Properties

Label 3808.2.a.j.1.6
Level $3808$
Weight $2$
Character 3808.1
Self dual yes
Analytic conductor $30.407$
Analytic rank $1$
Dimension $6$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [3808,2,Mod(1,3808)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(3808, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("3808.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 3808 = 2^{5} \cdot 7 \cdot 17 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 3808.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(30.4070330897\)
Analytic rank: \(1\)
Dimension: \(6\)
Coefficient field: 6.6.4022000.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{6} - 2x^{5} - 7x^{4} + 10x^{3} + 14x^{2} - 8x - 4 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 2^{2} \)
Twist minimal: yes
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.6
Root \(0.775247\) of defining polynomial
Character \(\chi\) \(=\) 3808.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+2.53790 q^{3} -0.138905 q^{5} -1.00000 q^{7} +3.44092 q^{9} -0.938171 q^{11} -3.02933 q^{13} -0.352526 q^{15} +1.00000 q^{17} -2.38098 q^{19} -2.53790 q^{21} -5.51799 q^{23} -4.98071 q^{25} +1.11900 q^{27} -4.99682 q^{29} -9.85122 q^{31} -2.38098 q^{33} +0.138905 q^{35} -6.85312 q^{37} -7.68812 q^{39} -4.61308 q^{41} +1.86156 q^{43} -0.477960 q^{45} +0.273295 q^{47} +1.00000 q^{49} +2.53790 q^{51} +6.18574 q^{53} +0.130316 q^{55} -6.04268 q^{57} +2.88562 q^{59} +5.38822 q^{61} -3.44092 q^{63} +0.420788 q^{65} +5.80476 q^{67} -14.0041 q^{69} +11.1978 q^{71} +10.3579 q^{73} -12.6405 q^{75} +0.938171 q^{77} +5.96214 q^{79} -7.48284 q^{81} -8.92830 q^{83} -0.138905 q^{85} -12.6814 q^{87} +2.88635 q^{89} +3.02933 q^{91} -25.0014 q^{93} +0.330729 q^{95} +11.9327 q^{97} -3.22817 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 6 q - 2 q^{3} + 2 q^{5} - 6 q^{7} + 4 q^{9} - 2 q^{11} - 4 q^{13} - 8 q^{15} + 6 q^{17} + 2 q^{19} + 2 q^{21} - 10 q^{23} - 2 q^{27} + 2 q^{29} - 12 q^{31} + 2 q^{33} - 2 q^{35} + 2 q^{37} - 10 q^{39} - 8 q^{43}+ \cdots - 2 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 2.53790 1.46526 0.732628 0.680630i \(-0.238294\pi\)
0.732628 + 0.680630i \(0.238294\pi\)
\(4\) 0 0
\(5\) −0.138905 −0.0621201 −0.0310600 0.999518i \(-0.509888\pi\)
−0.0310600 + 0.999518i \(0.509888\pi\)
\(6\) 0 0
\(7\) −1.00000 −0.377964
\(8\) 0 0
\(9\) 3.44092 1.14697
\(10\) 0 0
\(11\) −0.938171 −0.282869 −0.141435 0.989948i \(-0.545171\pi\)
−0.141435 + 0.989948i \(0.545171\pi\)
\(12\) 0 0
\(13\) −3.02933 −0.840184 −0.420092 0.907482i \(-0.638002\pi\)
−0.420092 + 0.907482i \(0.638002\pi\)
\(14\) 0 0
\(15\) −0.352526 −0.0910218
\(16\) 0 0
\(17\) 1.00000 0.242536
\(18\) 0 0
\(19\) −2.38098 −0.546234 −0.273117 0.961981i \(-0.588055\pi\)
−0.273117 + 0.961981i \(0.588055\pi\)
\(20\) 0 0
\(21\) −2.53790 −0.553814
\(22\) 0 0
\(23\) −5.51799 −1.15058 −0.575290 0.817949i \(-0.695111\pi\)
−0.575290 + 0.817949i \(0.695111\pi\)
\(24\) 0 0
\(25\) −4.98071 −0.996141
\(26\) 0 0
\(27\) 1.11900 0.215352
\(28\) 0 0
\(29\) −4.99682 −0.927887 −0.463943 0.885865i \(-0.653566\pi\)
−0.463943 + 0.885865i \(0.653566\pi\)
\(30\) 0 0
\(31\) −9.85122 −1.76933 −0.884666 0.466225i \(-0.845614\pi\)
−0.884666 + 0.466225i \(0.845614\pi\)
\(32\) 0 0
\(33\) −2.38098 −0.414475
\(34\) 0 0
\(35\) 0.138905 0.0234792
\(36\) 0 0
\(37\) −6.85312 −1.12665 −0.563323 0.826237i \(-0.690477\pi\)
−0.563323 + 0.826237i \(0.690477\pi\)
\(38\) 0 0
\(39\) −7.68812 −1.23108
\(40\) 0 0
\(41\) −4.61308 −0.720442 −0.360221 0.932867i \(-0.617299\pi\)
−0.360221 + 0.932867i \(0.617299\pi\)
\(42\) 0 0
\(43\) 1.86156 0.283886 0.141943 0.989875i \(-0.454665\pi\)
0.141943 + 0.989875i \(0.454665\pi\)
\(44\) 0 0
\(45\) −0.477960 −0.0712500
\(46\) 0 0
\(47\) 0.273295 0.0398641 0.0199321 0.999801i \(-0.493655\pi\)
0.0199321 + 0.999801i \(0.493655\pi\)
\(48\) 0 0
\(49\) 1.00000 0.142857
\(50\) 0 0
\(51\) 2.53790 0.355377
\(52\) 0 0
\(53\) 6.18574 0.849676 0.424838 0.905269i \(-0.360331\pi\)
0.424838 + 0.905269i \(0.360331\pi\)
\(54\) 0 0
\(55\) 0.130316 0.0175719
\(56\) 0 0
\(57\) −6.04268 −0.800373
\(58\) 0 0
\(59\) 2.88562 0.375676 0.187838 0.982200i \(-0.439852\pi\)
0.187838 + 0.982200i \(0.439852\pi\)
\(60\) 0 0
