Properties

Label 3808.2.a.i.1.5
Level $3808$
Weight $2$
Character 3808.1
Self dual yes
Analytic conductor $30.407$
Analytic rank $1$
Dimension $6$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [3808,2,Mod(1,3808)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(3808, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("3808.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 3808 = 2^{5} \cdot 7 \cdot 17 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 3808.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(30.4070330897\)
Analytic rank: \(1\)
Dimension: \(6\)
Coefficient field: 6.6.80686992.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{6} - x^{5} - 10x^{4} + 15x^{3} + 8x^{2} - 15x + 3 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 2 \)
Twist minimal: yes
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.5
Root \(2.39657\) of defining polynomial
Character \(\chi\) \(=\) 3808.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+1.20648 q^{3} +0.863883 q^{5} +1.00000 q^{7} -1.54442 q^{9} +0.0275234 q^{11} -0.319466 q^{13} +1.04225 q^{15} -1.00000 q^{17} -1.03217 q^{19} +1.20648 q^{21} -8.22897 q^{23} -4.25371 q^{25} -5.48273 q^{27} -1.97248 q^{29} -8.12128 q^{31} +0.0332063 q^{33} +0.863883 q^{35} -8.86790 q^{37} -0.385427 q^{39} -3.61419 q^{41} -5.96641 q^{43} -1.33420 q^{45} +8.25275 q^{47} +1.00000 q^{49} -1.20648 q^{51} +8.14880 q^{53} +0.0237770 q^{55} -1.24529 q^{57} +7.34565 q^{59} -0.736541 q^{61} -1.54442 q^{63} -0.275981 q^{65} +0.540671 q^{67} -9.92805 q^{69} -1.76097 q^{71} -3.55915 q^{73} -5.13199 q^{75} +0.0275234 q^{77} +13.2559 q^{79} -1.98152 q^{81} +7.27562 q^{83} -0.863883 q^{85} -2.37974 q^{87} -7.62312 q^{89} -0.319466 q^{91} -9.79812 q^{93} -0.891677 q^{95} +5.01810 q^{97} -0.0425076 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 6 q - 2 q^{3} - 6 q^{5} + 6 q^{7} + 4 q^{9} - 2 q^{11} - 4 q^{13} + 2 q^{15} - 6 q^{17} - 10 q^{19} - 2 q^{21} + 4 q^{23} + 4 q^{25} - 8 q^{27} - 14 q^{29} + 8 q^{31} - 8 q^{33} - 6 q^{35} - 4 q^{37} + 14 q^{39}+ \cdots - 4 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 1.20648 0.696559 0.348279 0.937391i \(-0.386766\pi\)
0.348279 + 0.937391i \(0.386766\pi\)
\(4\) 0 0
\(5\) 0.863883 0.386340 0.193170 0.981165i \(-0.438123\pi\)
0.193170 + 0.981165i \(0.438123\pi\)
\(6\) 0 0
\(7\) 1.00000 0.377964
\(8\) 0 0
\(9\) −1.54442 −0.514806
\(10\) 0 0
\(11\) 0.0275234 0.00829861 0.00414930 0.999991i \(-0.498679\pi\)
0.00414930 + 0.999991i \(0.498679\pi\)
\(12\) 0 0
\(13\) −0.319466 −0.0886038 −0.0443019 0.999018i \(-0.514106\pi\)
−0.0443019 + 0.999018i \(0.514106\pi\)
\(14\) 0 0
\(15\) 1.04225 0.269109
\(16\) 0 0
\(17\) −1.00000 −0.242536
\(18\) 0 0
\(19\) −1.03217 −0.236797 −0.118398 0.992966i \(-0.537776\pi\)
