Properties

Label 3808.2.a.j.1.1
Level $3808$
Weight $2$
Character 3808.1
Self dual yes
Analytic conductor $30.407$
Analytic rank $1$
Dimension $6$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [3808,2,Mod(1,3808)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(3808, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("3808.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 3808 = 2^{5} \cdot 7 \cdot 17 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 3808.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(30.4070330897\)
Analytic rank: \(1\)
Dimension: \(6\)
Coefficient field: 6.6.4022000.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{6} - 2x^{5} - 7x^{4} + 10x^{3} + 14x^{2} - 8x - 4 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 2^{2} \)
Twist minimal: yes
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.1
Root \(-1.32040\) of defining polynomial
Character \(\chi\) \(=\) 3808.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-2.49796 q^{3} +3.75449 q^{5} -1.00000 q^{7} +3.23981 q^{9} -2.17220 q^{11} -3.12612 q^{13} -9.37857 q^{15} +1.00000 q^{17} +5.42606 q^{19} +2.49796 q^{21} -2.65751 q^{23} +9.09622 q^{25} -0.599024 q^{27} -6.42444 q^{29} -1.93987 q^{31} +5.42606 q^{33} -3.75449 q^{35} +9.89820 q^{37} +7.80893 q^{39} -5.75781 q^{41} -4.87730 q^{43} +12.1638 q^{45} -12.3835 q^{47} +1.00000 q^{49} -2.49796 q^{51} +0.635847 q^{53} -8.15550 q^{55} -13.5541 q^{57} -15.1965 q^{59} -8.50901 q^{61} -3.23981 q^{63} -11.7370 q^{65} +8.06191 q^{67} +6.63835 q^{69} +5.65018 q^{71} +6.15385 q^{73} -22.7220 q^{75} +2.17220 q^{77} +0.358213 q^{79} -8.22308 q^{81} +1.64243 q^{83} +3.75449 q^{85} +16.0480 q^{87} +7.35413 q^{89} +3.12612 q^{91} +4.84571 q^{93} +20.3721 q^{95} -4.12785 q^{97} -7.03749 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 6 q - 2 q^{3} + 2 q^{5} - 6 q^{7} + 4 q^{9} - 2 q^{11} - 4 q^{13} - 8 q^{15} + 6 q^{17} + 2 q^{19} + 2 q^{21} - 10 q^{23} - 2 q^{27} + 2 q^{29} - 12 q^{31} + 2 q^{33} - 2 q^{35} + 2 q^{37} - 10 q^{39} - 8 q^{43}+ \cdots - 2 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −2.49796 −1.44220 −0.721099 0.692832i \(-0.756363\pi\)
−0.721099 + 0.692832i \(0.756363\pi\)
\(4\) 0 0
\(5\) 3.75449 1.67906 0.839530 0.543313i \(-0.182830\pi\)
0.839530 + 0.543313i \(0.182830\pi\)
\(6\) 0 0
\(7\) −1.00000 −0.377964
\(8\) 0 0
\(9\) 3.23981 1.07994
\(10\) 0 0
\(11\) −2.17220 −0.654942 −0.327471 0.944861i \(-0.606196\pi\)
−0.327471 + 0.944861i \(0.606196\pi\)
\(12\) 0 0
\(13\) −3.12612 −0.867030 −0.433515 0.901146i \(-0.642727\pi\)
−0.433515 + 0.901146i \(0.642727\pi\)
\(14\) 0 0
\(15\) −9.37857 −2.42154
\(16\) 0 0
\(17\) 1.00000 0.242536
\(18\) 0 0
\(19\) 5.42606 1.24482 0.622412 0.782690i \(-0.286153\pi\)
0.622412 + 0.782690i \(0.286153\pi\)
\(20\) 0 0
\(21\) 2.49796 0.545100
\(22\) 0 0
\(23\) −2.65751 −0.554129 −0.277064 0.960851i \(-0.589362\pi\)
−0.277064 + 0.960851i \(0.589362\pi\)
\(24\) 0 0
\(25\) 9.09622 1.81924
\(26\) 0 0
\(27\) −0.599024 −0.115282
\(28\) 0 0
\(29\) −6.42444 −1.19299 −0.596494 0.802617i \(-0.703440\pi\)
−0.596494 + 0.802617i \(0.703440\pi\)
\(30\) 0 0
\(31\) −1.93987 −0.348410 −0.174205 0.984709i \(-0.555736\pi\)
−0.174205 + 0.984709i \(0.555736\pi\)
\(32\) 0 0
\(33\) 5.42606 0.944556
\(34\) 0 0
\(35\) −3.75449 −0.634625
\(36\) 0 0
\(37\) 9.89820 1.62725 0.813627 0.581388i \(-0.197490\pi\)
0.813627 + 0.581388i \(0.197490\pi\)
\(38\) 0 0
\(39\) 7.80893 1.25043
\(40\) 0 0
\(41\) −5.75781 −0.899218 −0.449609 0.893225i \(-0.648437\pi\)
−0.449609 + 0.893225i \(0.648437\pi\)
\(42\) 0 0
\(43\) −4.87730 −0.743781 −0.371891 0.928277i \(-0.621290\pi\)
−0.371891 + 0.928277i \(0.621290\pi\)
\(44\) 0 0
\(45\) 12.1638 1.81328
\(46\) 0 0
\(47\) −12.3835 −1.80632 −0.903160 0.429304i \(-0.858759\pi\)
−0.903160 + 0.429304i \(0.858759\pi\)
\(48\) 0 0
\(49\) 1.00000 0.142857
\(50\) 0 0
\(51\) −2.49796 −0.349784
\(52\) 0 0
\(53\) 0.635847 0.0873403 0.0436701 0.999046i \(-0.486095\pi\)
0.0436701 + 0.999046i \(0.486095\pi\)
\(54\) 0 0
\(55\) −8.15550 −1.09969
\(56\) 0 0
\(57\) −13.5541 −1.79528
\(58\) 0 0
\(59\) −15.1965 −1.97842 −0.989209 0.146513i \(-0.953195\pi\)
−0.989209 + 0.146513i \(0.953195\pi\)
\(60\) 0 0