\(61\) 5.38822 0.689891 0.344946 0.938623i \(-0.387897\pi\)
0.344946 + 0.938623i \(0.387897\pi\)
\(62\) 0 0
\(63\) −3.44092 −0.433515
\(64\) 0 0
\(65\) 0.420788 0.0521923
\(66\) 0 0
\(67\) 5.80476 0.709164 0.354582 0.935025i \(-0.384623\pi\)
0.354582 + 0.935025i \(0.384623\pi\)
\(68\) 0 0
\(69\) −14.0041 −1.68589
\(70\) 0 0
\(71\) 11.1978 1.32894 0.664468 0.747317i \(-0.268658\pi\)
0.664468 + 0.747317i \(0.268658\pi\)
\(72\) 0 0
\(73\) 10.3579 1.21230 0.606150 0.795350i \(-0.292713\pi\)
0.606150 + 0.795350i \(0.292713\pi\)
\(74\) 0 0
\(75\) −12.6405 −1.45960
\(76\) 0 0
\(77\) 0.938171 0.106914
\(78\) 0 0
\(79\) 5.96214 0.670793 0.335397 0.942077i \(-0.391130\pi\)
0.335397 + 0.942077i \(0.391130\pi\)
\(80\) 0 0
\(81\) −7.48284 −0.831427
\(82\) 0 0
\(83\) −8.92830 −0.980008 −0.490004 0.871720i \(-0.663005\pi\)
−0.490004 + 0.871720i \(0.663005\pi\)
\(84\) 0 0
\(85\) −0.138905 −0.0150663
\(86\) 0 0
\(87\) −12.6814 −1.35959
\(88\) 0 0
\(89\) 2.88635 0.305952 0.152976 0.988230i \(-0.451114\pi\)
0.152976 + 0.988230i \(0.451114\pi\)
\(90\) 0 0
\(91\) 3.02933 0.317560
\(92\) 0 0
\(93\) −25.0014 −2.59252
\(94\) 0 0
\(95\) 0.330729 0.0339321
\(96\) 0 0
\(97\) 11.9327 1.21158 0.605791 0.795624i \(-0.292857\pi\)
0.605791 + 0.795624i \(0.292857\pi\)
\(98\) 0 0
\(99\) −3.22817 −0.324443
\(100\) 0 0
\(101\) −2.53513 −0.252255 −0.126128 0.992014i \(-0.540255\pi\)
−0.126128 + 0.992014i \(0.540255\pi\)
\(102\) 0 0
\(103\) 1.82731 0.180050 0.0900251 0.995939i \(-0.471305\pi\)
0.0900251 + 0.995939i \(0.471305\pi\)
\(104\) 0 0
\(105\) 0.352526 0.0344030
\(106\) 0 0
\(107\) 9.80598 0.947980 0.473990 0.880530i \(-0.342813\pi\)
0.473990 + 0.880530i \(0.342813\pi\)
\(108\) 0 0
\(109\) −10.2351 −0.980342 −0.490171 0.871626i \(-0.663066\pi\)
−0.490171 + 0.871626i \(0.663066\pi\)
\(110\) 0 0
\(111\) −17.3925 −1.65082
\(112\) 0 0
\(113\) 15.1561 1.42576 0.712881 0.701285i \(-0.247390\pi\)
0.712881 + 0.701285i \(0.247390\pi\)
\(114\) 0 0
\(115\) 0.766475 0.0714742
\(116\) 0 0
\(117\) −10.4237 −0.963668
\(118\) 0 0
\(119\) −1.00000 −0.0916698
\(120\) 0 0
\(121\) −10.1198 −0.919985
\(122\) 0 0
\(123\) −11.7075 −1.05563
\(124\) 0 0
\(125\) 1.38637 0.124000
\(126\) 0 0
\(127\) −15.4576 −1.37164 −0.685819 0.727772i \(-0.740556\pi\)
−0.685819 + 0.727772i \(0.740556\pi\)
\(128\) 0 0
\(129\) 4.72445 0.415965
\(130\) 0 0
\(131\) 13.6280 1.19068 0.595342 0.803473i \(-0.297017\pi\)
0.595342 + 0.803473i \(0.297017\pi\)
\(132\) 0 0
\(133\) 2.38098 0.206457
\(134\) 0 0
\(135\) −0.155435 −0.0133777
\(136\) 0 0
\(137\) −4.07795 −0.348403 −0.174201 0.984710i \(-0.555734\pi\)
−0.174201 + 0.984710i \(0.555734\pi\)
\(138\) 0 0
\(139\) −12.0637 −1.02323 −0.511613 0.859216i \(-0.670952\pi\)
−0.511613 + 0.859216i \(0.670952\pi\)
\(140\) 0 0
\(141\) 0.693594 0.0584111
\(142\) 0 0
\(143\) 2.84203 0.237662
\(144\) 0 0
\(145\) 0.694082 0.0576404
\(146\) 0 0
\(147\) 2.53790 0.209322
\(148\) 0 0
\(149\) 13.3610 1.09458 0.547288 0.836944i \(-0.315660\pi\)
0.547288 + 0.836944i \(0.315660\pi\)
\(150\) 0 0
\(151\) −3.65958 −0.297813 −0.148906 0.988851i \(-0.547575\pi\)
−0.148906 + 0.988851i \(0.547575\pi\)
\(152\) 0 0
\(153\) 3.44092 0.278182
\(154\) 0 0
\(155\) 1.36838 0.109911
\(156\) 0 0
\(157\) 9.47275 0.756007 0.378004 0.925804i \(-0.376611\pi\)
0.378004 + 0.925804i \(0.376611\pi\)
\(158\) 0 0
\(159\) 15.6988 1.24499
\(160\) 0 0
\(161\) 5.51799 0.434879
\(162\) 0 0
\(163\) −3.34703 −0.262159 −0.131080 0.991372i \(-0.541844\pi\)
−0.131080 + 0.991372i \(0.541844\pi\)
\(164\) 0 0
\(165\) 0.330729 0.0257472
\(166\) 0 0
\(167\) −12.8902 −0.997470 −0.498735 0.866754i \(-0.666202\pi\)
−0.498735 + 0.866754i \(0.666202\pi\)
\(168\) 0 0
\(169\) −3.82318 −0.294091
\(170\) 0 0
\(171\) −8.19275 −0.626516
\(172\) 0 0
\(173\) −11.8208 −0.898716 −0.449358 0.893352i \(-0.648347\pi\)
−0.449358 + 0.893352i \(0.648347\pi\)
\(174\) 0 0
\(175\) 4.98071 0.376506
\(176\) 0 0
\(177\) 7.32340 0.550460
\(178\) 0 0
\(179\) −21.9257 −1.63880 −0.819401 0.573221i \(-0.805694\pi\)
−0.819401 + 0.573221i \(0.805694\pi\)
\(180\) 0 0
\(181\) −9.65319 −0.717516 −0.358758 0.933431i \(-0.616800\pi\)
−0.358758 + 0.933431i \(0.616800\pi\)
\(182\) 0 0
\(183\) 13.6747 1.01087
\(184\) 0 0
\(185\) 0.951930 0.0699873
\(186\) 0 0
