Properties

Label 3808.2.a.j.1.5
Level $3808$
Weight $2$
Character 3808.1
Self dual yes
Analytic conductor $30.407$
Analytic rank $1$
Dimension $6$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [3808,2,Mod(1,3808)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(3808, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("3808.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 3808 = 2^{5} \cdot 7 \cdot 17 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 3808.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(30.4070330897\)
Analytic rank: \(1\)
Dimension: \(6\)
Coefficient field: 6.6.4022000.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{6} - 2x^{5} - 7x^{4} + 10x^{3} + 14x^{2} - 8x - 4 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 2^{2} \)
Twist minimal: yes
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.5
Root \(-1.93381\) of defining polynomial
Character \(\chi\) \(=\) 3808.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+1.07358 q^{3} -1.81319 q^{5} -1.00000 q^{7} -1.84742 q^{9} +4.90949 q^{11} -4.83339 q^{13} -1.94661 q^{15} +1.00000 q^{17} +5.27074 q^{19} -1.07358 q^{21} +3.94372 q^{23} -1.71233 q^{25} -5.20410 q^{27} -2.75728 q^{29} +1.28477 q^{31} +5.27074 q^{33} +1.81319 q^{35} +0.798599 q^{37} -5.18904 q^{39} +4.50888 q^{41} -5.71588 q^{43} +3.34973 q^{45} -3.76437 q^{47} +1.00000 q^{49} +1.07358 q^{51} -7.86929 q^{53} -8.90184 q^{55} +5.65857 q^{57} -0.722499 q^{59} -8.29276 q^{61} +1.84742 q^{63} +8.76386 q^{65} -0.598550 q^{67} +4.23390 q^{69} -15.1178 q^{71} -7.53075 q^{73} -1.83833 q^{75} -4.90949 q^{77} -0.156924 q^{79} -0.0447670 q^{81} +6.38107 q^{83} -1.81319 q^{85} -2.96017 q^{87} -0.304088 q^{89} +4.83339 q^{91} +1.37931 q^{93} -9.55686 q^{95} -16.5918 q^{97} -9.06989 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 6 q - 2 q^{3} + 2 q^{5} - 6 q^{7} + 4 q^{9} - 2 q^{11} - 4 q^{13} - 8 q^{15} + 6 q^{17} + 2 q^{19} + 2 q^{21} - 10 q^{23} - 2 q^{27} + 2 q^{29} - 12 q^{31} + 2 q^{33} - 2 q^{35} + 2 q^{37} - 10 q^{39} - 8 q^{43}+ \cdots - 2 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 1.07358 0.619833 0.309916 0.950764i \(-0.399699\pi\)
0.309916 + 0.950764i \(0.399699\pi\)
\(4\) 0 0
\(5\) −1.81319 −0.810884 −0.405442 0.914121i \(-0.632882\pi\)
−0.405442 + 0.914121i \(0.632882\pi\)
\(6\) 0 0
\(7\) −1.00000 −0.377964
\(8\) 0 0
\(9\) −1.84742 −0.615807
\(10\) 0 0
\(11\) 4.90949 1.48027 0.740133 0.672461i \(-0.234763\pi\)
0.740133 + 0.672461i \(0.234763\pi\)
\(12\) 0 0
\(13\) −4.83339 −1.34054 −0.670270 0.742117i \(-0.733822\pi\)
−0.670270 + 0.742117i \(0.733822\pi\)
\(14\) 0 0
\(15\) −1.94661 −0.502613
\(16\) 0 0
\(17\) 1.00000 0.242536
\(18\) 0 0
\(19\) 5.27074 1.20919 0.604595 0.796533i \(-0.293335\pi\)
0.604595 + 0.796533i \(0.293335\pi\)
\(20\) 0 0
\(21\) −1.07358 −0.234275
\(22\) 0 0
\(23\) 3.94372 0.822321 0.411161 0.911563i \(-0.365123\pi\)
0.411161 + 0.911563i \(0.365123\pi\)
\(24\) 0 0
\(25\) −1.71233 −0.342466
\(26\) 0 0
\(27\) −5.20410 −1.00153
\(28\) 0 0
\(29\) −2.75728 −0.512015 −0.256007 0.966675i \(-0.582407\pi\)
−0.256007 + 0.966675i \(0.582407\pi\)
\(30\) 0 0
\(31\) 1.28477 0.230752 0.115376 0.993322i \(-0.463193\pi\)
0.115376 + 0.993322i \(0.463193\pi\)
\(32\) 0 0
\(33\) 5.27074 0.917517
\(34\) 0 0
\(35\) 1.81319 0.306485
\(36\) 0 0
\(37\) 0.798599 0.131289 0.0656445 0.997843i \(-0.479090\pi\)
0.0656445 + 0.997843i \(0.479090\pi\)
\(38\) 0 0
\(39\) −5.18904 −0.830911
\(40\) 0 0
\(41\) 4.50888 0.704169 0.352085 0.935968i \(-0.385473\pi\)
0.352085 + 0.935968i \(0.385473\pi\)
\(42\) 0 0
\(43\) −5.71588 −0.871664 −0.435832 0.900028i \(-0.643546\pi\)
−0.435832 + 0.900028i \(0.643546\pi\)
\(44\) 0 0
\(45\) 3.34973 0.499349
\(46\) 0 0
\(47\) −3.76437 −0.549090 −0.274545 0.961574i \(-0.588527\pi\)
−0.274545 + 0.961574i \(0.588527\pi\)
\(48\) 0 0
\(49\) 1.00000 0.142857
\(50\) 0 0
\(51\) 1.07358 0.150332
\(52\) 0 0
\(53\) −7.86929 −1.08093 −0.540465 0.841367i \(-0.681752\pi\)
−0.540465 + 0.841367i \(0.681752\pi\)
\(54\) 0 0
\(55\) −8.90184 −1.20032
\(56\) 0 0
\(57\) 5.65857 0.749495
\(58\) 0 0
\(59\) −0.722499 −0.0940613 −0.0470307 0.998893i \(-0.514976\pi\)
−0.0470307 + 0.998893i \(0.514976\pi\)
\(60\) 0 0