\(61\) −8.50901 −1.08947 −0.544734 0.838609i \(-0.683369\pi\)
−0.544734 + 0.838609i \(0.683369\pi\)
\(62\) 0 0
\(63\) −3.23981 −0.408177
\(64\) 0 0
\(65\) −11.7370 −1.45580
\(66\) 0 0
\(67\) 8.06191 0.984919 0.492459 0.870335i \(-0.336098\pi\)
0.492459 + 0.870335i \(0.336098\pi\)
\(68\) 0 0
\(69\) 6.63835 0.799164
\(70\) 0 0
\(71\) 5.65018 0.670554 0.335277 0.942120i \(-0.391170\pi\)
0.335277 + 0.942120i \(0.391170\pi\)
\(72\) 0 0
\(73\) 6.15385 0.720253 0.360127 0.932903i \(-0.382733\pi\)
0.360127 + 0.932903i \(0.382733\pi\)
\(74\) 0 0
\(75\) −22.7220 −2.62371
\(76\) 0 0
\(77\) 2.17220 0.247545
\(78\) 0 0
\(79\) 0.358213 0.0403021 0.0201510 0.999797i \(-0.493585\pi\)
0.0201510 + 0.999797i \(0.493585\pi\)
\(80\) 0 0
\(81\) −8.22308 −0.913675
\(82\) 0 0
\(83\) 1.64243 0.180280 0.0901401 0.995929i \(-0.471269\pi\)
0.0901401 + 0.995929i \(0.471269\pi\)
\(84\) 0 0
\(85\) 3.75449 0.407232
\(86\) 0 0
\(87\) 16.0480 1.72053
\(88\) 0 0
\(89\) 7.35413 0.779537 0.389768 0.920913i \(-0.372555\pi\)
0.389768 + 0.920913i \(0.372555\pi\)
\(90\) 0 0
\(91\) 3.12612 0.327707
\(92\) 0 0
\(93\) 4.84571 0.502476
\(94\) 0 0
\(95\) 20.3721 2.09013
\(96\) 0 0
\(97\) −4.12785 −0.419120 −0.209560 0.977796i \(-0.567203\pi\)
−0.209560 + 0.977796i \(0.567203\pi\)
\(98\) 0 0
\(99\) −7.03749 −0.707295
\(100\) 0 0
\(101\) 10.5907 1.05381 0.526905 0.849924i \(-0.323352\pi\)
0.526905 + 0.849924i \(0.323352\pi\)
\(102\) 0 0
\(103\) −0.360814 −0.0355520 −0.0177760 0.999842i \(-0.505659\pi\)
−0.0177760 + 0.999842i \(0.505659\pi\)
\(104\) 0 0
\(105\) 9.37857 0.915255
\(106\) 0 0
\(107\) 8.00092 0.773478 0.386739 0.922189i \(-0.373601\pi\)
0.386739 + 0.922189i \(0.373601\pi\)
\(108\) 0 0
\(109\) 16.5377 1.58402 0.792011 0.610507i \(-0.209034\pi\)
0.792011 + 0.610507i \(0.209034\pi\)
\(110\) 0 0
\(111\) −24.7253 −2.34682
\(112\) 0 0
\(113\) −19.1675 −1.80313 −0.901563 0.432648i \(-0.857579\pi\)
−0.901563 + 0.432648i \(0.857579\pi\)
\(114\) 0 0
\(115\) −9.97760 −0.930416
\(116\) 0 0
\(117\) −10.1280 −0.936336
\(118\) 0 0
\(119\) −1.00000 −0.0916698
\(120\) 0 0
\(121\) −6.28156 −0.571051
\(122\) 0 0
\(123\) 14.3828 1.29685
\(124\) 0 0
\(125\) 15.3792 1.37556
\(126\) 0 0
\(127\) −11.4384 −1.01500 −0.507499 0.861652i \(-0.669430\pi\)
−0.507499 + 0.861652i \(0.669430\pi\)
\(128\) 0 0
\(129\) 12.1833 1.07268
\(130\) 0 0
\(131\) 14.1746 1.23844 0.619221 0.785217i \(-0.287449\pi\)
0.619221 + 0.785217i \(0.287449\pi\)
\(132\) 0 0
\(133\) −5.42606 −0.470499
\(134\) 0 0
\(135\) −2.24903 −0.193566
\(136\) 0 0
\(137\) −18.3485 −1.56761 −0.783807 0.621004i \(-0.786725\pi\)
−0.783807 + 0.621004i \(0.786725\pi\)
\(138\) 0 0
\(139\) 9.48487 0.804496 0.402248 0.915531i \(-0.368229\pi\)
0.402248 + 0.915531i \(0.368229\pi\)
\(140\) 0 0
\(141\) 30.9335 2.60507
\(142\) 0 0
\(143\) 6.79055 0.567854
\(144\) 0 0
\(145\) −24.1205 −2.00310
\(146\) 0 0
\(147\) −2.49796 −0.206028
\(148\) 0 0
\(149\) −3.74520 −0.306819 −0.153409 0.988163i \(-0.549025\pi\)
−0.153409 + 0.988163i \(0.549025\pi\)
\(150\) 0 0
\(151\) −13.6859 −1.11375 −0.556873 0.830598i \(-0.687999\pi\)
−0.556873 + 0.830598i \(0.687999\pi\)
\(152\) 0 0
\(153\) 3.23981 0.261923
\(154\) 0 0
\(155\) −7.28321 −0.585002
\(156\) 0 0
\(157\) −15.7238 −1.25490 −0.627449 0.778658i \(-0.715901\pi\)
−0.627449 + 0.778658i \(0.715901\pi\)
\(158\) 0 0
\(159\) −1.58832 −0.125962
\(160\) 0 0
\(161\) 2.65751 0.209441
\(162\) 0 0
\(163\) −11.0584 −0.866158 −0.433079 0.901356i \(-0.642573\pi\)
−0.433079 + 0.901356i \(0.642573\pi\)
\(164\) 0 0
\(165\) 20.3721 1.58597
\(166\) 0 0
\(167\) 16.3018 1.26147 0.630737 0.775997i \(-0.282753\pi\)
0.630737 + 0.775997i \(0.282753\pi\)
\(168\) 0 0
\(169\) −3.22737 −0.248259
\(170\) 0 0
\(171\) 17.5794 1.34433
\(172\) 0 0
\(173\) −19.2226 −1.46147 −0.730734 0.682662i \(-0.760822\pi\)
−0.730734 + 0.682662i \(0.760822\pi\)
\(174\) 0 0
\(175\) −9.09622 −0.687609
\(176\) 0 0
\(177\) 37.9603 2.85327
\(178\) 0 0
\(179\) 6.54001 0.488823 0.244412 0.969672i \(-0.421405\pi\)
0.244412 + 0.969672i \(0.421405\pi\)
\(180\) 0 0
\(181\) −11.8889 −0.883696 −0.441848 0.897090i \(-0.645677\pi\)
−0.441848 + 0.897090i \(0.645677\pi\)
\(182\) 0 0
\(183\) 21.2552 1.57123
\(184\) 0 0
\(185\) 37.1627 2.73226