\(187\) −0.938171 −0.0686058
\(188\) 0 0
\(189\) −1.11900 −0.0813953
\(190\) 0 0
\(191\) −26.1319 −1.89084 −0.945419 0.325857i \(-0.894347\pi\)
−0.945419 + 0.325857i \(0.894347\pi\)
\(192\) 0 0
\(193\) 7.23660 0.520902 0.260451 0.965487i \(-0.416129\pi\)
0.260451 + 0.965487i \(0.416129\pi\)
\(194\) 0 0
\(195\) 1.06792 0.0764750
\(196\) 0 0
\(197\) −4.65989 −0.332003 −0.166002 0.986125i \(-0.553086\pi\)
−0.166002 + 0.986125i \(0.553086\pi\)
\(198\) 0 0
\(199\) −3.39673 −0.240788 −0.120394 0.992726i \(-0.538416\pi\)
−0.120394 + 0.992726i \(0.538416\pi\)
\(200\) 0 0
\(201\) 14.7319 1.03911
\(202\) 0 0
\(203\) 4.99682 0.350708
\(204\) 0 0
\(205\) 0.640778 0.0447539
\(206\) 0 0
\(207\) −18.9870 −1.31968
\(208\) 0 0
\(209\) 2.23377 0.154513
\(210\) 0 0
\(211\) 2.15000 0.148012 0.0740060 0.997258i \(-0.476422\pi\)
0.0740060 + 0.997258i \(0.476422\pi\)
\(212\) 0 0
\(213\) 28.4189 1.94723
\(214\) 0 0
\(215\) −0.258580 −0.0176350
\(216\) 0 0
\(217\) 9.85122 0.668745
\(218\) 0 0
\(219\) 26.2873 1.77633
\(220\) 0 0
\(221\) −3.02933 −0.203775
\(222\) 0 0
\(223\) −18.1006 −1.21211 −0.606053 0.795424i \(-0.707248\pi\)
−0.606053 + 0.795424i \(0.707248\pi\)
\(224\) 0 0
\(225\) −17.1382 −1.14255
\(226\) 0 0
\(227\) −15.5802 −1.03410 −0.517049 0.855956i \(-0.672969\pi\)
−0.517049 + 0.855956i \(0.672969\pi\)
\(228\) 0 0
\(229\) 22.0701 1.45844 0.729218 0.684282i \(-0.239884\pi\)
0.729218 + 0.684282i \(0.239884\pi\)
\(230\) 0 0
\(231\) 2.38098 0.156657
\(232\) 0 0
\(233\) −3.15371 −0.206607 −0.103303 0.994650i \(-0.532941\pi\)
−0.103303 + 0.994650i \(0.532941\pi\)
\(234\) 0 0
\(235\) −0.0379619 −0.00247636
\(236\) 0 0
\(237\) 15.1313 0.982883
\(238\) 0 0
\(239\) −1.33493 −0.0863492 −0.0431746 0.999068i \(-0.513747\pi\)
−0.0431746 + 0.999068i \(0.513747\pi\)
\(240\) 0 0
\(241\) 14.7400 0.949487 0.474743 0.880124i \(-0.342541\pi\)
0.474743 + 0.880124i \(0.342541\pi\)
\(242\) 0 0
\(243\) −22.3477 −1.43360
\(244\) 0 0
\(245\) −0.138905 −0.00887430
\(246\) 0 0
\(247\) 7.21277 0.458937
\(248\) 0 0
\(249\) −22.6591 −1.43596
\(250\) 0 0
\(251\) −25.0232 −1.57945 −0.789725 0.613462i \(-0.789777\pi\)
−0.789725 + 0.613462i \(0.789777\pi\)
\(252\) 0 0
\(253\) 5.17682 0.325464
\(254\) 0 0
\(255\) −0.352526 −0.0220760
\(256\) 0 0
\(257\) 19.9222 1.24271 0.621356 0.783528i \(-0.286582\pi\)
0.621356 + 0.783528i \(0.286582\pi\)
\(258\) 0 0
\(259\) 6.85312 0.425832
\(260\) 0 0
\(261\) −17.1937 −1.06426
\(262\) 0 0
\(263\) −22.2979 −1.37495 −0.687473 0.726210i \(-0.741280\pi\)
−0.687473 + 0.726210i \(0.741280\pi\)
\(264\) 0 0
\(265\) −0.859228 −0.0527820
\(266\) 0 0
\(267\) 7.32525 0.448298
\(268\) 0 0
\(269\) −10.9673 −0.668686 −0.334343 0.942451i \(-0.608514\pi\)
−0.334343 + 0.942451i \(0.608514\pi\)
\(270\) 0 0
\(271\) 7.55873 0.459160 0.229580 0.973290i \(-0.426265\pi\)
0.229580 + 0.973290i \(0.426265\pi\)
\(272\) 0 0
\(273\) 7.68812 0.465306
\(274\) 0 0
\(275\) 4.67275 0.281778
\(276\) 0 0
\(277\) 25.7682 1.54826 0.774130 0.633027i \(-0.218188\pi\)
0.774130 + 0.633027i \(0.218188\pi\)
\(278\) 0 0
\(279\) −33.8972 −2.02937
\(280\) 0 0
\(281\) −3.20981 −0.191481 −0.0957405 0.995406i \(-0.530522\pi\)
−0.0957405 + 0.995406i \(0.530522\pi\)
\(282\) 0 0
\(283\) 5.57421 0.331353 0.165676 0.986180i \(-0.447019\pi\)
0.165676 + 0.986180i \(0.447019\pi\)
\(284\) 0 0
\(285\) 0.839357 0.0497192
\(286\) 0 0
\(287\) 4.61308 0.272301
\(288\) 0 0
\(289\) 1.00000 0.0588235
\(290\) 0 0
\(291\) 30.2839 1.77528
\(292\) 0 0
\(293\) 23.0232 1.34503 0.672514 0.740084i \(-0.265214\pi\)
0.672514 + 0.740084i \(0.265214\pi\)
\(294\) 0 0
\(295\) −0.400826 −0.0233370
\(296\) 0 0
\(297\) −1.04981 −0.0609164
\(298\) 0 0
\(299\) 16.7158 0.966700
\(300\) 0 0
\(301\) −1.86156 −0.107299
\(302\) 0 0
\(303\) −6.43390 −0.369618
\(304\) 0 0
\(305\) −0.748449 −0.0428561
\(306\) 0 0
\(307\) −11.7365 −0.669839 −0.334920 0.942247i \(-0.608709\pi\)
−0.334920 + 0.942247i \(0.608709\pi\)
\(308\) 0 0
\(309\) 4.63752 0.263819
\(310\) 0 0
\(311\) −12.8083 −0.726293 −0.363146 0.931732i \(-0.618297\pi\)
−0.363146 + 0.931732i \(0.618297\pi\)
\(312\) 0 0
\(313\) −31.3719 −1.77325 −0.886624 0.462492i \(-0.846955\pi\)
−0.886624 + 0.462492i \(0.846955\pi\)
\(314\) 0 0
\(315\) 0.477960 0.0269300
\(316\) 0 0
