Properties

Label 3808.2.a.j.1.3
Level $3808$
Weight $2$
Character 3808.1
Self dual yes
Analytic conductor $30.407$
Analytic rank $1$
Dimension $6$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [3808,2,Mod(1,3808)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(3808, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("3808.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 3808 = 2^{5} \cdot 7 \cdot 17 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 3808.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(30.4070330897\)
Analytic rank: \(1\)
Dimension: \(6\)
Coefficient field: 6.6.4022000.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{6} - 2x^{5} - 7x^{4} + 10x^{3} + 14x^{2} - 8x - 4 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 2^{2} \)
Twist minimal: yes
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.3
Root \(2.67090\) of defining polynomial
Character \(\chi\) \(=\) 3808.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-1.43012 q^{3} -2.70357 q^{5} -1.00000 q^{7} -0.954755 q^{9} -0.773277 q^{11} +2.59298 q^{13} +3.86643 q^{15} +1.00000 q^{17} +1.10588 q^{19} +1.43012 q^{21} -3.52209 q^{23} +2.30928 q^{25} +5.65578 q^{27} +6.41268 q^{29} +3.65361 q^{31} +1.10588 q^{33} +2.70357 q^{35} +5.57801 q^{37} -3.70828 q^{39} -1.97112 q^{41} +9.97124 q^{43} +2.58124 q^{45} -10.3268 q^{47} +1.00000 q^{49} -1.43012 q^{51} -8.49223 q^{53} +2.09061 q^{55} -1.58154 q^{57} -3.75831 q^{59} +14.4499 q^{61} +0.954755 q^{63} -7.01030 q^{65} -5.38635 q^{67} +5.03701 q^{69} -12.6548 q^{71} -2.56635 q^{73} -3.30254 q^{75} +0.773277 q^{77} +4.96421 q^{79} -5.22418 q^{81} +2.17677 q^{83} -2.70357 q^{85} -9.17091 q^{87} +9.82445 q^{89} -2.59298 q^{91} -5.22511 q^{93} -2.98982 q^{95} +16.3133 q^{97} +0.738290 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 6 q - 2 q^{3} + 2 q^{5} - 6 q^{7} + 4 q^{9} - 2 q^{11} - 4 q^{13} - 8 q^{15} + 6 q^{17} + 2 q^{19} + 2 q^{21} - 10 q^{23} - 2 q^{27} + 2 q^{29} - 12 q^{31} + 2 q^{33} - 2 q^{35} + 2 q^{37} - 10 q^{39} - 8 q^{43}+ \cdots - 2 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −1.43012 −0.825681 −0.412840 0.910803i \(-0.635463\pi\)
−0.412840 + 0.910803i \(0.635463\pi\)
\(4\) 0 0
\(5\) −2.70357 −1.20907 −0.604536 0.796578i \(-0.706641\pi\)
−0.604536 + 0.796578i \(0.706641\pi\)
\(6\) 0 0
\(7\) −1.00000 −0.377964
\(8\) 0 0
\(9\) −0.954755 −0.318252
\(10\) 0 0
\(11\) −0.773277 −0.233152 −0.116576 0.993182i \(-0.537192\pi\)
−0.116576 + 0.993182i \(0.537192\pi\)
\(12\) 0 0
\(13\) 2.59298 0.719163 0.359582 0.933114i \(-0.382919\pi\)
0.359582 + 0.933114i \(0.382919\pi\)
\(14\) 0 0
\(15\) 3.86643 0.998307
\(16\) 0 0
\(17\) 1.00000 0.242536
\(18\) 0 0
\(19\) 1.10588 0.253706 0.126853 0.991922i \(-0.459512\pi\)
0.126853 + 0.991922i \(0.459512\pi\)
\(20\) 0 0
\(21\) 1.43012 0.312078
\(22\) 0 0
\(23\) −3.52209 −0.734406 −0.367203 0.930141i \(-0.619685\pi\)
−0.367203 + 0.930141i \(0.619685\pi\)
\(24\) 0 0
\(25\) 2.30928 0.461855
\(26\) 0 0
\(27\) 5.65578 1.08845
\(28\) 0 0
\(29\) 6.41268 1.19081 0.595403 0.803427i \(-0.296992\pi\)
0.595403 + 0.803427i \(0.296992\pi\)
\(30\) 0 0
\(31\) 3.65361 0.656209 0.328104 0.944642i \(-0.393590\pi\)
0.328104 + 0.944642i \(0.393590\pi\)
\(32\) 0 0
\(33\) 1.10588 0.192509
\(34\) 0 0
\(35\) 2.70357 0.456986
\(36\) 0 0
\(37\) 5.57801 0.917020 0.458510 0.888689i \(-0.348383\pi\)
0.458510 + 0.888689i \(0.348383\pi\)
\(38\) 0 0
\(39\) −3.70828 −0.593799
\(40\) 0 0
\(41\) −1.97112 −0.307838 −0.153919 0.988083i \(-0.549189\pi\)
−0.153919 + 0.988083i \(0.549189\pi\)
\(42\) 0 0
\(43\) 9.97124 1.52060 0.760300 0.649572i \(-0.225052\pi\)
0.760300 + 0.649572i \(0.225052\pi\)
\(44\) 0 0
\(45\) 2.58124 0.384789
\(46\) 0 0
\(47\) −10.3268 −1.50632 −0.753161 0.657836i \(-0.771472\pi\)
−0.753161 + 0.657836i \(0.771472\pi\)
\(48\) 0 0
\(49\) 1.00000 0.142857
\(50\) 0 0
\(51\) −1.43012 −0.200257
\(52\) 0 0
\(53\) −8.49223 −1.16650 −0.583249 0.812293i \(-0.698219\pi\)
−0.583249 + 0.812293i \(0.698219\pi\)
\(54\) 0 0
\(55\) 2.09061 0.281897
\(56\) 0 0
\(57\) −1.58154 −0.209480
\(58\) 0 0
\(59\) −3.75831 −0.489290 −0.244645 0.969613i \(-0.578671\pi\)
−0.244645 + 0.969613i \(0.578671\pi\)
\(60\) 0 0
\(61\) 14.4499 1.85013 0.925063 0.379813i \(-0.124012\pi\)