\(61\) −8.29276 −1.06178 −0.530889 0.847441i \(-0.678142\pi\)
−0.530889 + 0.847441i \(0.678142\pi\)
\(62\) 0 0
\(63\) 1.84742 0.232753
\(64\) 0 0
\(65\) 8.76386 1.08702
\(66\) 0 0
\(67\) −0.598550 −0.0731246 −0.0365623 0.999331i \(-0.511641\pi\)
−0.0365623 + 0.999331i \(0.511641\pi\)
\(68\) 0 0
\(69\) 4.23390 0.509702
\(70\) 0 0
\(71\) −15.1178 −1.79415 −0.897075 0.441878i \(-0.854312\pi\)
−0.897075 + 0.441878i \(0.854312\pi\)
\(72\) 0 0
\(73\) −7.53075 −0.881407 −0.440704 0.897653i \(-0.645271\pi\)
−0.440704 + 0.897653i \(0.645271\pi\)
\(74\) 0 0
\(75\) −1.83833 −0.212272
\(76\) 0 0
\(77\) −4.90949 −0.559488
\(78\) 0 0
\(79\) −0.156924 −0.0176554 −0.00882768 0.999961i \(-0.502810\pi\)
−0.00882768 + 0.999961i \(0.502810\pi\)
\(80\) 0 0
\(81\) −0.0447670 −0.00497411
\(82\) 0 0
\(83\) 6.38107 0.700413 0.350206 0.936673i \(-0.386111\pi\)
0.350206 + 0.936673i \(0.386111\pi\)
\(84\) 0 0
\(85\) −1.81319 −0.196668
\(86\) 0 0
\(87\) −2.96017 −0.317364
\(88\) 0 0
\(89\) −0.304088 −0.0322333 −0.0161166 0.999870i \(-0.505130\pi\)
−0.0161166 + 0.999870i \(0.505130\pi\)
\(90\) 0 0
\(91\) 4.83339 0.506676
\(92\) 0 0
\(93\) 1.37931 0.143028
\(94\) 0 0
\(95\) −9.55686 −0.980513
\(96\) 0 0
\(97\) −16.5918 −1.68464 −0.842321 0.538976i \(-0.818811\pi\)
−0.842321 + 0.538976i \(0.818811\pi\)
\(98\) 0 0
\(99\) −9.06989 −0.911558
\(100\) 0 0
\(101\) 13.4633 1.33965 0.669825 0.742519i \(-0.266369\pi\)
0.669825 + 0.742519i \(0.266369\pi\)
\(102\) 0 0
\(103\) −2.64584 −0.260702 −0.130351 0.991468i \(-0.541610\pi\)
−0.130351 + 0.991468i \(0.541610\pi\)
\(104\) 0 0
\(105\) 1.94661 0.189970
\(106\) 0 0
\(107\) −12.0520 −1.16511 −0.582555 0.812791i \(-0.697947\pi\)
−0.582555 + 0.812791i \(0.697947\pi\)
\(108\) 0 0
\(109\) −11.0750 −1.06079 −0.530394 0.847751i \(-0.677956\pi\)
−0.530394 + 0.847751i \(0.677956\pi\)
\(110\) 0 0
\(111\) 0.857362 0.0813772
\(112\) 0 0
\(113\) −11.2646 −1.05968 −0.529842 0.848096i \(-0.677749\pi\)
−0.529842 + 0.848096i \(0.677749\pi\)
\(114\) 0 0
\(115\) −7.15072 −0.666808
\(116\) 0 0
\(117\) 8.92930 0.825514
\(118\) 0 0
\(119\) −1.00000 −0.0916698
\(120\) 0 0
\(121\) 13.1031 1.19119
\(122\) 0 0
\(123\) 4.84066 0.436467
\(124\) 0 0
\(125\) 12.1708 1.08859
\(126\) 0 0
\(127\) 2.05335 0.182206 0.0911028 0.995841i \(-0.470961\pi\)
0.0911028 + 0.995841i \(0.470961\pi\)
\(128\) 0 0
\(129\) −6.13647 −0.540286
\(130\) 0 0
\(131\) −0.568667 −0.0496847 −0.0248423 0.999691i \(-0.507908\pi\)
−0.0248423 + 0.999691i \(0.507908\pi\)
\(132\) 0 0
\(133\) −5.27074 −0.457031
\(134\) 0 0
\(135\) 9.43604 0.812125
\(136\) 0 0
\(137\) −10.9544 −0.935901 −0.467950 0.883755i \(-0.655007\pi\)
−0.467950 + 0.883755i \(0.655007\pi\)
\(138\) 0 0
\(139\) −7.18567 −0.609480 −0.304740 0.952435i \(-0.598570\pi\)
−0.304740 + 0.952435i \(0.598570\pi\)
\(140\) 0 0
\(141\) −4.04136 −0.340344
\(142\) 0 0
\(143\) −23.7294 −1.98436
\(144\) 0 0
\(145\) 4.99949 0.415185
\(146\) 0 0
\(147\) 1.07358 0.0885475
\(148\) 0 0
\(149\) −16.4980 −1.35157 −0.675785 0.737099i \(-0.736195\pi\)
−0.675785 + 0.737099i \(0.736195\pi\)
\(150\) 0 0
\(151\) −17.7546 −1.44485 −0.722423 0.691451i \(-0.756972\pi\)
−0.722423 + 0.691451i \(0.756972\pi\)
\(152\) 0 0
\(153\) −1.84742 −0.149355
\(154\) 0 0
\(155\) −2.32954 −0.187113
\(156\) 0 0
\(157\) 14.2018 1.13342 0.566712 0.823916i \(-0.308215\pi\)
0.566712 + 0.823916i \(0.308215\pi\)
\(158\) 0 0
\(159\) −8.44832 −0.669996
\(160\) 0 0
\(161\) −3.94372 −0.310808
\(162\) 0 0
\(163\) 7.76653 0.608322 0.304161 0.952621i \(-0.401624\pi\)
0.304161 + 0.952621i \(0.401624\pi\)
\(164\) 0 0
\(165\) −9.55686 −0.744000
\(166\) 0 0
\(167\) −6.69909 −0.518391 −0.259196 0.965825i \(-0.583457\pi\)
−0.259196 + 0.965825i \(0.583457\pi\)
\(168\) 0 0
\(169\) 10.3616 0.797047
\(170\) 0 0
\(171\) −9.73727 −0.744628
\(172\) 0 0
\(173\) 14.1551 1.07619 0.538096 0.842884i \(-0.319144\pi\)
0.538096 + 0.842884i \(0.319144\pi\)
\(174\) 0 0
\(175\) 1.71233 0.129440
\(176\) 0 0
\(177\) −0.775662 −0.0583023
\(178\) 0 0
\(179\) 8.87466 0.663324 0.331662 0.943398i \(-0.392391\pi\)
0.331662 + 0.943398i \(0.392391\pi\)
\(180\) 0 0
\(181\) 12.4511 0.925480 0.462740 0.886494i \(-0.346866\pi\)
0.462740 + 0.886494i \(0.346866\pi\)
\(182\) 0 0
\(183\) −8.90295 −0.658125
\(184\) 0 0