\(317\) 29.2659 1.64374 0.821869 0.569677i \(-0.192932\pi\)
0.821869 + 0.569677i \(0.192932\pi\)
\(318\) 0 0
\(319\) 4.68787 0.262471
\(320\) 0 0
\(321\) 24.8866 1.38903
\(322\) 0 0
\(323\) −2.38098 −0.132481
\(324\) 0 0
\(325\) 15.0882 0.836942
\(326\) 0 0
\(327\) −25.9755 −1.43645
\(328\) 0 0
\(329\) −0.273295 −0.0150672
\(330\) 0 0
\(331\) 11.0653 0.608202 0.304101 0.952640i \(-0.401644\pi\)
0.304101 + 0.952640i \(0.401644\pi\)
\(332\) 0 0
\(333\) −23.5810 −1.29223
\(334\) 0 0
\(335\) −0.806308 −0.0440533
\(336\) 0 0
\(337\) 29.8288 1.62488 0.812440 0.583045i \(-0.198139\pi\)
0.812440 + 0.583045i \(0.198139\pi\)
\(338\) 0 0
\(339\) 38.4645 2.08911
\(340\) 0 0
\(341\) 9.24213 0.500489
\(342\) 0 0
\(343\) −1.00000 −0.0539949
\(344\) 0 0
\(345\) 1.94523 0.104728
\(346\) 0 0
\(347\) −7.22486 −0.387851 −0.193925 0.981016i \(-0.562122\pi\)
−0.193925 + 0.981016i \(0.562122\pi\)
\(348\) 0 0
\(349\) 18.8155 1.00717 0.503584 0.863946i \(-0.332014\pi\)
0.503584 + 0.863946i \(0.332014\pi\)
\(350\) 0 0
\(351\) −3.38982 −0.180935
\(352\) 0 0
\(353\) −3.99112 −0.212426 −0.106213 0.994343i \(-0.533873\pi\)
−0.106213 + 0.994343i \(0.533873\pi\)
\(354\) 0 0
\(355\) −1.55543 −0.0825536
\(356\) 0 0
\(357\) −2.53790 −0.134320
\(358\) 0 0
\(359\) −9.36828 −0.494439 −0.247219 0.968960i \(-0.579517\pi\)
−0.247219 + 0.968960i \(0.579517\pi\)
\(360\) 0 0
\(361\) −13.3309 −0.701628
\(362\) 0 0
\(363\) −25.6831 −1.34801
\(364\) 0 0
\(365\) −1.43876 −0.0753082
\(366\) 0 0
\(367\) −15.9267 −0.831368 −0.415684 0.909509i \(-0.636458\pi\)
−0.415684 + 0.909509i \(0.636458\pi\)
\(368\) 0 0
\(369\) −15.8732 −0.826327
\(370\) 0 0
\(371\) −6.18574 −0.321148
\(372\) 0 0
\(373\) −17.4079 −0.901347 −0.450674 0.892689i \(-0.648816\pi\)
−0.450674 + 0.892689i \(0.648816\pi\)
\(374\) 0 0
\(375\) 3.51846 0.181692
\(376\) 0 0
\(377\) 15.1370 0.779596
\(378\) 0 0
\(379\) 24.9504 1.28161 0.640807 0.767702i \(-0.278600\pi\)
0.640807 + 0.767702i \(0.278600\pi\)
\(380\) 0 0
\(381\) −39.2297 −2.00980
\(382\) 0 0
\(383\) 23.5500 1.20335 0.601675 0.798741i \(-0.294500\pi\)
0.601675 + 0.798741i \(0.294500\pi\)
\(384\) 0 0
\(385\) −0.130316 −0.00664154
\(386\) 0 0
\(387\) 6.40548 0.325609
\(388\) 0 0
\(389\) 17.3562 0.879995 0.439997 0.897999i \(-0.354979\pi\)
0.439997 + 0.897999i \(0.354979\pi\)
\(390\) 0 0
\(391\) −5.51799 −0.279057
\(392\) 0 0
\(393\) 34.5864 1.74465
\(394\) 0 0
\(395\) −0.828169 −0.0416697
\(396\) 0 0
\(397\) −27.6590 −1.38817 −0.694084 0.719894i \(-0.744190\pi\)
−0.694084 + 0.719894i \(0.744190\pi\)
\(398\) 0 0
\(399\) 6.04268 0.302512
\(400\) 0 0
\(401\) 2.40006 0.119853 0.0599266 0.998203i \(-0.480913\pi\)
0.0599266 + 0.998203i \(0.480913\pi\)
\(402\) 0 0
\(403\) 29.8426 1.48656
\(404\) 0 0
\(405\) 1.03940 0.0516483
\(406\) 0 0
\(407\) 6.42939 0.318693
\(408\) 0 0
\(409\) −20.2419 −1.00090 −0.500450 0.865765i \(-0.666832\pi\)
−0.500450 + 0.865765i \(0.666832\pi\)
\(410\) 0 0
\(411\) −10.3494 −0.510499
\(412\) 0 0
\(413\) −2.88562 −0.141992
\(414\) 0 0
\(415\) 1.24018 0.0608782
\(416\) 0 0
\(417\) −30.6163 −1.49929
\(418\) 0 0
\(419\) 31.9192 1.55935 0.779677 0.626181i \(-0.215383\pi\)
0.779677 + 0.626181i \(0.215383\pi\)
\(420\) 0 0
\(421\) 19.5192 0.951309 0.475655 0.879632i \(-0.342211\pi\)
0.475655 + 0.879632i \(0.342211\pi\)
\(422\) 0 0
\(423\) 0.940384 0.0457230
\(424\) 0 0
\(425\) −4.98071 −0.241600
\(426\) 0 0
\(427\) −5.38822 −0.260754
\(428\) 0 0
\(429\) 7.21277 0.348236
\(430\) 0 0
\(431\) −17.7756 −0.856222 −0.428111 0.903726i \(-0.640821\pi\)
−0.428111 + 0.903726i \(0.640821\pi\)
\(432\) 0 0
\(433\) −16.1099 −0.774194 −0.387097 0.922039i \(-0.626522\pi\)
−0.387097 + 0.922039i \(0.626522\pi\)
\(434\) 0 0
\(435\) 1.76151 0.0844579
\(436\) 0 0
\(437\) 13.1382 0.628487
\(438\) 0 0
\(439\) 10.6115 0.506461 0.253230 0.967406i \(-0.418507\pi\)
0.253230 + 0.967406i \(0.418507\pi\)
\(440\) 0 0
\(441\) 3.44092 0.163853
\(442\) 0 0
\(443\) 5.75390 0.273376 0.136688 0.990614i \(-0.456354\pi\)
0.136688 + 0.990614i \(0.456354\pi\)
\(444\) 0 0
\(445\) −0.400927 −0.0190058
\(446\) 0 0
\(447\) 33.9089 1.60383
\(448\) 0 0
\(449\) −24.4469 −1.15372 −0.576860 0.816843i \(-0.695722\pi\)
−0.576860 + 0.816843i \(0.695722\pi\)
\(450\) 0 0
\(451\) 4.32786 0.203791