\(186\) 0 0
\(187\) −2.17220 −0.158847
\(188\) 0 0
\(189\) 0.599024 0.0435726
\(190\) 0 0
\(191\) −22.2959 −1.61327 −0.806637 0.591047i \(-0.798715\pi\)
−0.806637 + 0.591047i \(0.798715\pi\)
\(192\) 0 0
\(193\) −13.9716 −1.00570 −0.502849 0.864374i \(-0.667715\pi\)
−0.502849 + 0.864374i \(0.667715\pi\)
\(194\) 0 0
\(195\) 29.3186 2.09955
\(196\) 0 0
\(197\) −20.1280 −1.43406 −0.717030 0.697043i \(-0.754499\pi\)
−0.717030 + 0.697043i \(0.754499\pi\)
\(198\) 0 0
\(199\) −2.58221 −0.183048 −0.0915241 0.995803i \(-0.529174\pi\)
−0.0915241 + 0.995803i \(0.529174\pi\)
\(200\) 0 0
\(201\) −20.1383 −1.42045
\(202\) 0 0
\(203\) 6.42444 0.450907
\(204\) 0 0
\(205\) −21.6176 −1.50984
\(206\) 0 0
\(207\) −8.60981 −0.598423
\(208\) 0 0
\(209\) −11.7865 −0.815287
\(210\) 0 0
\(211\) 5.99915 0.412999 0.206499 0.978447i \(-0.433793\pi\)
0.206499 + 0.978447i \(0.433793\pi\)
\(212\) 0 0
\(213\) −14.1139 −0.967071
\(214\) 0 0
\(215\) −18.3118 −1.24885
\(216\) 0 0
\(217\) 1.93987 0.131687
\(218\) 0 0
\(219\) −15.3721 −1.03875
\(220\) 0 0
\(221\) −3.12612 −0.210286
\(222\) 0 0
\(223\) −3.25568 −0.218016 −0.109008 0.994041i \(-0.534767\pi\)
−0.109008 + 0.994041i \(0.534767\pi\)
\(224\) 0 0
\(225\) 29.4700 1.96466
\(226\) 0 0
\(227\) −18.8830 −1.25331 −0.626655 0.779297i \(-0.715577\pi\)
−0.626655 + 0.779297i \(0.715577\pi\)
\(228\) 0 0
\(229\) 18.3534 1.21283 0.606415 0.795149i \(-0.292607\pi\)
0.606415 + 0.795149i \(0.292607\pi\)
\(230\) 0 0
\(231\) −5.42606 −0.357009
\(232\) 0 0
\(233\) −23.3324 −1.52855 −0.764277 0.644888i \(-0.776904\pi\)
−0.764277 + 0.644888i \(0.776904\pi\)
\(234\) 0 0
\(235\) −46.4938 −3.03292
\(236\) 0 0
\(237\) −0.894801 −0.0581236
\(238\) 0 0
\(239\) 5.82115 0.376539 0.188269 0.982117i \(-0.439712\pi\)
0.188269 + 0.982117i \(0.439712\pi\)
\(240\) 0 0
\(241\) −5.10553 −0.328876 −0.164438 0.986387i \(-0.552581\pi\)
−0.164438 + 0.986387i \(0.552581\pi\)
\(242\) 0 0
\(243\) 22.3380 1.43298
\(244\) 0 0
\(245\) 3.75449 0.239866
\(246\) 0 0
\(247\) −16.9625 −1.07930
\(248\) 0 0
\(249\) −4.10273 −0.260000
\(250\) 0 0
\(251\) 15.8392 0.999764 0.499882 0.866094i \(-0.333377\pi\)
0.499882 + 0.866094i \(0.333377\pi\)
\(252\) 0 0
\(253\) 5.77263 0.362922
\(254\) 0 0
\(255\) −9.37857 −0.587309
\(256\) 0 0
\(257\) −12.5576 −0.783323 −0.391661 0.920109i \(-0.628100\pi\)
−0.391661 + 0.920109i \(0.628100\pi\)
\(258\) 0 0
\(259\) −9.89820 −0.615044
\(260\) 0 0
\(261\) −20.8139 −1.28835
\(262\) 0 0
\(263\) 13.4492 0.829312 0.414656 0.909978i \(-0.363902\pi\)
0.414656 + 0.909978i \(0.363902\pi\)
\(264\) 0 0
\(265\) 2.38728 0.146650
\(266\) 0 0
\(267\) −18.3703 −1.12425
\(268\) 0 0
\(269\) 11.5448 0.703901 0.351951 0.936019i \(-0.385519\pi\)
0.351951 + 0.936019i \(0.385519\pi\)
\(270\) 0 0
\(271\) −20.9170 −1.27062 −0.635309 0.772258i \(-0.719127\pi\)
−0.635309 + 0.772258i \(0.719127\pi\)
\(272\) 0 0
\(273\) −7.80893 −0.472618
\(274\) 0 0
\(275\) −19.7588 −1.19150
\(276\) 0 0
\(277\) −13.6005 −0.817177 −0.408589 0.912719i \(-0.633979\pi\)
−0.408589 + 0.912719i \(0.633979\pi\)
\(278\) 0 0
\(279\) −6.28479 −0.376260
\(280\) 0 0
\(281\) −18.9440 −1.13011 −0.565053 0.825055i \(-0.691144\pi\)
−0.565053 + 0.825055i \(0.691144\pi\)
\(282\) 0 0
\(283\) −3.60723 −0.214427 −0.107214 0.994236i \(-0.534193\pi\)
−0.107214 + 0.994236i \(0.534193\pi\)
\(284\) 0 0
\(285\) −50.8887 −3.01439
\(286\) 0 0
\(287\) 5.75781 0.339872
\(288\) 0 0
\(289\) 1.00000 0.0588235
\(290\) 0 0
\(291\) 10.3112 0.604454
\(292\) 0 0
\(293\) −17.8392 −1.04218 −0.521090 0.853502i \(-0.674474\pi\)
−0.521090 + 0.853502i \(0.674474\pi\)
\(294\) 0 0
\(295\) −57.0552 −3.32188
\(296\) 0 0
\(297\) 1.30120 0.0755031
\(298\) 0 0
\(299\) 8.30769 0.480446
\(300\) 0 0
\(301\) 4.87730 0.281123
\(302\) 0 0
\(303\) −26.4550 −1.51980
\(304\) 0 0
\(305\) −31.9470 −1.82928
\(306\) 0 0
\(307\) 23.8837 1.36311 0.681557 0.731765i \(-0.261303\pi\)
0.681557 + 0.731765i \(0.261303\pi\)
\(308\) 0 0
\(309\) 0.901299 0.0512731
\(310\) 0 0
\(311\) 20.9315 1.18692 0.593458 0.804865i \(-0.297762\pi\)
0.593458 + 0.804865i \(0.297762\pi\)
\(312\) 0 0
\(313\) −1.23562 −0.0698415 −0.0349208 0.999390i \(-0.511118\pi\)
−0.0349208 + 0.999390i \(0.511118\pi\)
\(314\) 0 0
\(315\) −12.1638 −0.685354