\(185\) −1.44801 −0.106460
\(186\) 0 0
\(187\) 4.90949 0.359017
\(188\) 0 0
\(189\) 5.20410 0.378543
\(190\) 0 0
\(191\) 9.35155 0.676654 0.338327 0.941029i \(-0.390139\pi\)
0.338327 + 0.941029i \(0.390139\pi\)
\(192\) 0 0
\(193\) −24.7662 −1.78271 −0.891356 0.453303i \(-0.850246\pi\)
−0.891356 + 0.453303i \(0.850246\pi\)
\(194\) 0 0
\(195\) 9.40872 0.673772
\(196\) 0 0
\(197\) 10.2222 0.728301 0.364151 0.931340i \(-0.381359\pi\)
0.364151 + 0.931340i \(0.381359\pi\)
\(198\) 0 0
\(199\) −7.77047 −0.550834 −0.275417 0.961325i \(-0.588816\pi\)
−0.275417 + 0.961325i \(0.588816\pi\)
\(200\) 0 0
\(201\) −0.642593 −0.0453250
\(202\) 0 0
\(203\) 2.75728 0.193523
\(204\) 0 0
\(205\) −8.17547 −0.571000
\(206\) 0 0
\(207\) −7.28571 −0.506392
\(208\) 0 0
\(209\) 25.8766 1.78992
\(210\) 0 0
\(211\) −2.16867 −0.149298 −0.0746489 0.997210i \(-0.523784\pi\)
−0.0746489 + 0.997210i \(0.523784\pi\)
\(212\) 0 0
\(213\) −16.2302 −1.11207
\(214\) 0 0
\(215\) 10.3640 0.706819
\(216\) 0 0
\(217\) −1.28477 −0.0872160
\(218\) 0 0
\(219\) −8.08487 −0.546325
\(220\) 0 0
\(221\) −4.83339 −0.325129
\(222\) 0 0
\(223\) −9.58979 −0.642180 −0.321090 0.947049i \(-0.604049\pi\)
−0.321090 + 0.947049i \(0.604049\pi\)
\(224\) 0 0
\(225\) 3.16340 0.210893
\(226\) 0 0
\(227\) −7.36101 −0.488567 −0.244284 0.969704i \(-0.578553\pi\)
−0.244284 + 0.969704i \(0.578553\pi\)
\(228\) 0 0
\(229\) −12.8695 −0.850443 −0.425221 0.905089i \(-0.639804\pi\)
−0.425221 + 0.905089i \(0.639804\pi\)
\(230\) 0 0
\(231\) −5.27074 −0.346789
\(232\) 0 0
\(233\) −17.0708 −1.11834 −0.559172 0.829052i \(-0.688881\pi\)
−0.559172 + 0.829052i \(0.688881\pi\)
\(234\) 0 0
\(235\) 6.82553 0.445248
\(236\) 0 0
\(237\) −0.168471 −0.0109434
\(238\) 0 0
\(239\) 13.8787 0.897739 0.448869 0.893597i \(-0.351827\pi\)
0.448869 + 0.893597i \(0.351827\pi\)
\(240\) 0 0
\(241\) 15.9751 1.02905 0.514524 0.857476i \(-0.327968\pi\)
0.514524 + 0.857476i \(0.327968\pi\)
\(242\) 0 0
\(243\) 15.5643 0.998447
\(244\) 0 0
\(245\) −1.81319 −0.115841
\(246\) 0 0
\(247\) −25.4755 −1.62097
\(248\) 0 0
\(249\) 6.85060 0.434139
\(250\) 0 0
\(251\) −10.1242 −0.639031 −0.319516 0.947581i \(-0.603520\pi\)
−0.319516 + 0.947581i \(0.603520\pi\)
\(252\) 0 0
\(253\) 19.3616 1.21725
\(254\) 0 0
\(255\) −1.94661 −0.121901
\(256\) 0 0
\(257\) 15.8594 0.989282 0.494641 0.869098i \(-0.335300\pi\)
0.494641 + 0.869098i \(0.335300\pi\)
\(258\) 0 0
\(259\) −0.798599 −0.0496226
\(260\) 0 0
\(261\) 5.09387 0.315303
\(262\) 0 0
\(263\) −22.7178 −1.40084 −0.700420 0.713730i \(-0.747004\pi\)
−0.700420 + 0.713730i \(0.747004\pi\)
\(264\) 0 0
\(265\) 14.2685 0.876509
\(266\) 0 0
\(267\) −0.326464 −0.0199792
\(268\) 0 0
\(269\) 5.44746 0.332138 0.166069 0.986114i \(-0.446893\pi\)
0.166069 + 0.986114i \(0.446893\pi\)
\(270\) 0 0
\(271\) 2.28550 0.138834 0.0694170 0.997588i \(-0.477886\pi\)
0.0694170 + 0.997588i \(0.477886\pi\)
\(272\) 0 0
\(273\) 5.18904 0.314055
\(274\) 0 0
\(275\) −8.40667 −0.506941
\(276\) 0 0
\(277\) −22.1473 −1.33070 −0.665350 0.746532i \(-0.731718\pi\)
−0.665350 + 0.746532i \(0.731718\pi\)
\(278\) 0 0
\(279\) −2.37352 −0.142099
\(280\) 0 0
\(281\) 20.1996 1.20501 0.602503 0.798116i \(-0.294170\pi\)
0.602503 + 0.798116i \(0.294170\pi\)
\(282\) 0 0
\(283\) 31.4827 1.87145 0.935726 0.352728i \(-0.114746\pi\)
0.935726 + 0.352728i \(0.114746\pi\)
\(284\) 0 0
\(285\) −10.2601 −0.607754
\(286\) 0 0
\(287\) −4.50888 −0.266151
\(288\) 0 0
\(289\) 1.00000 0.0588235
\(290\) 0 0
\(291\) −17.8127 −1.04420
\(292\) 0 0
\(293\) 8.12416 0.474619 0.237309 0.971434i \(-0.423735\pi\)
0.237309 + 0.971434i \(0.423735\pi\)
\(294\) 0 0
\(295\) 1.31003 0.0762729
\(296\) 0 0
\(297\) −25.5495 −1.48253
\(298\) 0 0
\(299\) −19.0615 −1.10235
\(300\) 0 0
\(301\) 5.71588 0.329458
\(302\) 0 0
\(303\) 14.4540 0.830359
\(304\) 0 0
\(305\) 15.0364 0.860980
\(306\) 0 0
\(307\) −14.3805 −0.820738 −0.410369 0.911920i \(-0.634600\pi\)
−0.410369 + 0.911920i \(0.634600\pi\)
\(308\) 0 0
\(309\) −2.84052 −0.161592
\(310\) 0 0
\(311\) −23.4134 −1.32765 −0.663825 0.747888i \(-0.731068\pi\)
−0.663825 + 0.747888i \(0.731068\pi\)
\(312\) 0 0
\(313\) −1.12926 −0.0638296 −0.0319148 0.999491i \(-0.510161\pi\)
−0.0319148 + 0.999491i \(0.510161\pi\)
\(314\) 0 0
\(315\) −3.34973 −0.188736