0.925063 + 0.379813i \(0.124012\pi\)
\(62\) 0 0
\(63\) 0.954755 0.120288
\(64\) 0 0
\(65\) −7.01030 −0.869520
\(66\) 0 0
\(67\) −5.38635 −0.658048 −0.329024 0.944322i \(-0.606720\pi\)
−0.329024 + 0.944322i \(0.606720\pi\)
\(68\) 0 0
\(69\) 5.03701 0.606385
\(70\) 0 0
\(71\) −12.6548 −1.50185 −0.750924 0.660389i \(-0.770392\pi\)
−0.750924 + 0.660389i \(0.770392\pi\)
\(72\) 0 0
\(73\) −2.56635 −0.300369 −0.150185 0.988658i \(-0.547987\pi\)
−0.150185 + 0.988658i \(0.547987\pi\)
\(74\) 0 0
\(75\) −3.30254 −0.381345
\(76\) 0 0
\(77\) 0.773277 0.0881230
\(78\) 0 0
\(79\) 4.96421 0.558517 0.279259 0.960216i \(-0.409911\pi\)
0.279259 + 0.960216i \(0.409911\pi\)
\(80\) 0 0
\(81\) −5.22418 −0.580464
\(82\) 0 0
\(83\) 2.17677 0.238932 0.119466 0.992838i \(-0.461882\pi\)
0.119466 + 0.992838i \(0.461882\pi\)
\(84\) 0 0
\(85\) −2.70357 −0.293243
\(86\) 0 0
\(87\) −9.17091 −0.983225
\(88\) 0 0
\(89\) 9.82445 1.04139 0.520695 0.853743i \(-0.325673\pi\)
0.520695 + 0.853743i \(0.325673\pi\)
\(90\) 0 0
\(91\) −2.59298 −0.271818
\(92\) 0 0
\(93\) −5.22511 −0.541819
\(94\) 0 0
\(95\) −2.98982 −0.306749
\(96\) 0 0
\(97\) 16.3133 1.65637 0.828184 0.560457i \(-0.189374\pi\)
0.828184 + 0.560457i \(0.189374\pi\)
\(98\) 0 0
\(99\) 0.738290 0.0742009
\(100\) 0 0
\(101\) −3.84781 −0.382871 −0.191436 0.981505i \(-0.561314\pi\)
−0.191436 + 0.981505i \(0.561314\pi\)
\(102\) 0 0
\(103\) −16.8604 −1.66130 −0.830650 0.556795i \(-0.812031\pi\)
−0.830650 + 0.556795i \(0.812031\pi\)
\(104\) 0 0
\(105\) −3.86643 −0.377325
\(106\) 0 0
\(107\) 2.69106 0.260155 0.130077 0.991504i \(-0.458477\pi\)
0.130077 + 0.991504i \(0.458477\pi\)
\(108\) 0 0
\(109\) −13.5659 −1.29938 −0.649690 0.760199i \(-0.725101\pi\)
−0.649690 + 0.760199i \(0.725101\pi\)
\(110\) 0 0
\(111\) −7.97723 −0.757166
\(112\) 0 0
\(113\) 17.1133 1.60988 0.804941 0.593355i \(-0.202197\pi\)
0.804941 + 0.593355i \(0.202197\pi\)
\(114\) 0 0
\(115\) 9.52220 0.887950
\(116\) 0 0
\(117\) −2.47566 −0.228875
\(118\) 0 0
\(119\) −1.00000 −0.0916698
\(120\) 0 0
\(121\) −10.4020 −0.945640
\(122\) 0 0
\(123\) 2.81894 0.254176
\(124\) 0 0
\(125\) 7.27455 0.650656
\(126\) 0 0
\(127\) −19.9603 −1.77119 −0.885595 0.464458i \(-0.846249\pi\)
−0.885595 + 0.464458i \(0.846249\pi\)
\(128\) 0 0
\(129\) −14.2601 −1.25553
\(130\) 0 0
\(131\) −1.12571 −0.0983538 −0.0491769 0.998790i \(-0.515660\pi\)
−0.0491769 + 0.998790i \(0.515660\pi\)
\(132\) 0 0
\(133\) −1.10588 −0.0958918
\(134\) 0 0
\(135\) −15.2908 −1.31602
\(136\) 0 0
\(137\) −0.123315 −0.0105355 −0.00526774 0.999986i \(-0.501677\pi\)
−0.00526774 + 0.999986i \(0.501677\pi\)
\(138\) 0 0
\(139\) −7.04265 −0.597350 −0.298675 0.954355i \(-0.596545\pi\)
−0.298675 + 0.954355i \(0.596545\pi\)
\(140\) 0 0
\(141\) 14.7686 1.24374
\(142\) 0 0
\(143\) −2.00509 −0.167674
\(144\) 0 0
\(145\) −17.3371 −1.43977
\(146\) 0 0
\(147\) −1.43012 −0.117954
\(148\) 0 0
\(149\) 5.58666 0.457677 0.228838 0.973464i \(-0.426507\pi\)
0.228838 + 0.973464i \(0.426507\pi\)
\(150\) 0 0
\(151\) 3.39593 0.276357 0.138179 0.990407i \(-0.455875\pi\)
0.138179 + 0.990407i \(0.455875\pi\)
\(152\) 0 0
\(153\) −0.954755 −0.0771874
\(154\) 0 0
\(155\) −9.87779 −0.793403
\(156\) 0 0
\(157\) −8.73362 −0.697019 −0.348509 0.937305i \(-0.613312\pi\)
−0.348509 + 0.937305i \(0.613312\pi\)
\(158\) 0 0
\(159\) 12.1449 0.963155
\(160\) 0 0
\(161\) 3.52209 0.277579
\(162\) 0 0
\(163\) −23.8538 −1.86837 −0.934186 0.356786i \(-0.883872\pi\)
−0.934186 + 0.356786i \(0.883872\pi\)
\(164\) 0 0
\(165\) −2.98982 −0.232757
\(166\) 0 0
\(167\) −1.79550 −0.138940 −0.0694698 0.997584i \(-0.522131\pi\)
−0.0694698 + 0.997584i \(0.522131\pi\)
\(168\) 0 0
\(169\) −6.27645 −0.482804
\(170\) 0 0
\(171\) −1.05584 −0.0807424
\(172\) 0 0
\(173\) 3.73363 0.283862 0.141931 0.989877i \(-0.454669\pi\)
0.141931 + 0.989877i \(0.454669\pi\)
\(174\) 0 0
\(175\) −2.30928 −0.174565
\(176\) 0 0
\(177\) 5.37484 0.403998
\(178\) 0 0
\(179\) −12.4290 −0.928988 −0.464494 0.885576i \(-0.653764\pi\)
−0.464494 + 0.885576i \(0.653764\pi\)
\(180\) 0 0
\(181\) −10.4181 −0.774372 −0.387186 0.922002i \(-0.626553\pi\)
−0.387186 + 0.922002i \(0.626553\pi\)
\(182\) 0 0
\(183\) −20.6652 −1.52761
\(184\) 0 0
\(185\) −15.0805 −1.10874