\(316\) 0 0
\(317\) 10.2042 0.573124 0.286562 0.958062i \(-0.407488\pi\)
0.286562 + 0.958062i \(0.407488\pi\)
\(318\) 0 0
\(319\) 13.9551 0.781338
\(320\) 0 0
\(321\) −19.9860 −1.11551
\(322\) 0 0
\(323\) 5.42606 0.301914
\(324\) 0 0
\(325\) −28.4359 −1.57734
\(326\) 0 0
\(327\) −41.3105 −2.28447
\(328\) 0 0
\(329\) 12.3835 0.682725
\(330\) 0 0
\(331\) 33.1815 1.82382 0.911911 0.410388i \(-0.134607\pi\)
0.911911 + 0.410388i \(0.134607\pi\)
\(332\) 0 0
\(333\) 32.0682 1.75733
\(334\) 0 0
\(335\) 30.2684 1.65374
\(336\) 0 0
\(337\) −7.82641 −0.426332 −0.213166 0.977016i \(-0.568377\pi\)
−0.213166 + 0.977016i \(0.568377\pi\)
\(338\) 0 0
\(339\) 47.8796 2.60046
\(340\) 0 0
\(341\) 4.21377 0.228188
\(342\) 0 0
\(343\) −1.00000 −0.0539949
\(344\) 0 0
\(345\) 24.9236 1.34184
\(346\) 0 0
\(347\) −22.2668 −1.19535 −0.597673 0.801740i \(-0.703908\pi\)
−0.597673 + 0.801740i \(0.703908\pi\)
\(348\) 0 0
\(349\) 22.3528 1.19652 0.598260 0.801302i \(-0.295859\pi\)
0.598260 + 0.801302i \(0.295859\pi\)
\(350\) 0 0
\(351\) 1.87262 0.0999531
\(352\) 0 0
\(353\) 17.6036 0.936945 0.468473 0.883478i \(-0.344804\pi\)
0.468473 + 0.883478i \(0.344804\pi\)
\(354\) 0 0
\(355\) 21.2136 1.12590
\(356\) 0 0
\(357\) 2.49796 0.132206
\(358\) 0 0
\(359\) −25.3868 −1.33987 −0.669933 0.742421i \(-0.733677\pi\)
−0.669933 + 0.742421i \(0.733677\pi\)
\(360\) 0 0
\(361\) 10.4421 0.549586
\(362\) 0 0
\(363\) 15.6911 0.823569
\(364\) 0 0
\(365\) 23.1046 1.20935
\(366\) 0 0
\(367\) −15.4184 −0.804834 −0.402417 0.915457i \(-0.631830\pi\)
−0.402417 + 0.915457i \(0.631830\pi\)
\(368\) 0 0
\(369\) −18.6542 −0.971097
\(370\) 0 0
\(371\) −0.635847 −0.0330115
\(372\) 0 0
\(373\) −10.1197 −0.523981 −0.261990 0.965070i \(-0.584379\pi\)
−0.261990 + 0.965070i \(0.584379\pi\)
\(374\) 0 0
\(375\) −38.4167 −1.98383
\(376\) 0 0
\(377\) 20.0836 1.03436
\(378\) 0 0
\(379\) −12.0607 −0.619519 −0.309759 0.950815i \(-0.600248\pi\)
−0.309759 + 0.950815i \(0.600248\pi\)
\(380\) 0 0
\(381\) 28.5728 1.46383
\(382\) 0 0
\(383\) −17.6283 −0.900764 −0.450382 0.892836i \(-0.648712\pi\)
−0.450382 + 0.892836i \(0.648712\pi\)
\(384\) 0 0
\(385\) 8.15550 0.415643
\(386\) 0 0
\(387\) −15.8015 −0.803236
\(388\) 0 0
\(389\) 15.2574 0.773579 0.386789 0.922168i \(-0.373584\pi\)
0.386789 + 0.922168i \(0.373584\pi\)
\(390\) 0 0
\(391\) −2.65751 −0.134396
\(392\) 0 0
\(393\) −35.4076 −1.78608
\(394\) 0 0
\(395\) 1.34491 0.0676696
\(396\) 0 0
\(397\) −10.2174 −0.512796 −0.256398 0.966571i \(-0.582536\pi\)
−0.256398 + 0.966571i \(0.582536\pi\)
\(398\) 0 0
\(399\) 13.5541 0.678553
\(400\) 0 0
\(401\) 19.8570 0.991612 0.495806 0.868433i \(-0.334873\pi\)
0.495806 + 0.868433i \(0.334873\pi\)
\(402\) 0 0
\(403\) 6.06425 0.302082
\(404\) 0 0
\(405\) −30.8735 −1.53412
\(406\) 0 0
\(407\) −21.5008 −1.06576
\(408\) 0 0
\(409\) 35.0632 1.73376 0.866881 0.498515i \(-0.166121\pi\)
0.866881 + 0.498515i \(0.166121\pi\)
\(410\) 0 0
\(411\) 45.8337 2.26081
\(412\) 0 0
\(413\) 15.1965 0.747772
\(414\) 0 0
\(415\) 6.16649 0.302701
\(416\) 0 0
\(417\) −23.6928 −1.16024
\(418\) 0 0
\(419\) 4.35320 0.212668 0.106334 0.994330i \(-0.466089\pi\)
0.106334 + 0.994330i \(0.466089\pi\)
\(420\) 0 0
\(421\) −31.8257 −1.55109 −0.775545 0.631292i \(-0.782525\pi\)
−0.775545 + 0.631292i \(0.782525\pi\)
\(422\) 0 0
\(423\) −40.1202 −1.95071
\(424\) 0 0
\(425\) 9.09622 0.441231
\(426\) 0 0
\(427\) 8.50901 0.411780
\(428\) 0 0
\(429\) −16.9625 −0.818958
\(430\) 0 0
\(431\) −6.61361 −0.318567 −0.159283 0.987233i \(-0.550918\pi\)
−0.159283 + 0.987233i \(0.550918\pi\)
\(432\) 0 0
\(433\) −8.04250 −0.386498 −0.193249 0.981150i \(-0.561902\pi\)
−0.193249 + 0.981150i \(0.561902\pi\)
\(434\) 0 0
\(435\) 60.2521 2.88887
\(436\) 0 0
\(437\) −14.4198 −0.689793
\(438\) 0 0
\(439\) 8.24142 0.393342 0.196671 0.980470i \(-0.436987\pi\)
0.196671 + 0.980470i \(0.436987\pi\)
\(440\) 0 0
\(441\) 3.23981 0.154276
\(442\) 0 0
\(443\) −21.8146 −1.03644 −0.518221 0.855247i \(-0.673406\pi\)
−0.518221 + 0.855247i \(0.673406\pi\)
\(444\) 0 0
\(445\) 27.6110 1.30889
\(446\) 0 0
\(447\) 9.35536 0.442493
\(448\) 0 0
\(449\) −2.33895 −0.110382 −0.0551910 0.998476i \(-0.517577\pi\)
−0.0551910 + 0.998476i \(0.517577\pi\)
\(450\) 0 0