\(316\) 0 0
\(317\) −9.60409 −0.539419 −0.269710 0.962942i \(-0.586928\pi\)
−0.269710 + 0.962942i \(0.586928\pi\)
\(318\) 0 0
\(319\) −13.5369 −0.757918
\(320\) 0 0
\(321\) −12.9388 −0.722174
\(322\) 0 0
\(323\) 5.27074 0.293272
\(324\) 0 0
\(325\) 8.27636 0.459090
\(326\) 0 0
\(327\) −11.8899 −0.657512
\(328\) 0 0
\(329\) 3.76437 0.207536
\(330\) 0 0
\(331\) 29.2438 1.60739 0.803693 0.595044i \(-0.202865\pi\)
0.803693 + 0.595044i \(0.202865\pi\)
\(332\) 0 0
\(333\) −1.47535 −0.0808487
\(334\) 0 0
\(335\) 1.08529 0.0592956
\(336\) 0 0
\(337\) 9.60718 0.523336 0.261668 0.965158i \(-0.415727\pi\)
0.261668 + 0.965158i \(0.415727\pi\)
\(338\) 0 0
\(339\) −12.0935 −0.656827
\(340\) 0 0
\(341\) 6.30757 0.341574
\(342\) 0 0
\(343\) −1.00000 −0.0539949
\(344\) 0 0
\(345\) −7.67688 −0.413309
\(346\) 0 0
\(347\) −11.7839 −0.632591 −0.316296 0.948661i \(-0.602439\pi\)
−0.316296 + 0.948661i \(0.602439\pi\)
\(348\) 0 0
\(349\) 8.74461 0.468088 0.234044 0.972226i \(-0.424804\pi\)
0.234044 + 0.972226i \(0.424804\pi\)
\(350\) 0 0
\(351\) 25.1534 1.34259
\(352\) 0 0
\(353\) 3.06697 0.163238 0.0816192 0.996664i \(-0.473991\pi\)
0.0816192 + 0.996664i \(0.473991\pi\)
\(354\) 0 0
\(355\) 27.4114 1.45485
\(356\) 0 0
\(357\) −1.07358 −0.0568200
\(358\) 0 0
\(359\) −22.9878 −1.21325 −0.606625 0.794988i \(-0.707477\pi\)
−0.606625 + 0.794988i \(0.707477\pi\)
\(360\) 0 0
\(361\) 8.78065 0.462140
\(362\) 0 0
\(363\) 14.0672 0.738337
\(364\) 0 0
\(365\) 13.6547 0.714719
\(366\) 0 0
\(367\) 16.4845 0.860482 0.430241 0.902714i \(-0.358429\pi\)
0.430241 + 0.902714i \(0.358429\pi\)
\(368\) 0 0
\(369\) −8.32981 −0.433633
\(370\) 0 0
\(371\) 7.86929 0.408553
\(372\) 0 0
\(373\) 13.9705 0.723366 0.361683 0.932301i \(-0.382202\pi\)
0.361683 + 0.932301i \(0.382202\pi\)
\(374\) 0 0
\(375\) 13.0663 0.674741
\(376\) 0 0
\(377\) 13.3270 0.686376
\(378\) 0 0
\(379\) 30.7980 1.58199 0.790994 0.611824i \(-0.209564\pi\)
0.790994 + 0.611824i \(0.209564\pi\)
\(380\) 0 0
\(381\) 2.20444 0.112937
\(382\) 0 0
\(383\) −21.7023 −1.10893 −0.554467 0.832206i \(-0.687078\pi\)
−0.554467 + 0.832206i \(0.687078\pi\)
\(384\) 0 0
\(385\) 8.90184 0.453680
\(386\) 0 0
\(387\) 10.5596 0.536777
\(388\) 0 0
\(389\) 13.0069 0.659476 0.329738 0.944072i \(-0.393040\pi\)
0.329738 + 0.944072i \(0.393040\pi\)
\(390\) 0 0
\(391\) 3.94372 0.199442
\(392\) 0 0
\(393\) −0.610511 −0.0307962
\(394\) 0 0
\(395\) 0.284534 0.0143165
\(396\) 0 0
\(397\) 8.24209 0.413659 0.206829 0.978377i \(-0.433685\pi\)
0.206829 + 0.978377i \(0.433685\pi\)
\(398\) 0 0
\(399\) −5.65857 −0.283283
\(400\) 0 0
\(401\) 23.5644 1.17675 0.588375 0.808588i \(-0.299768\pi\)
0.588375 + 0.808588i \(0.299768\pi\)
\(402\) 0 0
\(403\) −6.20980 −0.309332
\(404\) 0 0
\(405\) 0.0811712 0.00403343
\(406\) 0 0
\(407\) 3.92071 0.194343
\(408\) 0 0
\(409\) −7.40880 −0.366342 −0.183171 0.983081i \(-0.558636\pi\)
−0.183171 + 0.983081i \(0.558636\pi\)
\(410\) 0 0
\(411\) −11.7605 −0.580102
\(412\) 0 0
\(413\) 0.722499 0.0355518
\(414\) 0 0
\(415\) −11.5701 −0.567954
\(416\) 0 0
\(417\) −7.71440 −0.377776
\(418\) 0 0
\(419\) −27.7321 −1.35480 −0.677401 0.735614i \(-0.736894\pi\)
−0.677401 + 0.735614i \(0.736894\pi\)
\(420\) 0 0
\(421\) 9.54638 0.465262 0.232631 0.972565i \(-0.425267\pi\)
0.232631 + 0.972565i \(0.425267\pi\)
\(422\) 0 0
\(423\) 6.95438 0.338134
\(424\) 0 0
\(425\) −1.71233 −0.0830603
\(426\) 0 0
\(427\) 8.29276 0.401315
\(428\) 0 0
\(429\) −25.4755 −1.22997
\(430\) 0 0
\(431\) 36.2397 1.74560 0.872802 0.488075i \(-0.162301\pi\)
0.872802 + 0.488075i \(0.162301\pi\)
\(432\) 0 0
\(433\) 2.83494 0.136239 0.0681193 0.997677i \(-0.478300\pi\)
0.0681193 + 0.997677i \(0.478300\pi\)
\(434\) 0 0
\(435\) 5.36736 0.257345
\(436\) 0 0
\(437\) 20.7863 0.994343
\(438\) 0 0
\(439\) 25.6611 1.22474 0.612368 0.790573i \(-0.290217\pi\)
0.612368 + 0.790573i \(0.290217\pi\)
\(440\) 0 0
\(441\) −1.84742 −0.0879725
\(442\) 0 0
\(443\) −8.17868 −0.388581 −0.194291 0.980944i \(-0.562240\pi\)
−0.194291 + 0.980944i \(0.562240\pi\)
\(444\) 0 0
\(445\) 0.551370 0.0261375
\(446\) 0 0
\(447\) −17.7120 −0.837748
\(448\) 0 0
\(449\) −18.1445 −0.856294 −0.428147 0.903709i \(-0.640833\pi\)
−0.428147 + 0.903709i \(0.640833\pi\)
\(450\) 0 0