\(452\) 0 0
\(453\) −9.28764 −0.436371
\(454\) 0 0
\(455\) −0.420788 −0.0197268
\(456\) 0 0
\(457\) −6.71086 −0.313921 −0.156960 0.987605i \(-0.550170\pi\)
−0.156960 + 0.987605i \(0.550170\pi\)
\(458\) 0 0
\(459\) 1.11900 0.0522305
\(460\) 0 0
\(461\) 36.0532 1.67917 0.839583 0.543231i \(-0.182799\pi\)
0.839583 + 0.543231i \(0.182799\pi\)
\(462\) 0 0
\(463\) 26.0397 1.21017 0.605083 0.796162i \(-0.293140\pi\)
0.605083 + 0.796162i \(0.293140\pi\)
\(464\) 0 0
\(465\) 3.47281 0.161048
\(466\) 0 0
\(467\) −14.7790 −0.683889 −0.341945 0.939720i \(-0.611086\pi\)
−0.341945 + 0.939720i \(0.611086\pi\)
\(468\) 0 0
\(469\) −5.80476 −0.268039
\(470\) 0 0
\(471\) 24.0408 1.10774
\(472\) 0 0
\(473\) −1.74646 −0.0803025
\(474\) 0 0
\(475\) 11.8590 0.544126
\(476\) 0 0
\(477\) 21.2846 0.974555
\(478\) 0 0
\(479\) 10.0317 0.458360 0.229180 0.973384i \(-0.426396\pi\)
0.229180 + 0.973384i \(0.426396\pi\)
\(480\) 0 0
\(481\) 20.7603 0.946589
\(482\) 0 0
\(483\) 14.0041 0.637208
\(484\) 0 0
\(485\) −1.65751 −0.0752636
\(486\) 0 0
\(487\) −20.9436 −0.949047 −0.474524 0.880243i \(-0.657380\pi\)
−0.474524 + 0.880243i \(0.657380\pi\)
\(488\) 0 0
\(489\) −8.49440 −0.384130
\(490\) 0 0
\(491\) −8.90982 −0.402095 −0.201047 0.979582i \(-0.564435\pi\)
−0.201047 + 0.979582i \(0.564435\pi\)
\(492\) 0 0
\(493\) −4.99682 −0.225046
\(494\) 0 0
\(495\) 0.448408 0.0201544
\(496\) 0 0
\(497\) −11.1978 −0.502290
\(498\) 0 0
\(499\) 25.3335 1.13408 0.567041 0.823690i \(-0.308088\pi\)
0.567041 + 0.823690i \(0.308088\pi\)
\(500\) 0 0
\(501\) −32.7139 −1.46155
\(502\) 0 0
\(503\) −6.23099 −0.277826 −0.138913 0.990305i \(-0.544361\pi\)
−0.138913 + 0.990305i \(0.544361\pi\)
\(504\) 0 0
\(505\) 0.352142 0.0156701
\(506\) 0 0
\(507\) −9.70283 −0.430918
\(508\) 0 0
\(509\) −15.7013 −0.695949 −0.347974 0.937504i \(-0.613130\pi\)
−0.347974 + 0.937504i \(0.613130\pi\)
\(510\) 0 0
\(511\) −10.3579 −0.458207
\(512\) 0 0
\(513\) −2.66432 −0.117633
\(514\) 0 0
\(515\) −0.253822 −0.0111847
\(516\) 0 0
\(517\) −0.256397 −0.0112763
\(518\) 0 0
\(519\) −29.9999 −1.31685
\(520\) 0 0
\(521\) −6.95507 −0.304707 −0.152354 0.988326i \(-0.548685\pi\)
−0.152354 + 0.988326i \(0.548685\pi\)
\(522\) 0 0
\(523\) 26.8463 1.17391 0.586954 0.809620i \(-0.300327\pi\)
0.586954 + 0.809620i \(0.300327\pi\)
\(524\) 0 0
\(525\) 12.6405 0.551677
\(526\) 0 0
\(527\) −9.85122 −0.429126
\(528\) 0 0
\(529\) 7.44824 0.323837
\(530\) 0 0
\(531\) 9.92917 0.430889
\(532\) 0 0
\(533\) 13.9745 0.605304
\(534\) 0 0
\(535\) −1.36210 −0.0588886
\(536\) 0 0
\(537\) −55.6451 −2.40126
\(538\) 0 0
\(539\) −0.938171 −0.0404099
\(540\) 0 0
\(541\) 23.3480 1.00381 0.501904 0.864923i \(-0.332633\pi\)
0.501904 + 0.864923i \(0.332633\pi\)
\(542\) 0 0
\(543\) −24.4988 −1.05134
\(544\) 0 0
\(545\) 1.42170 0.0608989
\(546\) 0 0
\(547\) −0.980079 −0.0419052 −0.0209526 0.999780i \(-0.506670\pi\)
−0.0209526 + 0.999780i \(0.506670\pi\)
\(548\) 0 0
\(549\) 18.5404 0.791286
\(550\) 0 0
\(551\) 11.8973 0.506844
\(552\) 0 0
\(553\) −5.96214 −0.253536
\(554\) 0 0
\(555\) 2.41590 0.102549
\(556\) 0 0
\(557\) 2.24073 0.0949428 0.0474714 0.998873i \(-0.484884\pi\)
0.0474714 + 0.998873i \(0.484884\pi\)
\(558\) 0 0
\(559\) −5.63928 −0.238516
\(560\) 0 0
\(561\) −2.38098 −0.100525
\(562\) 0 0
\(563\) −10.5876 −0.446213 −0.223107 0.974794i \(-0.571620\pi\)
−0.223107 + 0.974794i \(0.571620\pi\)
\(564\) 0 0
\(565\) −2.10525 −0.0885685
\(566\) 0 0
\(567\) 7.48284 0.314250
\(568\) 0 0
\(569\) −30.0567 −1.26004 −0.630021 0.776578i \(-0.716954\pi\)
−0.630021 + 0.776578i \(0.716954\pi\)
\(570\) 0 0
\(571\) 17.8476 0.746900 0.373450 0.927650i \(-0.378175\pi\)
0.373450 + 0.927650i \(0.378175\pi\)
\(572\) 0 0
\(573\) −66.3201 −2.77056
\(574\) 0 0
\(575\) 27.4835 1.14614
\(576\) 0 0
\(577\) −0.188036 −0.00782805 −0.00391402 0.999992i \(-0.501246\pi\)
−0.00391402 + 0.999992i \(0.501246\pi\)
\(578\) 0 0
\(579\) 18.3657 0.763254
\(580\) 0 0
\(581\) 8.92830 0.370408
\(582\) 0 0
\(583\) −5.80328 −0.240347
\(584\) 0 0
\(585\) 1.44790 0.0598631
\(586\) 0 0
\(587\) −36.4145 −1.50299 −0.751493 0.659742i \(-0.770666\pi\)
−0.751493 + 0.659742i \(0.770666\pi\)
\(588\) 0 0
\(589\) 23.4556 0.966470
\(590\) 0 0
\(591\) −11.8263 −0.486469
\(592\) 0 0