\(186\) 0 0
\(187\) −0.773277 −0.0565476
\(188\) 0 0
\(189\) −5.65578 −0.411397
\(190\) 0 0
\(191\) −17.2395 −1.24740 −0.623702 0.781662i \(-0.714372\pi\)
−0.623702 + 0.781662i \(0.714372\pi\)
\(192\) 0 0
\(193\) 5.73060 0.412498 0.206249 0.978500i \(-0.433874\pi\)
0.206249 + 0.978500i \(0.433874\pi\)
\(194\) 0 0
\(195\) 10.0256 0.717946
\(196\) 0 0
\(197\) −4.95548 −0.353063 −0.176532 0.984295i \(-0.556488\pi\)
−0.176532 + 0.984295i \(0.556488\pi\)
\(198\) 0 0
\(199\) −10.7193 −0.759868 −0.379934 0.925014i \(-0.624053\pi\)
−0.379934 + 0.925014i \(0.624053\pi\)
\(200\) 0 0
\(201\) 7.70314 0.543337
\(202\) 0 0
\(203\) −6.41268 −0.450082
\(204\) 0 0
\(205\) 5.32906 0.372198
\(206\) 0 0
\(207\) 3.36273 0.233726
\(208\) 0 0
\(209\) −0.855150 −0.0591520
\(210\) 0 0
\(211\) 19.7310 1.35834 0.679170 0.733981i \(-0.262340\pi\)
0.679170 + 0.733981i \(0.262340\pi\)
\(212\) 0 0
\(213\) 18.0979 1.24005
\(214\) 0 0
\(215\) −26.9579 −1.83851
\(216\) 0 0
\(217\) −3.65361 −0.248024
\(218\) 0 0
\(219\) 3.67020 0.248009
\(220\) 0 0
\(221\) 2.59298 0.174423
\(222\) 0 0
\(223\) 11.1872 0.749149 0.374575 0.927197i \(-0.377789\pi\)
0.374575 + 0.927197i \(0.377789\pi\)
\(224\) 0 0
\(225\) −2.20479 −0.146986
\(226\) 0 0
\(227\) 7.19554 0.477584 0.238792 0.971071i \(-0.423249\pi\)
0.238792 + 0.971071i \(0.423249\pi\)
\(228\) 0 0
\(229\) 6.99695 0.462371 0.231186 0.972910i \(-0.425740\pi\)
0.231186 + 0.972910i \(0.425740\pi\)
\(230\) 0 0
\(231\) −1.10588 −0.0727615
\(232\) 0 0
\(233\) −11.4432 −0.749671 −0.374835 0.927091i \(-0.622301\pi\)
−0.374835 + 0.927091i \(0.622301\pi\)
\(234\) 0 0
\(235\) 27.9193 1.82125
\(236\) 0 0
\(237\) −7.09942 −0.461157
\(238\) 0 0
\(239\) −16.8520 −1.09007 −0.545033 0.838415i \(-0.683483\pi\)
−0.545033 + 0.838415i \(0.683483\pi\)
\(240\) 0 0
\(241\) −2.35871 −0.151938 −0.0759689 0.997110i \(-0.524205\pi\)
−0.0759689 + 0.997110i \(0.524205\pi\)
\(242\) 0 0
\(243\) −9.49613 −0.609177
\(244\) 0 0
\(245\) −2.70357 −0.172725
\(246\) 0 0
\(247\) 2.86752 0.182456
\(248\) 0 0
\(249\) −3.11304 −0.197281
\(250\) 0 0
\(251\) −4.34850 −0.274475 −0.137237 0.990538i \(-0.543822\pi\)
−0.137237 + 0.990538i \(0.543822\pi\)
\(252\) 0 0
\(253\) 2.72355 0.171228
\(254\) 0 0
\(255\) 3.86643 0.242125
\(256\) 0 0
\(257\) −8.33509 −0.519928 −0.259964 0.965618i \(-0.583711\pi\)
−0.259964 + 0.965618i \(0.583711\pi\)
\(258\) 0 0
\(259\) −5.57801 −0.346601
\(260\) 0 0
\(261\) −6.12254 −0.378976
\(262\) 0 0
\(263\) −1.60262 −0.0988219 −0.0494109 0.998779i \(-0.515734\pi\)
−0.0494109 + 0.998779i \(0.515734\pi\)
\(264\) 0 0
\(265\) 22.9593 1.41038
\(266\) 0 0
\(267\) −14.0502 −0.859855
\(268\) 0 0
\(269\) 27.0032 1.64641 0.823206 0.567743i \(-0.192183\pi\)
0.823206 + 0.567743i \(0.192183\pi\)
\(270\) 0 0
\(271\) 22.9673 1.39516 0.697582 0.716505i \(-0.254260\pi\)
0.697582 + 0.716505i \(0.254260\pi\)
\(272\) 0 0
\(273\) 3.70828 0.224435
\(274\) 0 0
\(275\) −1.78571 −0.107682
\(276\) 0 0
\(277\) −22.7050 −1.36421 −0.682107 0.731253i \(-0.738936\pi\)
−0.682107 + 0.731253i \(0.738936\pi\)
\(278\) 0 0
\(279\) −3.48831 −0.208839
\(280\) 0 0
\(281\) 19.8855 1.18627 0.593136 0.805102i \(-0.297890\pi\)
0.593136 + 0.805102i \(0.297890\pi\)
\(282\) 0 0
\(283\) 23.7051 1.40912 0.704562 0.709643i \(-0.251144\pi\)
0.704562 + 0.709643i \(0.251144\pi\)
\(284\) 0 0
\(285\) 4.27580 0.253277
\(286\) 0 0
\(287\) 1.97112 0.116352
\(288\) 0 0
\(289\) 1.00000 0.0588235
\(290\) 0 0
\(291\) −23.3300 −1.36763
\(292\) 0 0
\(293\) 2.34850 0.137201 0.0686004 0.997644i \(-0.478147\pi\)
0.0686004 + 0.997644i \(0.478147\pi\)
\(294\) 0 0
\(295\) 10.1608 0.591587
\(296\) 0 0
\(297\) −4.37348 −0.253775
\(298\) 0 0
\(299\) −9.13271 −0.528158
\(300\) 0 0
\(301\) −9.97124 −0.574733
\(302\) 0 0
\(303\) 5.50283 0.316129
\(304\) 0 0
\(305\) −39.0664 −2.23694
\(306\) 0 0
\(307\) −0.500806 −0.0285825 −0.0142913 0.999898i \(-0.504549\pi\)
−0.0142913 + 0.999898i \(0.504549\pi\)
\(308\) 0 0
\(309\) 24.1123 1.37170
\(310\) 0 0
\(311\) −15.0212 −0.851776 −0.425888 0.904776i \(-0.640038\pi\)
−0.425888 + 0.904776i \(0.640038\pi\)
\(312\) 0 0
\(313\) 15.8493 0.895854 0.447927 0.894070i \(-0.352162\pi\)
0.447927 + 0.894070i \(0.352162\pi\)
\(314\) 0 0
\(315\) −2.58124 −0.145437