\(451\) 22.1363 1.04236
\(452\) 0 0
\(453\) −19.0610 −0.895563
\(454\) 0 0
\(455\) −8.76386 −0.410856
\(456\) 0 0
\(457\) −19.3950 −0.907262 −0.453631 0.891190i \(-0.649872\pi\)
−0.453631 + 0.891190i \(0.649872\pi\)
\(458\) 0 0
\(459\) −5.20410 −0.242907
\(460\) 0 0
\(461\) 0.965033 0.0449461 0.0224730 0.999747i \(-0.492846\pi\)
0.0224730 + 0.999747i \(0.492846\pi\)
\(462\) 0 0
\(463\) 26.9383 1.25193 0.625965 0.779851i \(-0.284705\pi\)
0.625965 + 0.779851i \(0.284705\pi\)
\(464\) 0 0
\(465\) −2.50095 −0.115979
\(466\) 0 0
\(467\) 10.0040 0.462928 0.231464 0.972843i \(-0.425648\pi\)
0.231464 + 0.972843i \(0.425648\pi\)
\(468\) 0 0
\(469\) 0.598550 0.0276385
\(470\) 0 0
\(471\) 15.2468 0.702534
\(472\) 0 0
\(473\) −28.0621 −1.29029
\(474\) 0 0
\(475\) −9.02525 −0.414107
\(476\) 0 0
\(477\) 14.5379 0.665644
\(478\) 0 0
\(479\) −12.9941 −0.593714 −0.296857 0.954922i \(-0.595938\pi\)
−0.296857 + 0.954922i \(0.595938\pi\)
\(480\) 0 0
\(481\) −3.85994 −0.175998
\(482\) 0 0
\(483\) −4.23390 −0.192649
\(484\) 0 0
\(485\) 30.0841 1.36605
\(486\) 0 0
\(487\) −7.54341 −0.341824 −0.170912 0.985286i \(-0.554671\pi\)
−0.170912 + 0.985286i \(0.554671\pi\)
\(488\) 0 0
\(489\) 8.33801 0.377058
\(490\) 0 0
\(491\) 29.9222 1.35037 0.675185 0.737648i \(-0.264064\pi\)
0.675185 + 0.737648i \(0.264064\pi\)
\(492\) 0 0
\(493\) −2.75728 −0.124182
\(494\) 0 0
\(495\) 16.4455 0.739168
\(496\) 0 0
\(497\) 15.1178 0.678125
\(498\) 0 0
\(499\) 14.4721 0.647861 0.323931 0.946081i \(-0.394996\pi\)
0.323931 + 0.946081i \(0.394996\pi\)
\(500\) 0 0
\(501\) −7.19202 −0.321316
\(502\) 0 0
\(503\) −3.75068 −0.167235 −0.0836173 0.996498i \(-0.526647\pi\)
−0.0836173 + 0.996498i \(0.526647\pi\)
\(504\) 0 0
\(505\) −24.4116 −1.08630
\(506\) 0 0
\(507\) 11.1240 0.494036
\(508\) 0 0
\(509\) −43.2251 −1.91592 −0.957959 0.286905i \(-0.907374\pi\)
−0.957959 + 0.286905i \(0.907374\pi\)
\(510\) 0 0
\(511\) 7.53075 0.333141
\(512\) 0 0
\(513\) −27.4295 −1.21104
\(514\) 0 0
\(515\) 4.79741 0.211399
\(516\) 0 0
\(517\) −18.4811 −0.812799
\(518\) 0 0
\(519\) 15.1966 0.667059
\(520\) 0 0
\(521\) −33.8581 −1.48335 −0.741675 0.670760i \(-0.765968\pi\)
−0.741675 + 0.670760i \(0.765968\pi\)
\(522\) 0 0
\(523\) −30.1871 −1.31999 −0.659996 0.751269i \(-0.729442\pi\)
−0.659996 + 0.751269i \(0.729442\pi\)
\(524\) 0 0
\(525\) 1.83833 0.0802313
\(526\) 0 0
\(527\) 1.28477 0.0559655
\(528\) 0 0
\(529\) −7.44711 −0.323787
\(530\) 0 0
\(531\) 1.33476 0.0579237
\(532\) 0 0
\(533\) −21.7932 −0.943967
\(534\) 0 0
\(535\) 21.8526 0.944770
\(536\) 0 0
\(537\) 9.52768 0.411150
\(538\) 0 0
\(539\) 4.90949 0.211467
\(540\) 0 0
\(541\) −21.9828 −0.945116 −0.472558 0.881300i \(-0.656669\pi\)
−0.472558 + 0.881300i \(0.656669\pi\)
\(542\) 0 0
\(543\) 13.3672 0.573643
\(544\) 0 0
\(545\) 20.0810 0.860177
\(546\) 0 0
\(547\) −28.7173 −1.22786 −0.613932 0.789359i \(-0.710413\pi\)
−0.613932 + 0.789359i \(0.710413\pi\)
\(548\) 0 0
\(549\) 15.3202 0.653851
\(550\) 0 0
\(551\) −14.5329 −0.619123
\(552\) 0 0
\(553\) 0.156924 0.00667310
\(554\) 0 0
\(555\) −1.55456 −0.0659875
\(556\) 0 0
\(557\) −20.0505 −0.849565 −0.424783 0.905295i \(-0.639649\pi\)
−0.424783 + 0.905295i \(0.639649\pi\)
\(558\) 0 0
\(559\) 27.6271 1.16850
\(560\) 0 0
\(561\) 5.27074 0.222531
\(562\) 0 0
\(563\) 24.3329 1.02551 0.512755 0.858535i \(-0.328625\pi\)
0.512755 + 0.858535i \(0.328625\pi\)
\(564\) 0 0
\(565\) 20.4249 0.859281
\(566\) 0 0
\(567\) 0.0447670 0.00188004
\(568\) 0 0
\(569\) −44.6538 −1.87199 −0.935993 0.352018i \(-0.885496\pi\)
−0.935993 + 0.352018i \(0.885496\pi\)
\(570\) 0 0
\(571\) 9.07727 0.379872 0.189936 0.981796i \(-0.439172\pi\)
0.189936 + 0.981796i \(0.439172\pi\)
\(572\) 0 0
\(573\) 10.0397 0.419412
\(574\) 0 0
\(575\) −6.75295 −0.281618
\(576\) 0 0
\(577\) −6.57031 −0.273526 −0.136763 0.990604i \(-0.543670\pi\)
−0.136763 + 0.990604i \(0.543670\pi\)
\(578\) 0 0
\(579\) −26.5886 −1.10498
\(580\) 0 0
\(581\) −6.38107 −0.264731
\(582\) 0 0
\(583\) −38.6341 −1.60006
\(584\) 0 0
\(585\) −16.1905 −0.669397
\(586\) 0 0
\(587\) −43.6330 −1.80092 −0.900462 0.434934i \(-0.856772\pi\)
−0.900462 + 0.434934i \(0.856772\pi\)
\(588\) 0 0
\(589\) 6.77169 0.279023
\(590\) 0 0
\(591\) 10.9744 0.451425
\(592\) 0 0