\(451\) 12.5071 0.588936
\(452\) 0 0
\(453\) 34.1869 1.60624
\(454\) 0 0
\(455\) 11.7370 0.550239
\(456\) 0 0
\(457\) 11.5619 0.540844 0.270422 0.962742i \(-0.412837\pi\)
0.270422 + 0.962742i \(0.412837\pi\)
\(458\) 0 0
\(459\) −0.599024 −0.0279600
\(460\) 0 0
\(461\) 12.3116 0.573410 0.286705 0.958019i \(-0.407440\pi\)
0.286705 + 0.958019i \(0.407440\pi\)
\(462\) 0 0
\(463\) −33.8875 −1.57489 −0.787444 0.616387i \(-0.788596\pi\)
−0.787444 + 0.616387i \(0.788596\pi\)
\(464\) 0 0
\(465\) 18.1932 0.843688
\(466\) 0 0
\(467\) −11.4345 −0.529124 −0.264562 0.964369i \(-0.585227\pi\)
−0.264562 + 0.964369i \(0.585227\pi\)
\(468\) 0 0
\(469\) −8.06191 −0.372264
\(470\) 0 0
\(471\) 39.2775 1.80981
\(472\) 0 0
\(473\) 10.5945 0.487134
\(474\) 0 0
\(475\) 49.3566 2.26464
\(476\) 0 0
\(477\) 2.06002 0.0943218
\(478\) 0 0
\(479\) −14.8696 −0.679410 −0.339705 0.940532i \(-0.610327\pi\)
−0.339705 + 0.940532i \(0.610327\pi\)
\(480\) 0 0
\(481\) −30.9430 −1.41088
\(482\) 0 0
\(483\) −6.63835 −0.302055
\(484\) 0 0
\(485\) −15.4980 −0.703728
\(486\) 0 0
\(487\) −21.3571 −0.967782 −0.483891 0.875128i \(-0.660777\pi\)
−0.483891 + 0.875128i \(0.660777\pi\)
\(488\) 0 0
\(489\) 27.6233 1.24917
\(490\) 0 0
\(491\) −30.7492 −1.38769 −0.693845 0.720124i \(-0.744085\pi\)
−0.693845 + 0.720124i \(0.744085\pi\)
\(492\) 0 0
\(493\) −6.42444 −0.289342
\(494\) 0 0
\(495\) −26.4222 −1.18759
\(496\) 0 0
\(497\) −5.65018 −0.253445
\(498\) 0 0
\(499\) 23.9607 1.07263 0.536314 0.844019i \(-0.319816\pi\)
0.536314 + 0.844019i \(0.319816\pi\)
\(500\) 0 0
\(501\) −40.7213 −1.81929
\(502\) 0 0
\(503\) 20.0642 0.894617 0.447308 0.894380i \(-0.352383\pi\)
0.447308 + 0.894380i \(0.352383\pi\)
\(504\) 0 0
\(505\) 39.7625 1.76941
\(506\) 0 0
\(507\) 8.06184 0.358039
\(508\) 0 0
\(509\) −21.8762 −0.969646 −0.484823 0.874612i \(-0.661116\pi\)
−0.484823 + 0.874612i \(0.661116\pi\)
\(510\) 0 0
\(511\) −6.15385 −0.272230
\(512\) 0 0
\(513\) −3.25034 −0.143506
\(514\) 0 0
\(515\) −1.35467 −0.0596940
\(516\) 0 0
\(517\) 26.8994 1.18303
\(518\) 0 0
\(519\) 48.0173 2.10773
\(520\) 0 0
\(521\) −16.6864 −0.731047 −0.365523 0.930802i \(-0.619110\pi\)
−0.365523 + 0.930802i \(0.619110\pi\)
\(522\) 0 0
\(523\) −33.6620 −1.47194 −0.735969 0.677015i \(-0.763273\pi\)
−0.735969 + 0.677015i \(0.763273\pi\)
\(524\) 0 0
\(525\) 22.7220 0.991669
\(526\) 0 0
\(527\) −1.93987 −0.0845019
\(528\) 0 0
\(529\) −15.9376 −0.692941
\(530\) 0 0
\(531\) −49.2337 −2.13656
\(532\) 0 0
\(533\) 17.9996 0.779649
\(534\) 0 0
\(535\) 30.0394 1.29872
\(536\) 0 0
\(537\) −16.3367 −0.704980
\(538\) 0 0
\(539\) −2.17220 −0.0935631
\(540\) 0 0
\(541\) 4.26889 0.183534 0.0917669 0.995781i \(-0.470749\pi\)
0.0917669 + 0.995781i \(0.470749\pi\)
\(542\) 0 0
\(543\) 29.6980 1.27446
\(544\) 0 0
\(545\) 62.0906 2.65967
\(546\) 0 0
\(547\) 23.9460 1.02386 0.511929 0.859028i \(-0.328931\pi\)
0.511929 + 0.859028i \(0.328931\pi\)
\(548\) 0 0
\(549\) −27.5675 −1.17655
\(550\) 0 0
\(551\) −34.8594 −1.48506
\(552\) 0 0
\(553\) −0.358213 −0.0152328
\(554\) 0 0
\(555\) −92.8310 −3.94046
\(556\) 0 0
\(557\) −20.5598 −0.871147 −0.435573 0.900153i \(-0.643454\pi\)
−0.435573 + 0.900153i \(0.643454\pi\)
\(558\) 0 0
\(559\) 15.2470 0.644881
\(560\) 0 0
\(561\) 5.42606 0.229088
\(562\) 0 0
\(563\) −31.7372 −1.33757 −0.668783 0.743458i \(-0.733184\pi\)
−0.668783 + 0.743458i \(0.733184\pi\)
\(564\) 0 0
\(565\) −71.9642 −3.02756
\(566\) 0 0
\(567\) 8.22308 0.345337
\(568\) 0 0
\(569\) 9.23097 0.386982 0.193491 0.981102i \(-0.438019\pi\)
0.193491 + 0.981102i \(0.438019\pi\)
\(570\) 0 0
\(571\) 3.96659 0.165996 0.0829982 0.996550i \(-0.473550\pi\)
0.0829982 + 0.996550i \(0.473550\pi\)
\(572\) 0 0
\(573\) 55.6943 2.32666
\(574\) 0 0
\(575\) −24.1733 −1.00810
\(576\) 0 0
\(577\) −13.3603 −0.556198 −0.278099 0.960552i \(-0.589704\pi\)
−0.278099 + 0.960552i \(0.589704\pi\)
\(578\) 0 0
\(579\) 34.9005 1.45042
\(580\) 0 0
\(581\) −1.64243 −0.0681395
\(582\) 0 0
\(583\) −1.38118 −0.0572028
\(584\) 0 0
\(585\) −38.0256 −1.57216
\(586\) 0 0
\(587\) 21.4953 0.887208 0.443604 0.896223i \(-0.353700\pi\)
0.443604 + 0.896223i \(0.353700\pi\)
\(588\) 0 0
\(589\) −10.5258 −0.433709
\(590\) 0 0
\(591\) 50.2789 2.06820
\(592\) 0 0