\(316\) 0 0
\(317\) −29.6617 −1.66597 −0.832983 0.553298i \(-0.813369\pi\)
−0.832983 + 0.553298i \(0.813369\pi\)
\(318\) 0 0
\(319\) −4.95878 −0.277638
\(320\) 0 0
\(321\) −3.84854 −0.214805
\(322\) 0 0
\(323\) 1.10588 0.0615327
\(324\) 0 0
\(325\) 5.98791 0.332149
\(326\) 0 0
\(327\) 19.4009 1.07287
\(328\) 0 0
\(329\) 10.3268 0.569336
\(330\) 0 0
\(331\) −2.99226 −0.164469 −0.0822347 0.996613i \(-0.526206\pi\)
−0.0822347 + 0.996613i \(0.526206\pi\)
\(332\) 0 0
\(333\) −5.32564 −0.291843
\(334\) 0 0
\(335\) 14.5624 0.795627
\(336\) 0 0
\(337\) −28.5715 −1.55639 −0.778195 0.628022i \(-0.783865\pi\)
−0.778195 + 0.628022i \(0.783865\pi\)
\(338\) 0 0
\(339\) −24.4740 −1.32925
\(340\) 0 0
\(341\) −2.82525 −0.152996
\(342\) 0 0
\(343\) −1.00000 −0.0539949
\(344\) 0 0
\(345\) −13.6179 −0.733163
\(346\) 0 0
\(347\) 4.47883 0.240436 0.120218 0.992748i \(-0.461641\pi\)
0.120218 + 0.992748i \(0.461641\pi\)
\(348\) 0 0
\(349\) −14.2297 −0.761696 −0.380848 0.924638i \(-0.624368\pi\)
−0.380848 + 0.924638i \(0.624368\pi\)
\(350\) 0 0
\(351\) 14.6653 0.782777
\(352\) 0 0
\(353\) −20.6592 −1.09958 −0.549790 0.835303i \(-0.685292\pi\)
−0.549790 + 0.835303i \(0.685292\pi\)
\(354\) 0 0
\(355\) 34.2131 1.81584
\(356\) 0 0
\(357\) 1.43012 0.0756900
\(358\) 0 0
\(359\) −15.9587 −0.842268 −0.421134 0.906998i \(-0.638368\pi\)
−0.421134 + 0.906998i \(0.638368\pi\)
\(360\) 0 0
\(361\) −17.7770 −0.935633
\(362\) 0 0
\(363\) 14.8762 0.780797
\(364\) 0 0
\(365\) 6.93831 0.363168
\(366\) 0 0
\(367\) 33.7047 1.75937 0.879686 0.475555i \(-0.157753\pi\)
0.879686 + 0.475555i \(0.157753\pi\)
\(368\) 0 0
\(369\) 1.88194 0.0979699
\(370\) 0 0
\(371\) 8.49223 0.440895
\(372\) 0 0
\(373\) 1.34947 0.0698729 0.0349364 0.999390i \(-0.488877\pi\)
0.0349364 + 0.999390i \(0.488877\pi\)
\(374\) 0 0
\(375\) −10.4035 −0.537234
\(376\) 0 0
\(377\) 16.6280 0.856384
\(378\) 0 0
\(379\) −10.6618 −0.547661 −0.273830 0.961778i \(-0.588291\pi\)
−0.273830 + 0.961778i \(0.588291\pi\)
\(380\) 0 0
\(381\) 28.5456 1.46244
\(382\) 0 0
\(383\) −13.6889 −0.699468 −0.349734 0.936849i \(-0.613728\pi\)
−0.349734 + 0.936849i \(0.613728\pi\)
\(384\) 0 0
\(385\) −2.09061 −0.106547
\(386\) 0 0
\(387\) −9.52009 −0.483933
\(388\) 0 0
\(389\) −22.5941 −1.14556 −0.572782 0.819708i \(-0.694136\pi\)
−0.572782 + 0.819708i \(0.694136\pi\)
\(390\) 0 0
\(391\) −3.52209 −0.178120
\(392\) 0 0
\(393\) 1.60990 0.0812088
\(394\) 0 0
\(395\) −13.4211 −0.675288
\(396\) 0 0
\(397\) −14.1289 −0.709107 −0.354553 0.935036i \(-0.615367\pi\)
−0.354553 + 0.935036i \(0.615367\pi\)
\(398\) 0 0
\(399\) 1.58154 0.0791760
\(400\) 0 0
\(401\) −7.89969 −0.394492 −0.197246 0.980354i \(-0.563200\pi\)
−0.197246 + 0.980354i \(0.563200\pi\)
\(402\) 0 0
\(403\) 9.47375 0.471921
\(404\) 0 0
\(405\) 14.1239 0.701823
\(406\) 0 0
\(407\) −4.31335 −0.213805
\(408\) 0 0
\(409\) 20.9292 1.03488 0.517441 0.855719i \(-0.326885\pi\)
0.517441 + 0.855719i \(0.326885\pi\)
\(410\) 0 0
\(411\) 0.176355 0.00869894
\(412\) 0 0
\(413\) 3.75831 0.184934
\(414\) 0 0
\(415\) −5.88505 −0.288886
\(416\) 0 0
\(417\) 10.0718 0.493220
\(418\) 0 0
\(419\) 27.8994 1.36297 0.681487 0.731830i \(-0.261333\pi\)
0.681487 + 0.731830i \(0.261333\pi\)
\(420\) 0 0
\(421\) −21.1810 −1.03230 −0.516150 0.856498i \(-0.672635\pi\)
−0.516150 + 0.856498i \(0.672635\pi\)
\(422\) 0 0
\(423\) 9.85959 0.479390
\(424\) 0 0
\(425\) 2.30928 0.112016
\(426\) 0 0
\(427\) −14.4499 −0.699282
\(428\) 0 0
\(429\) 2.86752 0.138445
\(430\) 0 0
\(431\) 9.22545 0.444374 0.222187 0.975004i \(-0.428680\pi\)
0.222187 + 0.975004i \(0.428680\pi\)
\(432\) 0 0
\(433\) 2.90747 0.139724 0.0698621 0.997557i \(-0.477744\pi\)
0.0698621 + 0.997557i \(0.477744\pi\)
\(434\) 0 0
\(435\) 24.7942 1.18879
\(436\) 0 0
\(437\) −3.89500 −0.186323
\(438\) 0 0
\(439\) −38.9929 −1.86103 −0.930514 0.366256i \(-0.880639\pi\)
−0.930514 + 0.366256i \(0.880639\pi\)
\(440\) 0 0
\(441\) −0.954755 −0.0454645
\(442\) 0 0
\(443\) −13.4299 −0.638072 −0.319036 0.947743i \(-0.603359\pi\)
−0.319036 + 0.947743i \(0.603359\pi\)
\(444\) 0 0
\(445\) −26.5611 −1.25912
\(446\) 0 0
\(447\) −7.98960 −0.377895
\(448\) 0 0
\(449\) 6.27564 0.296166 0.148083 0.988975i \(-0.452690\pi\)
0.148083 + 0.988975i \(0.452690\pi\)