\(593\) −16.8930 −0.693713 −0.346857 0.937918i \(-0.612751\pi\)
−0.346857 + 0.937918i \(0.612751\pi\)
\(594\) 0 0
\(595\) 1.81319 0.0743337
\(596\) 0 0
\(597\) −8.34224 −0.341425
\(598\) 0 0
\(599\) −24.6378 −1.00667 −0.503336 0.864091i \(-0.667894\pi\)
−0.503336 + 0.864091i \(0.667894\pi\)
\(600\) 0 0
\(601\) 7.59480 0.309798 0.154899 0.987930i \(-0.450495\pi\)
0.154899 + 0.987930i \(0.450495\pi\)
\(602\) 0 0
\(603\) 1.10577 0.0450306
\(604\) 0 0
\(605\) −23.7584 −0.965915
\(606\) 0 0
\(607\) 28.5674 1.15952 0.579758 0.814789i \(-0.303147\pi\)
0.579758 + 0.814789i \(0.303147\pi\)
\(608\) 0 0
\(609\) 2.96017 0.119952
\(610\) 0 0
\(611\) 18.1947 0.736077
\(612\) 0 0
\(613\) −1.91340 −0.0772814 −0.0386407 0.999253i \(-0.512303\pi\)
−0.0386407 + 0.999253i \(0.512303\pi\)
\(614\) 0 0
\(615\) −8.77704 −0.353924
\(616\) 0 0
\(617\) 0.668569 0.0269156 0.0134578 0.999909i \(-0.495716\pi\)
0.0134578 + 0.999909i \(0.495716\pi\)
\(618\) 0 0
\(619\) 41.4618 1.66649 0.833246 0.552903i \(-0.186480\pi\)
0.833246 + 0.552903i \(0.186480\pi\)
\(620\) 0 0
\(621\) −20.5235 −0.823580
\(622\) 0 0
\(623\) 0.304088 0.0121830
\(624\) 0 0
\(625\) −13.5063 −0.540250
\(626\) 0 0
\(627\) 27.7807 1.10945
\(628\) 0 0
\(629\) 0.798599 0.0318422
\(630\) 0 0
\(631\) −40.1471 −1.59823 −0.799115 0.601179i \(-0.794698\pi\)
−0.799115 + 0.601179i \(0.794698\pi\)
\(632\) 0 0
\(633\) −2.32825 −0.0925396
\(634\) 0 0
\(635\) −3.72313 −0.147748
\(636\) 0 0
\(637\) −4.83339 −0.191506
\(638\) 0 0
\(639\) 27.9289 1.10485
\(640\) 0 0
\(641\) 17.7061 0.699349 0.349675 0.936871i \(-0.386292\pi\)
0.349675 + 0.936871i \(0.386292\pi\)
\(642\) 0 0
\(643\) 36.1351 1.42503 0.712514 0.701658i \(-0.247556\pi\)
0.712514 + 0.701658i \(0.247556\pi\)
\(644\) 0 0
\(645\) 11.1266 0.438110
\(646\) 0 0
\(647\) −43.3926 −1.70594 −0.852970 0.521961i \(-0.825201\pi\)
−0.852970 + 0.521961i \(0.825201\pi\)
\(648\) 0 0
\(649\) −3.54710 −0.139236
\(650\) 0 0
\(651\) −1.37931 −0.0540593
\(652\) 0 0
\(653\) −36.1857 −1.41606 −0.708028 0.706184i \(-0.750415\pi\)
−0.708028 + 0.706184i \(0.750415\pi\)
\(654\) 0 0
\(655\) 1.03110 0.0402885
\(656\) 0 0
\(657\) 13.9125 0.542777
\(658\) 0 0
\(659\) 9.60166 0.374028 0.187014 0.982357i \(-0.440119\pi\)
0.187014 + 0.982357i \(0.440119\pi\)
\(660\) 0 0
\(661\) 45.7424 1.77917 0.889587 0.456766i \(-0.150992\pi\)
0.889587 + 0.456766i \(0.150992\pi\)
\(662\) 0 0
\(663\) −5.18904 −0.201525
\(664\) 0 0
\(665\) 9.55686 0.370599
\(666\) 0 0
\(667\) −10.8739 −0.421041
\(668\) 0 0
\(669\) −10.2954 −0.398044
\(670\) 0 0
\(671\) −40.7132 −1.57171
\(672\) 0 0
\(673\) 21.9341 0.845498 0.422749 0.906247i \(-0.361065\pi\)
0.422749 + 0.906247i \(0.361065\pi\)
\(674\) 0 0
\(675\) 8.91116 0.342991
\(676\) 0 0
\(677\) −7.53121 −0.289448 −0.144724 0.989472i \(-0.546229\pi\)
−0.144724 + 0.989472i \(0.546229\pi\)
\(678\) 0 0
\(679\) 16.5918 0.636735
\(680\) 0 0
\(681\) −7.90265 −0.302830
\(682\) 0 0
\(683\) −12.4800 −0.477533 −0.238766 0.971077i \(-0.576743\pi\)
−0.238766 + 0.971077i \(0.576743\pi\)
\(684\) 0 0
\(685\) 19.8625 0.758907
\(686\) 0 0
\(687\) −13.8165 −0.527132
\(688\) 0 0
\(689\) 38.0353 1.44903
\(690\) 0 0
\(691\) 34.6379 1.31769 0.658843 0.752280i \(-0.271046\pi\)
0.658843 + 0.752280i \(0.271046\pi\)
\(692\) 0 0
\(693\) 9.06989 0.344537
\(694\) 0 0
\(695\) 13.0290 0.494218
\(696\) 0 0
\(697\) 4.50888 0.170786
\(698\) 0 0
\(699\) −18.3269 −0.693186
\(700\) 0 0
\(701\) 18.8435 0.711711 0.355856 0.934541i \(-0.384190\pi\)
0.355856 + 0.934541i \(0.384190\pi\)
\(702\) 0 0
\(703\) 4.20921 0.158753
\(704\) 0 0
\(705\) 7.32776 0.275980
\(706\) 0 0
\(707\) −13.4633 −0.506340
\(708\) 0 0
\(709\) 9.14557 0.343469 0.171735 0.985143i \(-0.445063\pi\)
0.171735 + 0.985143i \(0.445063\pi\)
\(710\) 0 0
\(711\) 0.289905 0.0108723
\(712\) 0 0
\(713\) 5.06677 0.189752
\(714\) 0 0
\(715\) 43.0260 1.60908
\(716\) 0 0
\(717\) 14.8999 0.556448
\(718\) 0 0
\(719\) 0.122120 0.00455429 0.00227715 0.999997i \(-0.499275\pi\)
0.00227715 + 0.999997i \(0.499275\pi\)
\(720\) 0 0
\(721\) 2.64584 0.0985361
\(722\) 0 0
\(723\) 17.1506 0.637838
\(724\) 0 0
\(725\) 4.72139 0.175348
\(726\) 0 0
\(727\) 4.96621 0.184186 0.0920932 0.995750i \(-0.470644\pi\)
0.0920932 + 0.995750i \(0.470644\pi\)
\(728\) 0 0