\(593\) 11.2025 0.460031 0.230016 0.973187i \(-0.426122\pi\)
0.230016 + 0.973187i \(0.426122\pi\)
\(594\) 0 0
\(595\) −3.75449 −0.153919
\(596\) 0 0
\(597\) 6.45027 0.263992
\(598\) 0 0
\(599\) 1.35862 0.0555118 0.0277559 0.999615i \(-0.491164\pi\)
0.0277559 + 0.999615i \(0.491164\pi\)
\(600\) 0 0
\(601\) 19.6294 0.800701 0.400350 0.916362i \(-0.368888\pi\)
0.400350 + 0.916362i \(0.368888\pi\)
\(602\) 0 0
\(603\) 26.1190 1.06365
\(604\) 0 0
\(605\) −23.5841 −0.958829
\(606\) 0 0
\(607\) −6.71007 −0.272353 −0.136177 0.990685i \(-0.543482\pi\)
−0.136177 + 0.990685i \(0.543482\pi\)
\(608\) 0 0
\(609\) −16.0480 −0.650297
\(610\) 0 0
\(611\) 38.7123 1.56613
\(612\) 0 0
\(613\) −5.64980 −0.228193 −0.114097 0.993470i \(-0.536397\pi\)
−0.114097 + 0.993470i \(0.536397\pi\)
\(614\) 0 0
\(615\) 54.0000 2.17749
\(616\) 0 0
\(617\) −9.36400 −0.376981 −0.188490 0.982075i \(-0.560359\pi\)
−0.188490 + 0.982075i \(0.560359\pi\)
\(618\) 0 0
\(619\) 12.2615 0.492833 0.246416 0.969164i \(-0.420747\pi\)
0.246416 + 0.969164i \(0.420747\pi\)
\(620\) 0 0
\(621\) 1.59191 0.0638812
\(622\) 0 0
\(623\) −7.35413 −0.294637
\(624\) 0 0
\(625\) 12.2601 0.490403
\(626\) 0 0
\(627\) 29.4421 1.17581
\(628\) 0 0
\(629\) 9.89820 0.394667
\(630\) 0 0
\(631\) −28.8988 −1.15044 −0.575222 0.817997i \(-0.695084\pi\)
−0.575222 + 0.817997i \(0.695084\pi\)
\(632\) 0 0
\(633\) −14.9856 −0.595626
\(634\) 0 0
\(635\) −42.9456 −1.70424
\(636\) 0 0
\(637\) −3.12612 −0.123861
\(638\) 0 0
\(639\) 18.3055 0.724154
\(640\) 0 0
\(641\) 31.7913 1.25568 0.627841 0.778341i \(-0.283939\pi\)
0.627841 + 0.778341i \(0.283939\pi\)
\(642\) 0 0
\(643\) 5.19435 0.204845 0.102423 0.994741i \(-0.467341\pi\)
0.102423 + 0.994741i \(0.467341\pi\)
\(644\) 0 0
\(645\) 45.7421 1.80109
\(646\) 0 0
\(647\) 23.3503 0.917993 0.458997 0.888438i \(-0.348209\pi\)
0.458997 + 0.888438i \(0.348209\pi\)
\(648\) 0 0
\(649\) 33.0098 1.29575
\(650\) 0 0
\(651\) −4.84571 −0.189918
\(652\) 0 0
\(653\) 24.1334 0.944414 0.472207 0.881488i \(-0.343458\pi\)
0.472207 + 0.881488i \(0.343458\pi\)
\(654\) 0 0
\(655\) 53.2185 2.07942
\(656\) 0 0
\(657\) 19.9373 0.777827
\(658\) 0 0
\(659\) −34.6004 −1.34784 −0.673920 0.738804i \(-0.735391\pi\)
−0.673920 + 0.738804i \(0.735391\pi\)
\(660\) 0 0
\(661\) −19.9502 −0.775973 −0.387986 0.921665i \(-0.626829\pi\)
−0.387986 + 0.921665i \(0.626829\pi\)
\(662\) 0 0
\(663\) 7.80893 0.303274
\(664\) 0 0
\(665\) −20.3721 −0.789996
\(666\) 0 0
\(667\) 17.0730 0.661069
\(668\) 0 0
\(669\) 8.13255 0.314423
\(670\) 0 0
\(671\) 18.4832 0.713538
\(672\) 0 0
\(673\) 45.1276 1.73954 0.869771 0.493455i \(-0.164266\pi\)
0.869771 + 0.493455i \(0.164266\pi\)
\(674\) 0 0
\(675\) −5.44885 −0.209726
\(676\) 0 0
\(677\) −1.91883 −0.0737465 −0.0368732 0.999320i \(-0.511740\pi\)
−0.0368732 + 0.999320i \(0.511740\pi\)
\(678\) 0 0
\(679\) 4.12785 0.158412
\(680\) 0 0
\(681\) 47.1691 1.80752
\(682\) 0 0
\(683\) −6.73903 −0.257862 −0.128931 0.991654i \(-0.541155\pi\)
−0.128931 + 0.991654i \(0.541155\pi\)
\(684\) 0 0
\(685\) −68.8892 −2.63212
\(686\) 0 0
\(687\) −45.8461 −1.74914
\(688\) 0 0
\(689\) −1.98773 −0.0757266
\(690\) 0 0
\(691\) 7.23784 0.275340 0.137670 0.990478i \(-0.456039\pi\)
0.137670 + 0.990478i \(0.456039\pi\)
\(692\) 0 0
\(693\) 7.03749 0.267332
\(694\) 0 0
\(695\) 35.6109 1.35080
\(696\) 0 0
\(697\) −5.75781 −0.218092
\(698\) 0 0
\(699\) 58.2833 2.20448
\(700\) 0 0
\(701\) 14.3845 0.543296 0.271648 0.962397i \(-0.412431\pi\)
0.271648 + 0.962397i \(0.412431\pi\)
\(702\) 0 0
\(703\) 53.7082 2.02564
\(704\) 0 0
\(705\) 116.140 4.37407
\(706\) 0 0
\(707\) −10.5907 −0.398303
\(708\) 0 0
\(709\) −0.273628 −0.0102763 −0.00513816 0.999987i \(-0.501636\pi\)
−0.00513816 + 0.999987i \(0.501636\pi\)
\(710\) 0 0
\(711\) 1.16054 0.0435236
\(712\) 0 0
\(713\) 5.15521 0.193064
\(714\) 0 0
\(715\) 25.4951 0.953461
\(716\) 0 0
\(717\) −14.5410 −0.543044
\(718\) 0 0
\(719\) 47.8532 1.78462 0.892312 0.451420i \(-0.149082\pi\)
0.892312 + 0.451420i \(0.149082\pi\)
\(720\) 0 0
\(721\) 0.360814 0.0134374
\(722\) 0 0
\(723\) 12.7534 0.474304
\(724\) 0 0
\(725\) −58.4381 −2.17034
\(726\) 0 0
\(727\) −11.9347 −0.442633 −0.221317 0.975202i \(-0.571035\pi\)
−0.221317 + 0.975202i \(0.571035\pi\)