\(450\) 0 0
\(451\) 1.52422 0.0717729
\(452\) 0 0
\(453\) −4.85659 −0.228183
\(454\) 0 0
\(455\) 7.01030 0.328648
\(456\) 0 0
\(457\) 2.17820 0.101892 0.0509460 0.998701i \(-0.483776\pi\)
0.0509460 + 0.998701i \(0.483776\pi\)
\(458\) 0 0
\(459\) 5.65578 0.263989
\(460\) 0 0
\(461\) −20.1016 −0.936223 −0.468111 0.883669i \(-0.655065\pi\)
−0.468111 + 0.883669i \(0.655065\pi\)
\(462\) 0 0
\(463\) 3.24000 0.150575 0.0752877 0.997162i \(-0.476012\pi\)
0.0752877 + 0.997162i \(0.476012\pi\)
\(464\) 0 0
\(465\) 14.1264 0.655098
\(466\) 0 0
\(467\) 6.58471 0.304704 0.152352 0.988326i \(-0.451315\pi\)
0.152352 + 0.988326i \(0.451315\pi\)
\(468\) 0 0
\(469\) 5.38635 0.248719
\(470\) 0 0
\(471\) 12.4901 0.575515
\(472\) 0 0
\(473\) −7.71053 −0.354530
\(474\) 0 0
\(475\) 2.55378 0.117175
\(476\) 0 0
\(477\) 8.10800 0.371240
\(478\) 0 0
\(479\) −27.2824 −1.24657 −0.623283 0.781997i \(-0.714201\pi\)
−0.623283 + 0.781997i \(0.714201\pi\)
\(480\) 0 0
\(481\) 14.4637 0.659487
\(482\) 0 0
\(483\) −5.03701 −0.229192
\(484\) 0 0
\(485\) −44.1042 −2.00267
\(486\) 0 0
\(487\) 39.4821 1.78910 0.894552 0.446963i \(-0.147495\pi\)
0.894552 + 0.446963i \(0.147495\pi\)
\(488\) 0 0
\(489\) 34.1138 1.54268
\(490\) 0 0
\(491\) −12.7766 −0.576601 −0.288300 0.957540i \(-0.593090\pi\)
−0.288300 + 0.957540i \(0.593090\pi\)
\(492\) 0 0
\(493\) 6.41268 0.288813
\(494\) 0 0
\(495\) −1.99602 −0.0897142
\(496\) 0 0
\(497\) 12.6548 0.567645
\(498\) 0 0
\(499\) 42.0917 1.88428 0.942142 0.335213i \(-0.108808\pi\)
0.942142 + 0.335213i \(0.108808\pi\)
\(500\) 0 0
\(501\) 2.56778 0.114720
\(502\) 0 0
\(503\) −24.6869 −1.10074 −0.550368 0.834922i \(-0.685512\pi\)
−0.550368 + 0.834922i \(0.685512\pi\)
\(504\) 0 0
\(505\) 10.4028 0.462919
\(506\) 0 0
\(507\) 8.97608 0.398642
\(508\) 0 0
\(509\) 23.5002 1.04163 0.520815 0.853670i \(-0.325628\pi\)
0.520815 + 0.853670i \(0.325628\pi\)
\(510\) 0 0
\(511\) 2.56635 0.113529
\(512\) 0 0
\(513\) 6.25460 0.276147
\(514\) 0 0
\(515\) 45.5831 2.00863
\(516\) 0 0
\(517\) 7.98549 0.351202
\(518\) 0 0
\(519\) −5.33954 −0.234380
\(520\) 0 0
\(521\) 12.3636 0.541657 0.270829 0.962628i \(-0.412702\pi\)
0.270829 + 0.962628i \(0.412702\pi\)
\(522\) 0 0
\(523\) 10.7247 0.468960 0.234480 0.972121i \(-0.424661\pi\)
0.234480 + 0.972121i \(0.424661\pi\)
\(524\) 0 0
\(525\) 3.30254 0.144135
\(526\) 0 0
\(527\) 3.65361 0.159154
\(528\) 0 0
\(529\) −10.5949 −0.460647
\(530\) 0 0
\(531\) 3.58827 0.155717
\(532\) 0 0
\(533\) −5.11109 −0.221386
\(534\) 0 0
\(535\) −7.27546 −0.314546
\(536\) 0 0
\(537\) 17.7750 0.767047
\(538\) 0 0
\(539\) −0.773277 −0.0333074
\(540\) 0 0
\(541\) 21.7635 0.935688 0.467844 0.883811i \(-0.345031\pi\)
0.467844 + 0.883811i \(0.345031\pi\)
\(542\) 0 0
\(543\) 14.8992 0.639384
\(544\) 0 0
\(545\) 36.6764 1.57104
\(546\) 0 0
\(547\) −40.0558 −1.71266 −0.856331 0.516427i \(-0.827262\pi\)
−0.856331 + 0.516427i \(0.827262\pi\)
\(548\) 0 0
\(549\) −13.7962 −0.588806
\(550\) 0 0
\(551\) 7.09165 0.302115
\(552\) 0 0
\(553\) −4.96421 −0.211100
\(554\) 0 0
\(555\) 21.5670 0.915468
\(556\) 0 0
\(557\) −20.4062 −0.864639 −0.432319 0.901721i \(-0.642305\pi\)
−0.432319 + 0.901721i \(0.642305\pi\)
\(558\) 0 0
\(559\) 25.8552 1.09356
\(560\) 0 0
\(561\) 1.10588 0.0466902
\(562\) 0 0
\(563\) −9.04019 −0.380999 −0.190499 0.981687i \(-0.561011\pi\)
−0.190499 + 0.981687i \(0.561011\pi\)
\(564\) 0 0
\(565\) −46.2669 −1.94646
\(566\) 0 0
\(567\) 5.22418 0.219395
\(568\) 0 0
\(569\) 39.6612 1.66269 0.831343 0.555760i \(-0.187573\pi\)
0.831343 + 0.555760i \(0.187573\pi\)
\(570\) 0 0
\(571\) 13.8780 0.580778 0.290389 0.956909i \(-0.406215\pi\)
0.290389 + 0.956909i \(0.406215\pi\)
\(572\) 0 0
\(573\) 24.6545 1.02996
\(574\) 0 0
\(575\) −8.13347 −0.339189
\(576\) 0 0
\(577\) 30.4450 1.26744 0.633720 0.773562i \(-0.281527\pi\)
0.633720 + 0.773562i \(0.281527\pi\)
\(578\) 0 0
\(579\) −8.19546 −0.340592
\(580\) 0 0
\(581\) −2.17677 −0.0903077
\(582\) 0 0
\(583\) 6.56684 0.271971
\(584\) 0 0
\(585\) 6.69312 0.276726
\(586\) 0 0
\(587\) 20.3521 0.840020 0.420010 0.907520i \(-0.362027\pi\)
0.420010 + 0.907520i \(0.362027\pi\)
\(588\) 0 0
\(589\) 4.04045 0.166484
\(590\) 0 0
\(591\) 7.08693 0.291517
\(592\) 0 0
\(593\) −0.0332887 −0.00136700 −0.000683502 1.00000i \(-0.500218\pi\)