\(729\) 16.8438 0.623844
\(730\) 0 0
\(731\) −5.71588 −0.211410
\(732\) 0 0
\(733\) 41.7529 1.54218 0.771089 0.636727i \(-0.219712\pi\)
0.771089 + 0.636727i \(0.219712\pi\)
\(734\) 0 0
\(735\) −1.94661 −0.0718018
\(736\) 0 0
\(737\) −2.93857 −0.108244
\(738\) 0 0
\(739\) 14.2021 0.522432 0.261216 0.965280i \(-0.415877\pi\)
0.261216 + 0.965280i \(0.415877\pi\)
\(740\) 0 0
\(741\) −27.3500 −1.00473
\(742\) 0 0
\(743\) −6.65245 −0.244055 −0.122027 0.992527i \(-0.538940\pi\)
−0.122027 + 0.992527i \(0.538940\pi\)
\(744\) 0 0
\(745\) 29.9141 1.09597
\(746\) 0 0
\(747\) −11.7885 −0.431319
\(748\) 0 0
\(749\) 12.0520 0.440370
\(750\) 0 0
\(751\) 1.99696 0.0728701 0.0364351 0.999336i \(-0.488400\pi\)
0.0364351 + 0.999336i \(0.488400\pi\)
\(752\) 0 0
\(753\) −10.8691 −0.396093
\(754\) 0 0
\(755\) 32.1925 1.17160
\(756\) 0 0
\(757\) 49.9076 1.81392 0.906962 0.421213i \(-0.138395\pi\)
0.906962 + 0.421213i \(0.138395\pi\)
\(758\) 0 0
\(759\) 20.7863 0.754494
\(760\) 0 0
\(761\) 0.778750 0.0282297 0.0141148 0.999900i \(-0.495507\pi\)
0.0141148 + 0.999900i \(0.495507\pi\)
\(762\) 0 0
\(763\) 11.0750 0.400941
\(764\) 0 0
\(765\) 3.34973 0.121110
\(766\) 0 0
\(767\) 3.49212 0.126093
\(768\) 0 0
\(769\) −19.9542 −0.719568 −0.359784 0.933036i \(-0.617150\pi\)
−0.359784 + 0.933036i \(0.617150\pi\)
\(770\) 0 0
\(771\) 17.0264 0.613189
\(772\) 0 0
\(773\) 42.9022 1.54309 0.771543 0.636177i \(-0.219485\pi\)
0.771543 + 0.636177i \(0.219485\pi\)
\(774\) 0 0
\(775\) −2.19996 −0.0790248
\(776\) 0 0
\(777\) −0.857362 −0.0307577
\(778\) 0 0
\(779\) 23.7651 0.851474
\(780\) 0 0
\(781\) −74.2205 −2.65582
\(782\) 0 0
\(783\) 14.3492 0.512799
\(784\) 0 0
\(785\) −25.7505 −0.919076
\(786\) 0 0
\(787\) 0.935933 0.0333624 0.0166812 0.999861i \(-0.494690\pi\)
0.0166812 + 0.999861i \(0.494690\pi\)
\(788\) 0 0
\(789\) −24.3894 −0.868287
\(790\) 0 0
\(791\) 11.2646 0.400523
\(792\) 0 0
\(793\) 40.0821 1.42336
\(794\) 0 0
\(795\) 15.3184 0.543289
\(796\) 0 0
\(797\) 1.16932 0.0414193 0.0207097 0.999786i \(-0.493407\pi\)
0.0207097 + 0.999786i \(0.493407\pi\)
\(798\) 0 0
\(799\) −3.76437 −0.133174
\(800\) 0 0
\(801\) 0.561779 0.0198495
\(802\) 0 0
\(803\) −36.9721 −1.30472
\(804\) 0 0
\(805\) 7.15072 0.252030
\(806\) 0 0
\(807\) 5.84830 0.205870
\(808\) 0 0
\(809\) −54.1573 −1.90407 −0.952035 0.305990i \(-0.901013\pi\)
−0.952035 + 0.305990i \(0.901013\pi\)
\(810\) 0 0
\(811\) −37.0433 −1.30077 −0.650383 0.759607i \(-0.725391\pi\)
−0.650383 + 0.759607i \(0.725391\pi\)
\(812\) 0 0
\(813\) 2.45367 0.0860539
\(814\) 0 0
\(815\) −14.0822 −0.493279
\(816\) 0 0
\(817\) −30.1269 −1.05401
\(818\) 0 0
\(819\) −8.92930 −0.312015
\(820\) 0 0
\(821\) 39.0894 1.36423 0.682115 0.731245i \(-0.261060\pi\)
0.682115 + 0.731245i \(0.261060\pi\)
\(822\) 0 0
\(823\) −3.19521 −0.111378 −0.0556890 0.998448i \(-0.517736\pi\)
−0.0556890 + 0.998448i \(0.517736\pi\)
\(824\) 0 0
\(825\) −9.02525 −0.314219
\(826\) 0 0
\(827\) −11.9621 −0.415963 −0.207981 0.978133i \(-0.566689\pi\)
−0.207981 + 0.978133i \(0.566689\pi\)
\(828\) 0 0
\(829\) 28.6317 0.994421 0.497210 0.867630i \(-0.334358\pi\)
0.497210 + 0.867630i \(0.334358\pi\)
\(830\) 0 0
\(831\) −23.7769 −0.824811
\(832\) 0 0
\(833\) 1.00000 0.0346479
\(834\) 0 0
\(835\) 12.1467 0.420355
\(836\) 0 0
\(837\) −6.68609 −0.231105
\(838\) 0 0
\(839\) 30.9393 1.06814 0.534071 0.845439i \(-0.320661\pi\)
0.534071 + 0.845439i \(0.320661\pi\)
\(840\) 0 0
\(841\) −21.3974 −0.737841
\(842\) 0 0
\(843\) 21.6859 0.746903
\(844\) 0 0
\(845\) −18.7876 −0.646313
\(846\) 0 0
\(847\) −13.1031 −0.450226
\(848\) 0 0
\(849\) 33.7992 1.15999
\(850\) 0 0
\(851\) 3.14945 0.107962
\(852\) 0 0
\(853\) −42.6934 −1.46179 −0.730897 0.682488i \(-0.760898\pi\)
−0.730897 + 0.682488i \(0.760898\pi\)
\(854\) 0 0
\(855\) 17.6555 0.603807
\(856\) 0 0
\(857\) −39.3652 −1.34469 −0.672344 0.740238i \(-0.734713\pi\)
−0.672344 + 0.740238i \(0.734713\pi\)
\(858\) 0 0
\(859\) 17.7829 0.606744 0.303372 0.952872i \(-0.401888\pi\)
0.303372 + 0.952872i \(0.401888\pi\)
\(860\) 0 0
\(861\) −4.84066 −0.164969
\(862\) 0 0
\(863\) −11.3441 −0.386159 −0.193079 0.981183i \(-0.561847\pi\)
−0.193079 + 0.981183i \(0.561847\pi\)
\(864\) 0 0
\(865\) −25.6659 −0.872667
\(866\) 0 0