\(593\) 3.58451 0.147198 0.0735990 0.997288i \(-0.476551\pi\)
0.0735990 + 0.997288i \(0.476551\pi\)
\(594\) 0 0
\(595\) 0.138905 0.00569454
\(596\) 0 0
\(597\) −8.62055 −0.352816
\(598\) 0 0
\(599\) −32.3830 −1.32313 −0.661566 0.749887i \(-0.730108\pi\)
−0.661566 + 0.749887i \(0.730108\pi\)
\(600\) 0 0
\(601\) −10.9279 −0.445757 −0.222879 0.974846i \(-0.571545\pi\)
−0.222879 + 0.974846i \(0.571545\pi\)
\(602\) 0 0
\(603\) 19.9737 0.813391
\(604\) 0 0
\(605\) 1.40569 0.0571495
\(606\) 0 0
\(607\) 11.2301 0.455818 0.227909 0.973682i \(-0.426811\pi\)
0.227909 + 0.973682i \(0.426811\pi\)
\(608\) 0 0
\(609\) 12.6814 0.513877
\(610\) 0 0
\(611\) −0.827899 −0.0334932
\(612\) 0 0
\(613\) −14.0099 −0.565854 −0.282927 0.959141i \(-0.591305\pi\)
−0.282927 + 0.959141i \(0.591305\pi\)
\(614\) 0 0
\(615\) 1.62623 0.0655759
\(616\) 0 0
\(617\) 2.36529 0.0952231 0.0476115 0.998866i \(-0.484839\pi\)
0.0476115 + 0.998866i \(0.484839\pi\)
\(618\) 0 0
\(619\) −30.4323 −1.22318 −0.611588 0.791177i \(-0.709469\pi\)
−0.611588 + 0.791177i \(0.709469\pi\)
\(620\) 0 0
\(621\) −6.17464 −0.247780
\(622\) 0 0
\(623\) −2.88635 −0.115639
\(624\) 0 0
\(625\) 24.7110 0.988438
\(626\) 0 0
\(627\) 5.66907 0.226401
\(628\) 0 0
\(629\) −6.85312 −0.273252
\(630\) 0 0
\(631\) −2.85815 −0.113781 −0.0568906 0.998380i \(-0.518119\pi\)
−0.0568906 + 0.998380i \(0.518119\pi\)
\(632\) 0 0
\(633\) 5.45647 0.216875
\(634\) 0 0
\(635\) 2.14713 0.0852063
\(636\) 0 0
\(637\) −3.02933 −0.120026
\(638\) 0 0
\(639\) 38.5307 1.52425
\(640\) 0 0
\(641\) −38.3550 −1.51493 −0.757465 0.652875i \(-0.773562\pi\)
−0.757465 + 0.652875i \(0.773562\pi\)
\(642\) 0 0
\(643\) 1.82210 0.0718564 0.0359282 0.999354i \(-0.488561\pi\)
0.0359282 + 0.999354i \(0.488561\pi\)
\(644\) 0 0
\(645\) −0.656249 −0.0258398
\(646\) 0 0
\(647\) −30.1683 −1.18604 −0.593019 0.805188i \(-0.702064\pi\)
−0.593019 + 0.805188i \(0.702064\pi\)
\(648\) 0 0
\(649\) −2.70720 −0.106267
\(650\) 0 0
\(651\) 25.0014 0.979881
\(652\) 0 0
\(653\) −15.9106 −0.622632 −0.311316 0.950306i \(-0.600770\pi\)
−0.311316 + 0.950306i \(0.600770\pi\)
\(654\) 0 0
\(655\) −1.89299 −0.0739653
\(656\) 0 0
\(657\) 35.6407 1.39048
\(658\) 0 0
\(659\) −47.3825 −1.84576 −0.922880 0.385088i \(-0.874171\pi\)
−0.922880 + 0.385088i \(0.874171\pi\)
\(660\) 0 0
\(661\) 15.9297 0.619594 0.309797 0.950803i \(-0.399739\pi\)
0.309797 + 0.950803i \(0.399739\pi\)
\(662\) 0 0
\(663\) −7.68812 −0.298582
\(664\) 0 0
\(665\) −0.330729 −0.0128251
\(666\) 0 0
\(667\) 27.5724 1.06761
\(668\) 0 0
\(669\) −45.9375 −1.77604
\(670\) 0 0
\(671\) −5.05507 −0.195149
\(672\) 0 0
\(673\) −50.8478 −1.96004 −0.980020 0.198898i \(-0.936264\pi\)
−0.980020 + 0.198898i \(0.936264\pi\)
\(674\) 0 0
\(675\) −5.57341 −0.214521
\(676\) 0 0
\(677\) 9.74262 0.374439 0.187220 0.982318i \(-0.440052\pi\)
0.187220 + 0.982318i \(0.440052\pi\)
\(678\) 0 0
\(679\) −11.9327 −0.457935
\(680\) 0 0
\(681\) −39.5410 −1.51522
\(682\) 0 0
\(683\) −37.5069 −1.43516 −0.717581 0.696475i \(-0.754751\pi\)
−0.717581 + 0.696475i \(0.754751\pi\)
\(684\) 0 0
\(685\) 0.566446 0.0216428
\(686\) 0 0
\(687\) 56.0117 2.13698
\(688\) 0 0
\(689\) −18.7386 −0.713885
\(690\) 0 0
\(691\) −8.46101 −0.321872 −0.160936 0.986965i \(-0.551451\pi\)
−0.160936 + 0.986965i \(0.551451\pi\)
\(692\) 0 0
\(693\) 3.22817 0.122628
\(694\) 0 0
\(695\) 1.67570 0.0635629
\(696\) 0 0
\(697\) −4.61308 −0.174733
\(698\) 0 0
\(699\) −8.00380 −0.302732
\(700\) 0 0
\(701\) 7.07563 0.267243 0.133621 0.991032i \(-0.457339\pi\)
0.133621 + 0.991032i \(0.457339\pi\)
\(702\) 0 0
\(703\) 16.3171 0.615412
\(704\) 0 0
\(705\) −0.0963434 −0.00362850
\(706\) 0 0
\(707\) 2.53513 0.0953434
\(708\) 0 0
\(709\) 17.7504 0.666632 0.333316 0.942815i \(-0.391832\pi\)
0.333316 + 0.942815i \(0.391832\pi\)
\(710\) 0 0
\(711\) 20.5152 0.769381
\(712\) 0 0
\(713\) 54.3590 2.03576
\(714\) 0 0
\(715\) −0.394771 −0.0147636
\(716\) 0 0
\(717\) −3.38790 −0.126524
\(718\) 0 0
\(719\) 27.2756 1.01721 0.508604 0.861000i \(-0.330162\pi\)
0.508604 + 0.861000i \(0.330162\pi\)
\(720\) 0 0
\(721\) −1.82731 −0.0680526
\(722\) 0 0
\(723\) 37.4086 1.39124
\(724\) 0 0
\(725\) 24.8877 0.924306
\(726\) 0 0
\(727\) −20.7713 −0.770365 −0.385182 0.922840i \(-0.625861\pi\)
−0.385182 + 0.922840i \(0.625861\pi\)