\(728\) 0 0
\(729\) −31.1302 −1.15297
\(730\) 0 0
\(731\) −4.87730 −0.180394
\(732\) 0 0
\(733\) 29.8523 1.10262 0.551309 0.834301i \(-0.314128\pi\)
0.551309 + 0.834301i \(0.314128\pi\)
\(734\) 0 0
\(735\) −9.37857 −0.345934
\(736\) 0 0
\(737\) −17.5120 −0.645064
\(738\) 0 0
\(739\) 37.7013 1.38686 0.693432 0.720522i \(-0.256098\pi\)
0.693432 + 0.720522i \(0.256098\pi\)
\(740\) 0 0
\(741\) 42.3717 1.55656
\(742\) 0 0
\(743\) −51.3102 −1.88239 −0.941195 0.337865i \(-0.890295\pi\)
−0.941195 + 0.337865i \(0.890295\pi\)
\(744\) 0 0
\(745\) −14.0613 −0.515167
\(746\) 0 0
\(747\) 5.32116 0.194691
\(748\) 0 0
\(749\) −8.00092 −0.292347
\(750\) 0 0
\(751\) 21.1470 0.771665 0.385832 0.922569i \(-0.373914\pi\)
0.385832 + 0.922569i \(0.373914\pi\)
\(752\) 0 0
\(753\) −39.5658 −1.44186
\(754\) 0 0
\(755\) −51.3837 −1.87005
\(756\) 0 0
\(757\) 31.9921 1.16277 0.581386 0.813628i \(-0.302511\pi\)
0.581386 + 0.813628i \(0.302511\pi\)
\(758\) 0 0
\(759\) −14.4198 −0.523406
\(760\) 0 0
\(761\) 43.8285 1.58878 0.794391 0.607407i \(-0.207790\pi\)
0.794391 + 0.607407i \(0.207790\pi\)
\(762\) 0 0
\(763\) −16.5377 −0.598704
\(764\) 0 0
\(765\) 12.1638 0.439784
\(766\) 0 0
\(767\) 47.5061 1.71535
\(768\) 0 0
\(769\) 43.6455 1.57390 0.786949 0.617019i \(-0.211660\pi\)
0.786949 + 0.617019i \(0.211660\pi\)
\(770\) 0 0
\(771\) 31.3684 1.12971
\(772\) 0 0
\(773\) 15.5207 0.558241 0.279121 0.960256i \(-0.409957\pi\)
0.279121 + 0.960256i \(0.409957\pi\)
\(774\) 0 0
\(775\) −17.6454 −0.633843
\(776\) 0 0
\(777\) 24.7253 0.887015
\(778\) 0 0
\(779\) −31.2422 −1.11937
\(780\) 0 0
\(781\) −12.2733 −0.439174
\(782\) 0 0
\(783\) 3.84839 0.137530
\(784\) 0 0
\(785\) −59.0350 −2.10705
\(786\) 0 0
\(787\) 9.06022 0.322962 0.161481 0.986876i \(-0.448373\pi\)
0.161481 + 0.986876i \(0.448373\pi\)
\(788\) 0 0
\(789\) −33.5955 −1.19603
\(790\) 0 0
\(791\) 19.1675 0.681517
\(792\) 0 0
\(793\) 26.6002 0.944601
\(794\) 0 0
\(795\) −5.96333 −0.211498
\(796\) 0 0
\(797\) −50.8427 −1.80094 −0.900471 0.434917i \(-0.856778\pi\)
−0.900471 + 0.434917i \(0.856778\pi\)
\(798\) 0 0
\(799\) −12.3835 −0.438097
\(800\) 0 0
\(801\) 23.8260 0.841849
\(802\) 0 0
\(803\) −13.3674 −0.471724
\(804\) 0 0
\(805\) 9.97760 0.351664
\(806\) 0 0
\(807\) −28.8385 −1.01516
\(808\) 0 0
\(809\) 29.0616 1.02175 0.510877 0.859654i \(-0.329321\pi\)
0.510877 + 0.859654i \(0.329321\pi\)
\(810\) 0 0
\(811\) −25.7311 −0.903541 −0.451771 0.892134i \(-0.649207\pi\)
−0.451771 + 0.892134i \(0.649207\pi\)
\(812\) 0 0
\(813\) 52.2499 1.83248
\(814\) 0 0
\(815\) −41.5185 −1.45433
\(816\) 0 0
\(817\) −26.4645 −0.925877
\(818\) 0 0
\(819\) 10.1280 0.353902
\(820\) 0 0
\(821\) −33.6757 −1.17529 −0.587645 0.809119i \(-0.699945\pi\)
−0.587645 + 0.809119i \(0.699945\pi\)
\(822\) 0 0
\(823\) 39.5248 1.37775 0.688874 0.724881i \(-0.258105\pi\)
0.688874 + 0.724881i \(0.258105\pi\)
\(824\) 0 0
\(825\) 49.3566 1.71838
\(826\) 0 0
\(827\) 37.0422 1.28808 0.644042 0.764990i \(-0.277256\pi\)
0.644042 + 0.764990i \(0.277256\pi\)
\(828\) 0 0
\(829\) 22.0798 0.766865 0.383432 0.923569i \(-0.374742\pi\)
0.383432 + 0.923569i \(0.374742\pi\)
\(830\) 0 0
\(831\) 33.9736 1.17853
\(832\) 0 0
\(833\) 1.00000 0.0346479
\(834\) 0 0
\(835\) 61.2051 2.11809
\(836\) 0 0
\(837\) 1.16203 0.0401655
\(838\) 0 0
\(839\) −44.5480 −1.53797 −0.768983 0.639269i \(-0.779237\pi\)
−0.768983 + 0.639269i \(0.779237\pi\)
\(840\) 0 0
\(841\) 12.2734 0.423221
\(842\) 0 0
\(843\) 47.3214 1.62984
\(844\) 0 0
\(845\) −12.1171 −0.416842
\(846\) 0 0
\(847\) 6.28156 0.215837
\(848\) 0 0
\(849\) 9.01071 0.309247
\(850\) 0 0
\(851\) −26.3045 −0.901708
\(852\) 0 0
\(853\) 26.5019 0.907407 0.453704 0.891153i \(-0.350103\pi\)
0.453704 + 0.891153i \(0.350103\pi\)
\(854\) 0 0
\(855\) 66.0017 2.25721
\(856\) 0 0
\(857\) 56.3112 1.92355 0.961776 0.273837i \(-0.0882928\pi\)
0.961776 + 0.273837i \(0.0882928\pi\)
\(858\) 0 0
\(859\) −18.5821 −0.634013 −0.317006 0.948423i \(-0.602678\pi\)
−0.317006 + 0.948423i \(0.602678\pi\)
\(860\) 0 0
\(861\) −14.3828 −0.490163
\(862\) 0 0
\(863\) 47.2009 1.60674 0.803369 0.595481i \(-0.203039\pi\)
0.803369 + 0.595481i \(0.203039\pi\)
\(864\) 0 0
\(865\) −72.1712 −2.45389
\(866\) 0 0
\(867\) −2.49796 −0.0848352