−0.000683502 1.00000i \(0.500218\pi\)
\(594\) 0 0
\(595\) 2.70357 0.110835
\(596\) 0 0
\(597\) 15.3298 0.627408
\(598\) 0 0
\(599\) −3.77376 −0.154192 −0.0770958 0.997024i \(-0.524565\pi\)
−0.0770958 + 0.997024i \(0.524565\pi\)
\(600\) 0 0
\(601\) −8.49210 −0.346400 −0.173200 0.984887i \(-0.555411\pi\)
−0.173200 + 0.984887i \(0.555411\pi\)
\(602\) 0 0
\(603\) 5.14265 0.209425
\(604\) 0 0
\(605\) 28.1226 1.14335
\(606\) 0 0
\(607\) −34.1228 −1.38500 −0.692501 0.721417i \(-0.743491\pi\)
−0.692501 + 0.721417i \(0.743491\pi\)
\(608\) 0 0
\(609\) 9.17091 0.371624
\(610\) 0 0
\(611\) −26.7773 −1.08329
\(612\) 0 0
\(613\) −21.0340 −0.849557 −0.424778 0.905297i \(-0.639648\pi\)
−0.424778 + 0.905297i \(0.639648\pi\)
\(614\) 0 0
\(615\) −7.62121 −0.307317
\(616\) 0 0
\(617\) −34.2110 −1.37728 −0.688641 0.725103i \(-0.741792\pi\)
−0.688641 + 0.725103i \(0.741792\pi\)
\(618\) 0 0
\(619\) −29.6319 −1.19101 −0.595503 0.803353i \(-0.703047\pi\)
−0.595503 + 0.803353i \(0.703047\pi\)
\(620\) 0 0
\(621\) −19.9201 −0.799368
\(622\) 0 0
\(623\) −9.82445 −0.393608
\(624\) 0 0
\(625\) −31.2136 −1.24854
\(626\) 0 0
\(627\) 1.22297 0.0488406
\(628\) 0 0
\(629\) 5.57801 0.222410
\(630\) 0 0
\(631\) 10.6285 0.423115 0.211557 0.977366i \(-0.432146\pi\)
0.211557 + 0.977366i \(0.432146\pi\)
\(632\) 0 0
\(633\) −28.2177 −1.12155
\(634\) 0 0
\(635\) 53.9640 2.14150
\(636\) 0 0
\(637\) 2.59298 0.102738
\(638\) 0 0
\(639\) 12.0822 0.477966
\(640\) 0 0
\(641\) −9.96712 −0.393678 −0.196839 0.980436i \(-0.563068\pi\)
−0.196839 + 0.980436i \(0.563068\pi\)
\(642\) 0 0
\(643\) 23.7026 0.934739 0.467369 0.884062i \(-0.345202\pi\)
0.467369 + 0.884062i \(0.345202\pi\)
\(644\) 0 0
\(645\) 38.5531 1.51803
\(646\) 0 0
\(647\) 5.42162 0.213146 0.106573 0.994305i \(-0.466012\pi\)
0.106573 + 0.994305i \(0.466012\pi\)
\(648\) 0 0
\(649\) 2.90621 0.114079
\(650\) 0 0
\(651\) 5.22511 0.204788
\(652\) 0 0
\(653\) 14.7777 0.578295 0.289147 0.957285i \(-0.406628\pi\)
0.289147 + 0.957285i \(0.406628\pi\)
\(654\) 0 0
\(655\) 3.04344 0.118917
\(656\) 0 0
\(657\) 2.45024 0.0955929
\(658\) 0 0
\(659\) 25.0160 0.974484 0.487242 0.873267i \(-0.338003\pi\)
0.487242 + 0.873267i \(0.338003\pi\)
\(660\) 0 0
\(661\) 32.3276 1.25740 0.628699 0.777648i \(-0.283588\pi\)
0.628699 + 0.777648i \(0.283588\pi\)
\(662\) 0 0
\(663\) −3.70828 −0.144017
\(664\) 0 0
\(665\) 2.98982 0.115940
\(666\) 0 0
\(667\) −22.5860 −0.874535
\(668\) 0 0
\(669\) −15.9990 −0.618558
\(670\) 0 0
\(671\) −11.1738 −0.431360
\(672\) 0 0
\(673\) 4.98644 0.192213 0.0961065 0.995371i \(-0.469361\pi\)
0.0961065 + 0.995371i \(0.469361\pi\)
\(674\) 0 0
\(675\) 13.0607 0.502708
\(676\) 0 0
\(677\) −36.1402 −1.38898 −0.694490 0.719502i \(-0.744370\pi\)
−0.694490 + 0.719502i \(0.744370\pi\)
\(678\) 0 0
\(679\) −16.3133 −0.626048
\(680\) 0 0
\(681\) −10.2905 −0.394332
\(682\) 0 0
\(683\) −16.5786 −0.634363 −0.317182 0.948365i \(-0.602736\pi\)
−0.317182 + 0.948365i \(0.602736\pi\)
\(684\) 0 0
\(685\) 0.333389 0.0127382
\(686\) 0 0
\(687\) −10.0065 −0.381771
\(688\) 0 0
\(689\) −22.0202 −0.838903
\(690\) 0 0
\(691\) 19.3390 0.735692 0.367846 0.929887i \(-0.380095\pi\)
0.367846 + 0.929887i \(0.380095\pi\)
\(692\) 0 0
\(693\) −0.738290 −0.0280453
\(694\) 0 0
\(695\) 19.0403 0.722239
\(696\) 0 0
\(697\) −1.97112 −0.0746616
\(698\) 0 0
\(699\) 16.3652 0.618989
\(700\) 0 0
\(701\) −5.54756 −0.209528 −0.104764 0.994497i \(-0.533409\pi\)
−0.104764 + 0.994497i \(0.533409\pi\)
\(702\) 0 0
\(703\) 6.16861 0.232653
\(704\) 0 0
\(705\) −39.9279 −1.50377
\(706\) 0 0
\(707\) 3.84781 0.144712
\(708\) 0 0
\(709\) −4.66569 −0.175224 −0.0876118 0.996155i \(-0.527924\pi\)
−0.0876118 + 0.996155i \(0.527924\pi\)
\(710\) 0 0
\(711\) −4.73960 −0.177749
\(712\) 0 0
\(713\) −12.8684 −0.481924
\(714\) 0 0
\(715\) 5.42090 0.202730
\(716\) 0 0
\(717\) 24.1004 0.900045
\(718\) 0 0
\(719\) −48.6586 −1.81466 −0.907331 0.420418i \(-0.861883\pi\)
−0.907331 + 0.420418i \(0.861883\pi\)
\(720\) 0 0
\(721\) 16.8604 0.627912
\(722\) 0 0
\(723\) 3.37324 0.125452
\(724\) 0 0
\(725\) 14.8087 0.549980
\(726\) 0 0
\(727\) −24.0680 −0.892631 −0.446316 0.894876i \(-0.647264\pi\)
−0.446316 + 0.894876i \(0.647264\pi\)
\(728\) 0 0
