Properties

Label 3808.2.hp
Level $3808$
Weight $2$
Character orbit 3808.hp
Rep. character $\chi_{3808}(529,\cdot)$
Character field $\Q(\zeta_{24})$
Dimension $1120$
Sturm bound $1152$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 3808 = 2^{5} \cdot 7 \cdot 17 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 3808.hp (of order \(24\) and degree \(8\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 952 \)
Character field: \(\Q(\zeta_{24})\)
Sturm bound: \(1152\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(3808, [\chi])\).

Total New Old
Modular forms 4736 1184 3552
Cusp forms 4480 1120 3360
Eisenstein series 256 64 192

Trace form

\( 1120 q + 16 q^{7} - 8 q^{9} + 32 q^{15} - 8 q^{17} + 8 q^{23} - 8 q^{25} + 8 q^{31} - 16 q^{33} + 32 q^{39} - 32 q^{41} - 16 q^{49} - 32 q^{57} - 8 q^{63} - 48 q^{65} + 160 q^{71} - 8 q^{73} + 8 q^{79}+ \cdots - 32 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(3808, [\chi])\) into newform subspaces

The newforms in this space have not yet been added to the LMFDB.

Decomposition of \(S_{2}^{\mathrm{old}}(3808, [\chi])\) into lower level spaces

\( S_{2}^{\mathrm{old}}(3808, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(952, [\chi])\)\(^{\oplus 3}\)