\(867\) 1.07358 0.0364608
\(868\) 0 0
\(869\) −0.770418 −0.0261346
\(870\) 0 0
\(871\) 2.89302 0.0980264
\(872\) 0 0
\(873\) 30.6520 1.03741
\(874\) 0 0
\(875\) −12.1708 −0.411447
\(876\) 0 0
\(877\) 49.4992 1.67147 0.835735 0.549133i \(-0.185042\pi\)
0.835735 + 0.549133i \(0.185042\pi\)
\(878\) 0 0
\(879\) 8.72195 0.294184
\(880\) 0 0
\(881\) 59.0826 1.99054 0.995272 0.0971308i \(-0.0309665\pi\)
0.995272 + 0.0971308i \(0.0309665\pi\)
\(882\) 0 0
\(883\) −17.5466 −0.590491 −0.295246 0.955421i \(-0.595402\pi\)
−0.295246 + 0.955421i \(0.595402\pi\)
\(884\) 0 0
\(885\) 1.40642 0.0472764
\(886\) 0 0
\(887\) 54.6195 1.83394 0.916972 0.398952i \(-0.130626\pi\)
0.916972 + 0.398952i \(0.130626\pi\)
\(888\) 0 0
\(889\) −2.05335 −0.0688673
\(890\) 0 0
\(891\) −0.219783 −0.00736301
\(892\) 0 0
\(893\) −19.8410 −0.663954
\(894\) 0 0
\(895\) −16.0915 −0.537879
\(896\) 0 0
\(897\) −20.4641 −0.683276
\(898\) 0 0
\(899\) −3.54248 −0.118148
\(900\) 0 0
\(901\) −7.86929 −0.262164
\(902\) 0 0
\(903\) 6.13647 0.204209
\(904\) 0 0
\(905\) −22.5762 −0.750457
\(906\) 0 0
\(907\) 59.0131 1.95950 0.979748 0.200233i \(-0.0641700\pi\)
0.979748 + 0.200233i \(0.0641700\pi\)
\(908\) 0 0
\(909\) −24.8724 −0.824967
\(910\) 0 0
\(911\) 41.7407 1.38293 0.691465 0.722410i \(-0.256966\pi\)
0.691465 + 0.722410i \(0.256966\pi\)
\(912\) 0 0
\(913\) 31.3278 1.03680
\(914\) 0 0
\(915\) 16.1428 0.533663
\(916\) 0 0
\(917\) 0.568667 0.0187790
\(918\) 0 0
\(919\) −58.3975 −1.92636 −0.963178 0.268865i \(-0.913351\pi\)
−0.963178 + 0.268865i \(0.913351\pi\)
\(920\) 0 0
\(921\) −15.4386 −0.508720
\(922\) 0 0
\(923\) 73.0701 2.40513
\(924\) 0 0
\(925\) −1.36747 −0.0449621
\(926\) 0 0
\(927\) 4.88798 0.160542
\(928\) 0 0
\(929\) −17.6020 −0.577502 −0.288751 0.957404i \(-0.593240\pi\)
−0.288751 + 0.957404i \(0.593240\pi\)
\(930\) 0 0
\(931\) 5.27074 0.172741
\(932\) 0 0
\(933\) −25.1362 −0.822921
\(934\) 0 0
\(935\) −8.90184 −0.291121
\(936\) 0 0
\(937\) 37.3278 1.21945 0.609723 0.792614i \(-0.291281\pi\)
0.609723 + 0.792614i \(0.291281\pi\)
\(938\) 0 0
\(939\) −1.21236 −0.0395637
\(940\) 0 0
\(941\) −6.61281 −0.215572 −0.107786 0.994174i \(-0.534376\pi\)
−0.107786 + 0.994174i \(0.534376\pi\)
\(942\) 0 0
\(943\) 17.7818 0.579054
\(944\) 0 0
\(945\) −9.43604 −0.306955
\(946\) 0 0
\(947\) 18.7834 0.610378 0.305189 0.952292i \(-0.401280\pi\)
0.305189 + 0.952292i \(0.401280\pi\)
\(948\) 0 0
\(949\) 36.3990 1.18156
\(950\) 0 0
\(951\) −10.3108 −0.334350
\(952\) 0 0
\(953\) −14.2542 −0.461737 −0.230869 0.972985i \(-0.574157\pi\)
−0.230869 + 0.972985i \(0.574157\pi\)
\(954\) 0 0
\(955\) −16.9562 −0.548688
\(956\) 0 0
\(957\) −14.5329 −0.469783
\(958\) 0 0
\(959\) 10.9544 0.353737
\(960\) 0 0
\(961\) −29.3494 −0.946754
\(962\) 0 0
\(963\) 22.2651 0.717484
\(964\) 0 0
\(965\) 44.9060 1.44557
\(966\) 0 0
\(967\) 13.7293 0.441504 0.220752 0.975330i \(-0.429149\pi\)
0.220752 + 0.975330i \(0.429149\pi\)
\(968\) 0 0
\(969\) 5.65857 0.181779
\(970\) 0 0
\(971\) −31.6982 −1.01724 −0.508622 0.860990i \(-0.669845\pi\)
−0.508622 + 0.860990i \(0.669845\pi\)
\(972\) 0 0
\(973\) 7.18567 0.230362
\(974\) 0 0
\(975\) 8.88535 0.284559
\(976\) 0 0
\(977\) −20.1941 −0.646068 −0.323034 0.946387i \(-0.604703\pi\)
−0.323034 + 0.946387i \(0.604703\pi\)
\(978\) 0 0
\(979\) −1.49292 −0.0477138
\(980\) 0 0
\(981\) 20.4601 0.653242
\(982\) 0 0
\(983\) −59.3564 −1.89318 −0.946588 0.322447i \(-0.895495\pi\)
−0.946588 + 0.322447i \(0.895495\pi\)
\(984\) 0 0
\(985\) −18.5348 −0.590568
\(986\) 0 0
\(987\) 4.04136 0.128638
\(988\) 0 0
\(989\) −22.5418 −0.716788
\(990\) 0 0
\(991\) 40.2432 1.27837 0.639184 0.769054i \(-0.279272\pi\)
0.639184 + 0.769054i \(0.279272\pi\)
\(992\) 0 0
\(993\) 31.3956 0.996311
\(994\) 0 0
\(995\) 14.0894 0.446663
\(996\) 0 0
\(997\) 38.6001 1.22248 0.611239 0.791446i \(-0.290672\pi\)
0.611239 + 0.791446i \(0.290672\pi\)
\(998\) 0 0
\(999\) −4.15600 −0.131490
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 3808.2.a.j.1.5 6
4.3 odd 2 3808.2.a.n.1.2 yes 6
8.3 odd 2 7616.2.a.bw.1.5 6
8.5 even 2 7616.2.a.ca.1.2 6
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
3808.2.a.j.1.5 6 1.1 even 1 trivial
3808.2.a.n.1.2 yes 6 4.3 odd 2
7616.2.a.bw.1.5 6 8.3 odd 2
7616.2.a.ca.1.2 6 8.5 even 2