Properties

Label 3808.2.a.j
Level $3808$
Weight $2$
Character orbit 3808.a
Self dual yes
Analytic conductor $30.407$
Analytic rank $1$
Dimension $6$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [3808,2,Mod(1,3808)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(3808, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("3808.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 3808 = 2^{5} \cdot 7 \cdot 17 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 3808.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(30.4070330897\)
Analytic rank: \(1\)
Dimension: \(6\)
Coefficient field: 6.6.4022000.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{6} - 2x^{5} - 7x^{4} + 10x^{3} + 14x^{2} - 8x - 4 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 2^{2} \)
Twist minimal: yes
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\ldots,\beta_{5}\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + \beta_{3} q^{3} - \beta_1 q^{5} - q^{7} + ( - \beta_{5} + 1) q^{9} + ( - \beta_{2} + \beta_1) q^{11} + ( - \beta_{4} - \beta_{3} + \beta_{2} - 1) q^{13} + ( - \beta_{4} + \beta_{2} + \beta_1 - 1) q^{15}+ \cdots + ( - 3 \beta_{4} - \beta_{3} + 2 \beta_{2} + \cdots - 1) q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 6 q - 2 q^{3} + 2 q^{5} - 6 q^{7} + 4 q^{9} - 2 q^{11} - 4 q^{13} - 8 q^{15} + 6 q^{17} + 2 q^{19} + 2 q^{21} - 10 q^{23} - 2 q^{27} + 2 q^{29} - 12 q^{31} + 2 q^{33} - 2 q^{35} + 2 q^{37} - 10 q^{39} - 8 q^{43}+ \cdots - 2 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{6} - 2x^{5} - 7x^{4} + 10x^{3} + 14x^{2} - 8x - 4 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( ( \nu^{4} - 2\nu^{3} - 3\nu^{2} + 6\nu - 2 ) / 2 \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( ( \nu^{4} - 7\nu^{2} + 6 ) / 2 \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( ( \nu^{4} - 2\nu^{3} - 5\nu^{2} + 6\nu + 4 ) / 2 \) Copy content Toggle raw display
\(\beta_{4}\)\(=\) \( ( \nu^{5} - 2\nu^{4} - 5\nu^{3} + 8\nu^{2} + 4\nu - 4 ) / 2 \) Copy content Toggle raw display
\(\beta_{5}\)\(=\) \( ( -\nu^{5} + 3\nu^{4} + 5\nu^{3} - 13\nu^{2} - 8\nu + 6 ) / 2 \) Copy content Toggle raw display
\(\nu\)\(=\) \( ( -\beta_{5} - \beta_{4} - \beta_{3} + \beta_{2} + \beta _1 + 1 ) / 2 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( -\beta_{3} + \beta _1 + 3 \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( ( -3\beta_{5} - 3\beta_{4} - 7\beta_{3} + 5\beta_{2} + 5\beta _1 + 7 ) / 2 \) Copy content Toggle raw display
\(\nu^{4}\)\(=\) \( -7\beta_{3} + 2\beta_{2} + 7\beta _1 + 15 \) Copy content Toggle raw display
\(\nu^{5}\)\(=\) \( ( -11\beta_{5} - 7\beta_{4} - 43\beta_{3} + 29\beta_{2} + 33\beta _1 + 51 ) / 2 \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
−1.32040
2.15856
2.67090
−0.350492
−1.93381
0.775247
0 −2.49796 0 3.75449 0 −1.00000 0 3.23981 0
1.2 0 −2.37541 0 0.716029 0 −1.00000 0 2.64257 0
1.3 0 −1.43012 0 −2.70357 0 −1.00000 0 −0.954755 0
1.4 0 0.692013 0 2.18514 0 −1.00000 0 −2.52112 0
1.5 0 1.07358 0 −1.81319 0 −1.00000 0 −1.84742 0
1.6 0 2.53790 0 −0.138905 0 −1.00000 0 3.44092 0
\(n\): e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 1.6
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(2\) \( -1 \)
\(7\) \( +1 \)
\(17\) \( -1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 3808.2.a.j 6
4.b odd 2 1 3808.2.a.n yes 6
8.b even 2 1 7616.2.a.ca 6
8.d odd 2 1 7616.2.a.bw 6
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
3808.2.a.j 6 1.a even 1 1 trivial
3808.2.a.n yes 6 4.b odd 2 1
7616.2.a.bw 6 8.d odd 2 1
7616.2.a.ca 6 8.b even 2 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(\Gamma_0(3808))\):

\( T_{3}^{6} + 2T_{3}^{5} - 9T_{3}^{4} - 16T_{3}^{3} + 19T_{3}^{2} + 20T_{3} - 16 \) Copy content Toggle raw display
\( T_{11}^{6} + 2T_{11}^{5} - 26T_{11}^{4} - 56T_{11}^{3} + 52T_{11}^{2} + 144T_{11} + 64 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{6} \) Copy content Toggle raw display
$3$ \( T^{6} + 2 T^{5} + \cdots - 16 \) Copy content Toggle raw display
$5$ \( T^{6} - 2 T^{5} + \cdots - 4 \) Copy content Toggle raw display
$7$ \( (T + 1)^{6} \) Copy content Toggle raw display
$11$ \( T^{6} + 2 T^{5} + \cdots + 64 \) Copy content Toggle raw display
$13$ \( T^{6} + 4 T^{5} + \cdots - 496 \) Copy content Toggle raw display
$17$ \( (T - 1)^{6} \) Copy content Toggle raw display
$19$ \( T^{6} - 2 T^{5} + \cdots - 1024 \) Copy content Toggle raw display
$23$ \( T^{6} + 10 T^{5} + \cdots - 256 \) Copy content Toggle raw display
$29$ \( T^{6} - 2 T^{5} + \cdots - 12016 \) Copy content Toggle raw display
$31$ \( T^{6} + 12 T^{5} + \cdots - 704 \) Copy content Toggle raw display
$37$ \( T^{6} - 2 T^{5} + \cdots + 3056 \) Copy content Toggle raw display
$41$ \( T^{6} - 81 T^{4} + \cdots + 2596 \) Copy content Toggle raw display
$43$ \( T^{6} + 8 T^{5} + \cdots + 704 \) Copy content Toggle raw display
$47$ \( T^{6} + 22 T^{5} + \cdots - 256 \) Copy content Toggle raw display
$53$ \( T^{6} + 6 T^{5} + \cdots - 16396 \) Copy content Toggle raw display
$59$ \( T^{6} + 8 T^{5} + \cdots + 4096 \) Copy content Toggle raw display
$61$ \( T^{6} + 4 T^{5} + \cdots - 366676 \) Copy content Toggle raw display
$67$ \( T^{6} - 8 T^{5} + \cdots - 8896 \) Copy content Toggle raw display
$71$ \( T^{6} + 18 T^{5} + \cdots + 145664 \) Copy content Toggle raw display
$73$ \( T^{6} - 8 T^{5} + \cdots + 596 \) Copy content Toggle raw display
$79$ \( T^{6} + 14 T^{5} + \cdots - 256 \) Copy content Toggle raw display
$83$ \( T^{6} - 66 T^{4} + \cdots + 256 \) Copy content Toggle raw display
$89$ \( T^{6} - 2 T^{5} + \cdots - 3376 \) Copy content Toggle raw display
$97$ \( T^{6} - 2 T^{5} + \cdots - 1723964 \) Copy content Toggle raw display
show more
show less