\(728\) 0 0
\(729\) −34.2676 −1.26917
\(730\) 0 0
\(731\) 1.86156 0.0688524
\(732\) 0 0
\(733\) −46.9928 −1.73572 −0.867859 0.496810i \(-0.834505\pi\)
−0.867859 + 0.496810i \(0.834505\pi\)
\(734\) 0 0
\(735\) −0.352526 −0.0130031
\(736\) 0 0
\(737\) −5.44585 −0.200601
\(738\) 0 0
\(739\) 28.8966 1.06298 0.531490 0.847065i \(-0.321632\pi\)
0.531490 + 0.847065i \(0.321632\pi\)
\(740\) 0 0
\(741\) 18.3053 0.672460
\(742\) 0 0
\(743\) −11.3956 −0.418064 −0.209032 0.977909i \(-0.567031\pi\)
−0.209032 + 0.977909i \(0.567031\pi\)
\(744\) 0 0
\(745\) −1.85591 −0.0679952
\(746\) 0 0
\(747\) −30.7215 −1.12404
\(748\) 0 0
\(749\) −9.80598 −0.358303
\(750\) 0 0
\(751\) 17.1482 0.625746 0.312873 0.949795i \(-0.398709\pi\)
0.312873 + 0.949795i \(0.398709\pi\)
\(752\) 0 0
\(753\) −63.5062 −2.31430
\(754\) 0 0
\(755\) 0.508333 0.0185001
\(756\) 0 0
\(757\) 37.2242 1.35293 0.676467 0.736473i \(-0.263510\pi\)
0.676467 + 0.736473i \(0.263510\pi\)
\(758\) 0 0
\(759\) 13.1382 0.476888
\(760\) 0 0
\(761\) −9.38531 −0.340217 −0.170109 0.985425i \(-0.554412\pi\)
−0.170109 + 0.985425i \(0.554412\pi\)
\(762\) 0 0
\(763\) 10.2351 0.370534
\(764\) 0 0
\(765\) −0.477960 −0.0172807
\(766\) 0 0
\(767\) −8.74148 −0.315637
\(768\) 0 0
\(769\) 7.29898 0.263208 0.131604 0.991302i \(-0.457987\pi\)
0.131604 + 0.991302i \(0.457987\pi\)
\(770\) 0 0
\(771\) 50.5604 1.82089
\(772\) 0 0
\(773\) −12.3839 −0.445418 −0.222709 0.974885i \(-0.571490\pi\)
−0.222709 + 0.974885i \(0.571490\pi\)
\(774\) 0 0
\(775\) 49.0660 1.76250
\(776\) 0 0
\(777\) 17.3925 0.623952
\(778\) 0 0
\(779\) 10.9837 0.393530
\(780\) 0 0
\(781\) −10.5055 −0.375915
\(782\) 0 0
\(783\) −5.59145 −0.199822
\(784\) 0 0
\(785\) −1.31581 −0.0469632
\(786\) 0 0
\(787\) 38.5306 1.37347 0.686733 0.726910i \(-0.259044\pi\)
0.686733 + 0.726910i \(0.259044\pi\)
\(788\) 0 0
\(789\) −56.5897 −2.01465
\(790\) 0 0
\(791\) −15.1561 −0.538888
\(792\) 0 0
\(793\) −16.3227 −0.579636
\(794\) 0 0
\(795\) −2.18063 −0.0773390
\(796\) 0 0
\(797\) 20.7736 0.735839 0.367920 0.929858i \(-0.380070\pi\)
0.367920 + 0.929858i \(0.380070\pi\)
\(798\) 0 0
\(799\) 0.273295 0.00966847
\(800\) 0 0
\(801\) 9.93168 0.350919
\(802\) 0 0
\(803\) −9.71748 −0.342922
\(804\) 0 0
\(805\) −0.766475 −0.0270147
\(806\) 0 0
\(807\) −27.8338 −0.979796
\(808\) 0 0
\(809\) 4.39047 0.154361 0.0771803 0.997017i \(-0.475408\pi\)
0.0771803 + 0.997017i \(0.475408\pi\)
\(810\) 0 0
\(811\) −21.0547 −0.739330 −0.369665 0.929165i \(-0.620528\pi\)
−0.369665 + 0.929165i \(0.620528\pi\)
\(812\) 0 0
\(813\) 19.1833 0.672787
\(814\) 0 0
\(815\) 0.464918 0.0162854
\(816\) 0 0
\(817\) −4.43234 −0.155068
\(818\) 0 0
\(819\) 10.4237 0.364232
\(820\) 0 0
\(821\) 36.9979 1.29124 0.645618 0.763661i \(-0.276600\pi\)
0.645618 + 0.763661i \(0.276600\pi\)
\(822\) 0 0
\(823\) −40.4809 −1.41107 −0.705537 0.708673i \(-0.749294\pi\)
−0.705537 + 0.708673i \(0.749294\pi\)
\(824\) 0 0
\(825\) 11.8590 0.412876
\(826\) 0 0
\(827\) 7.83822 0.272562 0.136281 0.990670i \(-0.456485\pi\)
0.136281 + 0.990670i \(0.456485\pi\)
\(828\) 0 0
\(829\) 14.3043 0.496810 0.248405 0.968656i \(-0.420094\pi\)
0.248405 + 0.968656i \(0.420094\pi\)
\(830\) 0 0
\(831\) 65.3969 2.26859
\(832\) 0 0
\(833\) 1.00000 0.0346479
\(834\) 0 0
\(835\) 1.79050 0.0619629
\(836\) 0 0
\(837\) −11.0235 −0.381029
\(838\) 0 0
\(839\) 28.6526 0.989198 0.494599 0.869121i \(-0.335315\pi\)
0.494599 + 0.869121i \(0.335315\pi\)
\(840\) 0 0
\(841\) −4.03175 −0.139026
\(842\) 0 0
\(843\) −8.14615 −0.280568
\(844\) 0 0
\(845\) 0.531058 0.0182689
\(846\) 0 0
\(847\) 10.1198 0.347722
\(848\) 0 0
\(849\) 14.1468 0.485516
\(850\) 0 0
\(851\) 37.8154 1.29630
\(852\) 0 0
\(853\) −36.5582 −1.25173 −0.625865 0.779931i \(-0.715254\pi\)
−0.625865 + 0.779931i \(0.715254\pi\)
\(854\) 0 0
\(855\) 1.13801 0.0389192
\(856\) 0 0
\(857\) −9.14903 −0.312525 −0.156262 0.987716i \(-0.549945\pi\)
−0.156262 + 0.987716i \(0.549945\pi\)
\(858\) 0 0
\(859\) −12.9610 −0.442223 −0.221112 0.975248i \(-0.570969\pi\)
−0.221112 + 0.975248i \(0.570969\pi\)
\(860\) 0 0
\(861\) 11.7075 0.398991
\(862\) 0 0
\(863\) 7.92253 0.269686 0.134843 0.990867i \(-0.456947\pi\)
0.134843 + 0.990867i \(0.456947\pi\)
\(864\) 0 0
\(865\) 1.64196 0.0558283
\(866\) 0 0