\(729\) 29.2531 1.08345
\(730\) 0 0
\(731\) 9.97124 0.368800
\(732\) 0 0
\(733\) −16.8913 −0.623893 −0.311946 0.950100i \(-0.600981\pi\)
−0.311946 + 0.950100i \(0.600981\pi\)
\(734\) 0 0
\(735\) 3.86643 0.142615
\(736\) 0 0
\(737\) 4.16514 0.153425
\(738\) 0 0
\(739\) 11.6658 0.429134 0.214567 0.976709i \(-0.431166\pi\)
0.214567 + 0.976709i \(0.431166\pi\)
\(740\) 0 0
\(741\) −4.10090 −0.150650
\(742\) 0 0
\(743\) −1.95092 −0.0715723 −0.0357862 0.999359i \(-0.511394\pi\)
−0.0357862 + 0.999359i \(0.511394\pi\)
\(744\) 0 0
\(745\) −15.1039 −0.553364
\(746\) 0 0
\(747\) −2.07828 −0.0760404
\(748\) 0 0
\(749\) −2.69106 −0.0983292
\(750\) 0 0
\(751\) 35.9991 1.31363 0.656813 0.754054i \(-0.271904\pi\)
0.656813 + 0.754054i \(0.271904\pi\)
\(752\) 0 0
\(753\) 6.21888 0.226629
\(754\) 0 0
\(755\) −9.18113 −0.334136
\(756\) 0 0
\(757\) 13.8273 0.502561 0.251280 0.967914i \(-0.419148\pi\)
0.251280 + 0.967914i \(0.419148\pi\)
\(758\) 0 0
\(759\) −3.89500 −0.141380
\(760\) 0 0
\(761\) 7.47584 0.270999 0.135499 0.990777i \(-0.456736\pi\)
0.135499 + 0.990777i \(0.456736\pi\)
\(762\) 0 0
\(763\) 13.5659 0.491119
\(764\) 0 0
\(765\) 2.58124 0.0933251
\(766\) 0 0
\(767\) −9.74523 −0.351880
\(768\) 0 0
\(769\) 20.1327 0.726004 0.363002 0.931788i \(-0.381752\pi\)
0.363002 + 0.931788i \(0.381752\pi\)
\(770\) 0 0
\(771\) 11.9202 0.429295
\(772\) 0 0
\(773\) 31.9802 1.15025 0.575124 0.818066i \(-0.304954\pi\)
0.575124 + 0.818066i \(0.304954\pi\)
\(774\) 0 0
\(775\) 8.43720 0.303073
\(776\) 0 0
\(777\) 7.97723 0.286182
\(778\) 0 0
\(779\) −2.17982 −0.0781003
\(780\) 0 0
\(781\) 9.78566 0.350158
\(782\) 0 0
\(783\) 36.2687 1.29614
\(784\) 0 0
\(785\) 23.6119 0.842746
\(786\) 0 0
\(787\) 17.8542 0.636433 0.318216 0.948018i \(-0.396916\pi\)
0.318216 + 0.948018i \(0.396916\pi\)
\(788\) 0 0
\(789\) 2.29194 0.0815953
\(790\) 0 0
\(791\) −17.1133 −0.608478
\(792\) 0 0
\(793\) 37.4684 1.33054
\(794\) 0 0
\(795\) −32.8346 −1.16452
\(796\) 0 0
\(797\) −0.946371 −0.0335222 −0.0167611 0.999860i \(-0.505335\pi\)
−0.0167611 + 0.999860i \(0.505335\pi\)
\(798\) 0 0
\(799\) −10.3268 −0.365337
\(800\) 0 0
\(801\) −9.37994 −0.331424
\(802\) 0 0
\(803\) 1.98450 0.0700315
\(804\) 0 0
\(805\) −9.52220 −0.335614
\(806\) 0 0
\(807\) −38.6178 −1.35941
\(808\) 0 0
\(809\) −1.06229 −0.0373482 −0.0186741 0.999826i \(-0.505944\pi\)
−0.0186741 + 0.999826i \(0.505944\pi\)
\(810\) 0 0
\(811\) 55.1600 1.93693 0.968465 0.249148i \(-0.0801507\pi\)
0.968465 + 0.249148i \(0.0801507\pi\)
\(812\) 0 0
\(813\) −32.8460 −1.15196
\(814\) 0 0
\(815\) 64.4903 2.25900
\(816\) 0 0
\(817\) 11.0270 0.385785
\(818\) 0 0
\(819\) 2.47566 0.0865066
\(820\) 0 0
\(821\) 8.38891 0.292775 0.146388 0.989227i \(-0.453235\pi\)
0.146388 + 0.989227i \(0.453235\pi\)
\(822\) 0 0
\(823\) −29.7320 −1.03639 −0.518196 0.855262i \(-0.673396\pi\)
−0.518196 + 0.855262i \(0.673396\pi\)
\(824\) 0 0
\(825\) 2.55378 0.0889112
\(826\) 0 0
\(827\) −7.51576 −0.261349 −0.130674 0.991425i \(-0.541714\pi\)
−0.130674 + 0.991425i \(0.541714\pi\)
\(828\) 0 0
\(829\) 30.9128 1.07364 0.536822 0.843695i \(-0.319625\pi\)
0.536822 + 0.843695i \(0.319625\pi\)
\(830\) 0 0
\(831\) 32.4709 1.12640
\(832\) 0 0
\(833\) 1.00000 0.0346479
\(834\) 0 0
\(835\) 4.85424 0.167988
\(836\) 0 0
\(837\) 20.6640 0.714253
\(838\) 0 0
\(839\) 29.0866 1.00418 0.502091 0.864815i \(-0.332564\pi\)
0.502091 + 0.864815i \(0.332564\pi\)
\(840\) 0 0
\(841\) 12.1225 0.418018
\(842\) 0 0
\(843\) −28.4387 −0.979482
\(844\) 0 0
\(845\) 16.9688 0.583745
\(846\) 0 0
\(847\) 10.4020 0.357418
\(848\) 0 0
\(849\) −33.9012 −1.16349
\(850\) 0 0
\(851\) −19.6463 −0.673465
\(852\) 0 0
\(853\) −22.6808 −0.776574 −0.388287 0.921538i \(-0.626933\pi\)
−0.388287 + 0.921538i \(0.626933\pi\)
\(854\) 0 0
\(855\) 2.85454 0.0976233
\(856\) 0 0
\(857\) −1.80427 −0.0616328 −0.0308164 0.999525i \(-0.509811\pi\)
−0.0308164 + 0.999525i \(0.509811\pi\)
\(858\) 0 0
\(859\) −20.5554 −0.701340 −0.350670 0.936499i \(-0.614046\pi\)
−0.350670 + 0.936499i \(0.614046\pi\)
\(860\) 0 0
\(861\) −2.81894 −0.0960694
\(862\) 0 0
\(863\) −48.2711 −1.64317 −0.821583 0.570089i \(-0.806909\pi\)
−0.821583 + 0.570089i \(0.806909\pi\)
\(864\) 0 0
\(865\) −10.0941 −0.343210
\(866\) 0 0
