18.6569 0.596580
\(979\) −1.07107 −0.0342315
\(980\) 0 0
\(981\) −9.65685 −0.308320
\(982\) 23.6569 0.754921
\(983\) −29.4853 −0.940434 −0.470217 0.882551i \(-0.655824\pi\)
−0.470217 + 0.882551i \(0.655824\pi\)
\(984\) 9.89949 0.315584
\(985\) 9.11270 0.290355
\(986\) 4.41421 0.140577
\(987\) 0 0
\(988\) −2.17157 −0.0690869
\(989\) 9.17157 0.291639
\(990\) 0.242641 0.00771163
\(991\) −0.686292 −0.0218008 −0.0109004 0.999941i \(-0.503470\pi\)
−0.0109004 + 0.999941i \(0.503470\pi\)
\(992\) −8.48528 −0.269408
\(993\) 22.4853 0.713549
\(994\) 0 0
\(995\) −1.59798 −0.0506594
\(996\) −7.65685 −0.242617
\(997\) 52.4975 1.66261 0.831306 0.555815i \(-0.187594\pi\)
0.831306 + 0.555815i \(0.187594\pi\)
\(998\) 3.65685 0.115756
\(999\) −1.41421 −0.0447437
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 3822.2.a.bn.1.2 2
7.2 even 3 546.2.i.i.235.1 yes 4
7.4 even 3 546.2.i.i.79.1 4
7.6 odd 2 3822.2.a.bu.1.1 2
21.2 odd 6 1638.2.j.m.235.2 4
21.11 odd 6 1638.2.j.m.1171.2 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
546.2.i.i.79.1 4 7.4 even 3
546.2.i.i.235.1 yes 4 7.2 even 3
1638.2.j.m.235.2 4 21.2 odd 6
1638.2.j.m.1171.2 4 21.11 odd 6
3822.2.a.bn.1.2 2 1.1 even 1 trivial
3822.2.a.bu.1.1 2 7.6 odd 2