\(867\) 2.53790 0.0861915
\(868\) 0 0
\(869\) −5.59351 −0.189747
\(870\) 0 0
\(871\) −17.5845 −0.595828
\(872\) 0 0
\(873\) 41.0594 1.38965
\(874\) 0 0
\(875\) −1.38637 −0.0468678
\(876\) 0 0
\(877\) −2.34688 −0.0792484 −0.0396242 0.999215i \(-0.512616\pi\)
−0.0396242 + 0.999215i \(0.512616\pi\)
\(878\) 0 0
\(879\) 58.4304 1.97081
\(880\) 0 0
\(881\) 33.2775 1.12115 0.560573 0.828105i \(-0.310581\pi\)
0.560573 + 0.828105i \(0.310581\pi\)
\(882\) 0 0
\(883\) 15.6831 0.527780 0.263890 0.964553i \(-0.414994\pi\)
0.263890 + 0.964553i \(0.414994\pi\)
\(884\) 0 0
\(885\) −1.01725 −0.0341946
\(886\) 0 0
\(887\) 1.95317 0.0655811 0.0327906 0.999462i \(-0.489561\pi\)
0.0327906 + 0.999462i \(0.489561\pi\)
\(888\) 0 0
\(889\) 15.4576 0.518431
\(890\) 0 0
\(891\) 7.02018 0.235185
\(892\) 0 0
\(893\) −0.650709 −0.0217752
\(894\) 0 0
\(895\) 3.04558 0.101802
\(896\) 0 0
\(897\) 42.4230 1.41646
\(898\) 0 0
\(899\) 49.2248 1.64174
\(900\) 0 0
\(901\) 6.18574 0.206077
\(902\) 0 0
\(903\) −4.72445 −0.157220
\(904\) 0 0
\(905\) 1.34087 0.0445722
\(906\) 0 0
\(907\) 25.5462 0.848247 0.424123 0.905604i \(-0.360582\pi\)
0.424123 + 0.905604i \(0.360582\pi\)
\(908\) 0 0
\(909\) −8.72318 −0.289329
\(910\) 0 0
\(911\) 18.9725 0.628586 0.314293 0.949326i \(-0.398233\pi\)
0.314293 + 0.949326i \(0.398233\pi\)
\(912\) 0 0
\(913\) 8.37627 0.277214
\(914\) 0 0
\(915\) −1.89949 −0.0627951
\(916\) 0 0
\(917\) −13.6280 −0.450036
\(918\) 0 0
\(919\) −16.0055 −0.527973 −0.263987 0.964526i \(-0.585037\pi\)
−0.263987 + 0.964526i \(0.585037\pi\)
\(920\) 0 0
\(921\) −29.7861 −0.981485
\(922\) 0 0
\(923\) −33.9218 −1.11655
\(924\) 0 0
\(925\) 34.1334 1.12230
\(926\) 0 0
\(927\) 6.28762 0.206513
\(928\) 0 0
\(929\) −34.2945 −1.12516 −0.562582 0.826741i \(-0.690192\pi\)
−0.562582 + 0.826741i \(0.690192\pi\)
\(930\) 0 0
\(931\) −2.38098 −0.0780335
\(932\) 0 0
\(933\) −32.5062 −1.06420
\(934\) 0 0
\(935\) 0.130316 0.00426180
\(936\) 0 0
\(937\) 46.4116 1.51620 0.758101 0.652137i \(-0.226127\pi\)
0.758101 + 0.652137i \(0.226127\pi\)
\(938\) 0 0
\(939\) −79.6187 −2.59826
\(940\) 0 0
\(941\) 33.8074 1.10209 0.551044 0.834476i \(-0.314230\pi\)
0.551044 + 0.834476i \(0.314230\pi\)
\(942\) 0 0
\(943\) 25.4549 0.828927
\(944\) 0 0
\(945\) 0.155435 0.00505629
\(946\) 0 0
\(947\) −19.4012 −0.630454 −0.315227 0.949016i \(-0.602081\pi\)
−0.315227 + 0.949016i \(0.602081\pi\)
\(948\) 0 0
\(949\) −31.3775 −1.01856
\(950\) 0 0
\(951\) 74.2738 2.40849
\(952\) 0 0
\(953\) −32.4748 −1.05196 −0.525981 0.850497i \(-0.676302\pi\)
−0.525981 + 0.850497i \(0.676302\pi\)
\(954\) 0 0
\(955\) 3.62985 0.117459
\(956\) 0 0
\(957\) 11.8973 0.384586
\(958\) 0 0
\(959\) 4.07795 0.131684
\(960\) 0 0
\(961\) 66.0466 2.13054
\(962\) 0 0
\(963\) 33.7416 1.08731
\(964\) 0 0
\(965\) −1.00520 −0.0323585
\(966\) 0 0
\(967\) 53.5070 1.72067 0.860334 0.509730i \(-0.170255\pi\)
0.860334 + 0.509730i \(0.170255\pi\)
\(968\) 0 0
\(969\) −6.04268 −0.194119
\(970\) 0 0
\(971\) −9.00403 −0.288953 −0.144476 0.989508i \(-0.546150\pi\)
−0.144476 + 0.989508i \(0.546150\pi\)
\(972\) 0 0
\(973\) 12.0637 0.386743
\(974\) 0 0
\(975\) 38.2922 1.22633
\(976\) 0 0
\(977\) −38.0369 −1.21691 −0.608454 0.793589i \(-0.708210\pi\)
−0.608454 + 0.793589i \(0.708210\pi\)
\(978\) 0 0
\(979\) −2.70789 −0.0865445
\(980\) 0 0
\(981\) −35.2180 −1.12442
\(982\) 0 0
\(983\) 11.3788 0.362927 0.181464 0.983398i \(-0.441917\pi\)
0.181464 + 0.983398i \(0.441917\pi\)
\(984\) 0 0
\(985\) 0.647280 0.0206241
\(986\) 0 0
\(987\) −0.693594 −0.0220773
\(988\) 0 0
\(989\) −10.2721 −0.326633
\(990\) 0 0
\(991\) −46.7450 −1.48490 −0.742452 0.669900i \(-0.766337\pi\)
−0.742452 + 0.669900i \(0.766337\pi\)
\(992\) 0 0
\(993\) 28.0825 0.891171
\(994\) 0 0
\(995\) 0.471822 0.0149578
\(996\) 0 0
\(997\) 43.5528 1.37933 0.689665 0.724128i \(-0.257758\pi\)
0.689665 + 0.724128i \(0.257758\pi\)
\(998\) 0 0
\(999\) −7.66864 −0.242625
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 3808.2.a.j.1.6 6
4.3 odd 2 3808.2.a.n.1.1 yes 6
8.3 odd 2 7616.2.a.bw.1.6 6
8.5 even 2 7616.2.a.ca.1.1 6
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
3808.2.a.j.1.6 6 1.1 even 1 trivial
3808.2.a.n.1.1 yes 6 4.3 odd 2
7616.2.a.bw.1.6 6 8.3 odd 2
7616.2.a.ca.1.1 6 8.5 even 2