\(868\) 0 0
\(869\) −0.778109 −0.0263955
\(870\) 0 0
\(871\) −25.2025 −0.853954
\(872\) 0 0
\(873\) −13.3734 −0.452622
\(874\) 0 0
\(875\) −15.3792 −0.519912
\(876\) 0 0
\(877\) 6.76248 0.228353 0.114176 0.993460i \(-0.463577\pi\)
0.114176 + 0.993460i \(0.463577\pi\)
\(878\) 0 0
\(879\) 44.5617 1.50303
\(880\) 0 0
\(881\) 25.4892 0.858753 0.429377 0.903126i \(-0.358733\pi\)
0.429377 + 0.903126i \(0.358733\pi\)
\(882\) 0 0
\(883\) −31.1313 −1.04765 −0.523826 0.851825i \(-0.675496\pi\)
−0.523826 + 0.851825i \(0.675496\pi\)
\(884\) 0 0
\(885\) 142.522 4.79081
\(886\) 0 0
\(887\) 57.6042 1.93416 0.967080 0.254474i \(-0.0819022\pi\)
0.967080 + 0.254474i \(0.0819022\pi\)
\(888\) 0 0
\(889\) 11.4384 0.383633
\(890\) 0 0
\(891\) 17.8621 0.598404
\(892\) 0 0
\(893\) −67.1937 −2.24855
\(894\) 0 0
\(895\) 24.5544 0.820764
\(896\) 0 0
\(897\) −20.7523 −0.692899
\(898\) 0 0
\(899\) 12.4625 0.415649
\(900\) 0 0
\(901\) 0.635847 0.0211831
\(902\) 0 0
\(903\) −12.1833 −0.405435
\(904\) 0 0
\(905\) −44.6369 −1.48378
\(906\) 0 0
\(907\) 46.8298 1.55496 0.777479 0.628909i \(-0.216498\pi\)
0.777479 + 0.628909i \(0.216498\pi\)
\(908\) 0 0
\(909\) 34.3117 1.13805
\(910\) 0 0
\(911\) 26.3016 0.871411 0.435705 0.900089i \(-0.356499\pi\)
0.435705 + 0.900089i \(0.356499\pi\)
\(912\) 0 0
\(913\) −3.56768 −0.118073
\(914\) 0 0
\(915\) 79.8024 2.63819
\(916\) 0 0
\(917\) −14.1746 −0.468087
\(918\) 0 0
\(919\) 0.441997 0.0145801 0.00729007 0.999973i \(-0.497679\pi\)
0.00729007 + 0.999973i \(0.497679\pi\)
\(920\) 0 0
\(921\) −59.6605 −1.96588
\(922\) 0 0
\(923\) −17.6632 −0.581390
\(924\) 0 0
\(925\) 90.0361 2.96037
\(926\) 0 0
\(927\) −1.16897 −0.0383939
\(928\) 0 0
\(929\) −10.1004 −0.331383 −0.165691 0.986178i \(-0.552986\pi\)
−0.165691 + 0.986178i \(0.552986\pi\)
\(930\) 0 0
\(931\) 5.42606 0.177832
\(932\) 0 0
\(933\) −52.2860 −1.71177
\(934\) 0 0
\(935\) −8.15550 −0.266713
\(936\) 0 0
\(937\) −41.5166 −1.35629 −0.678144 0.734929i \(-0.737215\pi\)
−0.678144 + 0.734929i \(0.737215\pi\)
\(938\) 0 0
\(939\) 3.08654 0.100725
\(940\) 0 0
\(941\) 14.7445 0.480657 0.240328 0.970692i \(-0.422745\pi\)
0.240328 + 0.970692i \(0.422745\pi\)
\(942\) 0 0
\(943\) 15.3014 0.498283
\(944\) 0 0
\(945\) 2.24903 0.0731610
\(946\) 0 0
\(947\) −39.0836 −1.27005 −0.635024 0.772493i \(-0.719010\pi\)
−0.635024 + 0.772493i \(0.719010\pi\)
\(948\) 0 0
\(949\) −19.2377 −0.624481
\(950\) 0 0
\(951\) −25.4896 −0.826558
\(952\) 0 0
\(953\) 56.8507 1.84158 0.920788 0.390064i \(-0.127547\pi\)
0.920788 + 0.390064i \(0.127547\pi\)
\(954\) 0 0
\(955\) −83.7098 −2.70879
\(956\) 0 0
\(957\) −34.8594 −1.12684
\(958\) 0 0
\(959\) 18.3485 0.592503
\(960\) 0 0
\(961\) −27.2369 −0.878610
\(962\) 0 0
\(963\) 25.9214 0.835306
\(964\) 0 0
\(965\) −52.4563 −1.68863
\(966\) 0 0
\(967\) 41.6625 1.33978 0.669888 0.742463i \(-0.266342\pi\)
0.669888 + 0.742463i \(0.266342\pi\)
\(968\) 0 0
\(969\) −13.5541 −0.435420
\(970\) 0 0
\(971\) 33.4402 1.07315 0.536573 0.843854i \(-0.319718\pi\)
0.536573 + 0.843854i \(0.319718\pi\)
\(972\) 0 0
\(973\) −9.48487 −0.304071
\(974\) 0 0
\(975\) 71.0317 2.27483
\(976\) 0 0
\(977\) −33.2659 −1.06427 −0.532136 0.846659i \(-0.678610\pi\)
−0.532136 + 0.846659i \(0.678610\pi\)
\(978\) 0 0
\(979\) −15.9746 −0.510551
\(980\) 0 0
\(981\) 53.5789 1.71064
\(982\) 0 0
\(983\) −51.5812 −1.64518 −0.822592 0.568632i \(-0.807473\pi\)
−0.822592 + 0.568632i \(0.807473\pi\)
\(984\) 0 0
\(985\) −75.5704 −2.40787
\(986\) 0 0
\(987\) −30.9335 −0.984625
\(988\) 0 0
\(989\) 12.9615 0.412151
\(990\) 0 0
\(991\) 52.1728 1.65732 0.828662 0.559750i \(-0.189103\pi\)
0.828662 + 0.559750i \(0.189103\pi\)
\(992\) 0 0
\(993\) −82.8861 −2.63031
\(994\) 0 0
\(995\) −9.69490 −0.307349
\(996\) 0 0
\(997\) −32.6169 −1.03299 −0.516494 0.856291i \(-0.672763\pi\)
−0.516494 + 0.856291i \(0.672763\pi\)
\(998\) 0 0
\(999\) −5.92926 −0.187593
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 3808.2.a.j.1.1 6
4.3 odd 2 3808.2.a.n.1.6 yes 6
8.3 odd 2 7616.2.a.bw.1.1 6
8.5 even 2 7616.2.a.ca.1.6 6
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
3808.2.a.j.1.1 6 1.1 even 1 trivial
3808.2.a.n.1.6 yes 6 4.3 odd 2
7616.2.a.bw.1.1 6 8.3 odd 2
7616.2.a.ca.1.6 6 8.5 even 2