\(867\) −1.43012 −0.0485694
\(868\) 0 0
\(869\) −3.83871 −0.130219
\(870\) 0 0
\(871\) −13.9667 −0.473244
\(872\) 0 0
\(873\) −15.5752 −0.527142
\(874\) 0 0
\(875\) −7.27455 −0.245925
\(876\) 0 0
\(877\) −36.9852 −1.24890 −0.624451 0.781064i \(-0.714677\pi\)
−0.624451 + 0.781064i \(0.714677\pi\)
\(878\) 0 0
\(879\) −3.35864 −0.113284
\(880\) 0 0
\(881\) −12.8389 −0.432554 −0.216277 0.976332i \(-0.569391\pi\)
−0.216277 + 0.976332i \(0.569391\pi\)
\(882\) 0 0
\(883\) 19.0185 0.640022 0.320011 0.947414i \(-0.396313\pi\)
0.320011 + 0.947414i \(0.396313\pi\)
\(884\) 0 0
\(885\) −14.5312 −0.488462
\(886\) 0 0
\(887\) −52.1581 −1.75130 −0.875649 0.482948i \(-0.839566\pi\)
−0.875649 + 0.482948i \(0.839566\pi\)
\(888\) 0 0
\(889\) 19.9603 0.669447
\(890\) 0 0
\(891\) 4.03973 0.135336
\(892\) 0 0
\(893\) −11.4202 −0.382163
\(894\) 0 0
\(895\) 33.6027 1.12321
\(896\) 0 0
\(897\) 13.0609 0.436090
\(898\) 0 0
\(899\) 23.4295 0.781417
\(900\) 0 0
\(901\) −8.49223 −0.282917
\(902\) 0 0
\(903\) 14.2601 0.474546
\(904\) 0 0
\(905\) 28.1661 0.936272
\(906\) 0 0
\(907\) −46.0632 −1.52950 −0.764752 0.644325i \(-0.777139\pi\)
−0.764752 + 0.644325i \(0.777139\pi\)
\(908\) 0 0
\(909\) 3.67371 0.121849
\(910\) 0 0
\(911\) 14.9655 0.495828 0.247914 0.968782i \(-0.420255\pi\)
0.247914 + 0.968782i \(0.420255\pi\)
\(912\) 0 0
\(913\) −1.68325 −0.0557073
\(914\) 0 0
\(915\) 55.8697 1.84699
\(916\) 0 0
\(917\) 1.12571 0.0371742
\(918\) 0 0
\(919\) 0.892100 0.0294277 0.0147138 0.999892i \(-0.495316\pi\)
0.0147138 + 0.999892i \(0.495316\pi\)
\(920\) 0 0
\(921\) 0.716213 0.0236000
\(922\) 0 0
\(923\) −32.8136 −1.08007
\(924\) 0 0
\(925\) 12.8812 0.423530
\(926\) 0 0
\(927\) 16.0975 0.528712
\(928\) 0 0
\(929\) −36.0467 −1.18265 −0.591327 0.806432i \(-0.701396\pi\)
−0.591327 + 0.806432i \(0.701396\pi\)
\(930\) 0 0
\(931\) 1.10588 0.0362437
\(932\) 0 0
\(933\) 21.4822 0.703295
\(934\) 0 0
\(935\) 2.09061 0.0683701
\(936\) 0 0
\(937\) 11.9259 0.389602 0.194801 0.980843i \(-0.437594\pi\)
0.194801 + 0.980843i \(0.437594\pi\)
\(938\) 0 0
\(939\) −22.6664 −0.739690
\(940\) 0 0
\(941\) 19.1916 0.625630 0.312815 0.949814i \(-0.398728\pi\)
0.312815 + 0.949814i \(0.398728\pi\)
\(942\) 0 0
\(943\) 6.94247 0.226078
\(944\) 0 0
\(945\) 15.2908 0.497409
\(946\) 0 0
\(947\) 0.910058 0.0295729 0.0147865 0.999891i \(-0.495293\pi\)
0.0147865 + 0.999891i \(0.495293\pi\)
\(948\) 0 0
\(949\) −6.65451 −0.216014
\(950\) 0 0
\(951\) 42.4198 1.37556
\(952\) 0 0
\(953\) −16.8492 −0.545798 −0.272899 0.962043i \(-0.587982\pi\)
−0.272899 + 0.962043i \(0.587982\pi\)
\(954\) 0 0
\(955\) 46.6081 1.50820
\(956\) 0 0
\(957\) 7.09165 0.229241
\(958\) 0 0
\(959\) 0.123315 0.00398204
\(960\) 0 0
\(961\) −17.6511 −0.569390
\(962\) 0 0
\(963\) −2.56930 −0.0827946
\(964\) 0 0
\(965\) −15.4931 −0.498740
\(966\) 0 0
\(967\) 20.6236 0.663209 0.331605 0.943418i \(-0.392410\pi\)
0.331605 + 0.943418i \(0.392410\pi\)
\(968\) 0 0
\(969\) −1.58154 −0.0508064
\(970\) 0 0
\(971\) −16.8183 −0.539723 −0.269862 0.962899i \(-0.586978\pi\)
−0.269862 + 0.962899i \(0.586978\pi\)
\(972\) 0 0
\(973\) 7.04265 0.225777
\(974\) 0 0
\(975\) −8.56343 −0.274249
\(976\) 0 0
\(977\) −7.51049 −0.240282 −0.120141 0.992757i \(-0.538335\pi\)
−0.120141 + 0.992757i \(0.538335\pi\)
\(978\) 0 0
\(979\) −7.59702 −0.242802
\(980\) 0 0
\(981\) 12.9521 0.413530
\(982\) 0 0
\(983\) 30.6340 0.977072 0.488536 0.872544i \(-0.337531\pi\)
0.488536 + 0.872544i \(0.337531\pi\)
\(984\) 0 0
\(985\) 13.3975 0.426879
\(986\) 0 0
\(987\) −14.7686 −0.470090
\(988\) 0 0
\(989\) −35.1196 −1.11674
\(990\) 0 0
\(991\) 21.6616 0.688104 0.344052 0.938951i \(-0.388200\pi\)
0.344052 + 0.938951i \(0.388200\pi\)
\(992\) 0 0
\(993\) 4.27929 0.135799
\(994\) 0 0
\(995\) 28.9802 0.918735
\(996\) 0 0
\(997\) 17.9567 0.568693 0.284347 0.958722i \(-0.408223\pi\)
0.284347 + 0.958722i \(0.408223\pi\)
\(998\) 0 0
\(999\) 31.5480 0.998135
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 3808.2.a.j.1.3 6
4.3 odd 2 3808.2.a.n.1.4 yes 6
8.3 odd 2 7616.2.a.bw.1.3 6
8.5 even 2 7616.2.a.ca.1.4 6
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
3808.2.a.j.1.3 6 1.1 even 1 trivial
3808.2.a.n.1.4 yes 6 4.3 odd 2
7616.2.a.bw.1.3 6 8.3 odd 2
7616.2.a.ca.1.4 6 8.5 even 2