−0.118398 + 0.992966i \(0.537776\pi\)
\(20\) 0 0
\(21\) 1.20648 0.263275
\(22\) 0 0
\(23\) −8.22897 −1.71586 −0.857929 0.513768i \(-0.828249\pi\)
−0.857929 + 0.513768i \(0.828249\pi\)
\(24\) 0 0
\(25\) −4.25371 −0.850741
\(26\) 0 0
\(27\) −5.48273 −1.05515
\(28\) 0 0
\(29\) −1.97248 −0.366280 −0.183140 0.983087i \(-0.558626\pi\)
−0.183140 + 0.983087i \(0.558626\pi\)
\(30\) 0 0
\(31\) −8.12128 −1.45862 −0.729312 0.684181i \(-0.760160\pi\)
−0.729312 + 0.684181i \(0.760160\pi\)
\(32\) 0 0
\(33\) 0.0332063 0.00578047
\(34\) 0 0
\(35\) 0.863883 0.146023
\(36\) 0 0
\(37\) −8.86790 −1.45787 −0.728937 0.684581i \(-0.759985\pi\)
−0.728937 + 0.684581i \(0.759985\pi\)
\(38\) 0 0
\(39\) −0.385427 −0.0617178
\(40\) 0 0
\(41\) −3.61419 −0.564442 −0.282221 0.959349i \(-0.591071\pi\)
−0.282221 + 0.959349i \(0.591071\pi\)
\(42\) 0 0
\(43\) −5.96641 −0.909870 −0.454935 0.890525i \(-0.650337\pi\)
−0.454935 + 0.890525i \(0.650337\pi\)
\(44\) 0 0
\(45\) −1.33420 −0.198890
\(46\) 0 0
\(47\) 8.25275 1.20379 0.601893 0.798576i \(-0.294413\pi\)
0.601893 + 0.798576i \(0.294413\pi\)
\(48\) 0 0
\(49\) 1.00000 0.142857
\(50\) 0 0
\(51\) −1.20648 −0.168940
\(52\) 0 0
\(53\) 8.14880 1.11932 0.559662 0.828721i \(-0.310931\pi\)
0.559662 + 0.828721i \(0.310931\pi\)
\(54\) 0 0
\(55\) 0.0237770 0.00320609
\(56\) 0 0
\(57\) −1.24529 −0.164943
\(58\) 0 0
\(59\) 7.34565 0.956322 0.478161 0.878272i \(-0.341304\pi\)
0.478161 + 0.878272i \(0.341304\pi\)
\(60\) 0 0
\(61\) −0.736541 −0.0943045 −0.0471522 0.998888i \(-0.515015\pi\)
−0.0471522 + 0.998888i \(0.515015\pi\)
\(62\) 0 0
\(63\) −1.54442 −0.194578
\(64\) 0 0
\(65\) −0.275981 −0.0342312
\(66\) 0 0
\(67\) 0.540671 0.0660535 0.0330267 0.999454i \(-0.489485\pi\)
0.0330267 + 0.999454i \(0.489485\pi\)
\(68\) 0 0
\(69\) −9.92805 −1.19520
\(70\) 0 0
\(71\) −1.76097 −0.208989 −0.104494 0.994525i \(-0.533322\pi\)
−0.104494 + 0.994525i \(0.533322\pi\)
\(72\) 0 0
\(73\) −3.55915 −0.416567 −0.208283 0.978069i \(-0.566788\pi\)
−0.208283 + 0.978069i \(0.566788\pi\)
\(74\) 0 0
\(75\) −5.13199 −0.592591
\(76\) 0 0
\(77\) 0.0275234 0.00313658
\(78\) 0 0
\(79\) 13.2559 1.49141 0.745703 0.666278i \(-0.232114\pi\)
0.745703 + 0.666278i \(0.232114\pi\)
\(80\) 0 0
\(81\) −1.98152 −0.220169
\(82\) 0 0
\(83\) 7.27562 0.798603 0.399301 0.916820i \(-0.369253\pi\)
0.399301 + 0.916820i \(0.369253\pi\)
\(84\) 0 0
\(85\) −0.863883 −0.0937012
\(86\) 0 0
\(87\) −2.37974 −0.255135
\(88\) 0 0
\(89\) −7.62312 −0.808049 −0.404024 0.914748i \(-0.632389\pi\)
−0.404024 + 0.914748i \(0.632389\pi\)
\(90\) 0 0
\(91\) −0.319466 −0.0334891
\(92\) 0 0
\(93\) −9.79812 −1.01602
\(94\) 0 0
\(95\) −0.891677 −0.0914842
\(96\) 0 0
\(97\) 5.01810 0.509511 0.254755 0.967006i \(-0.418005\pi\)
0.254755 + 0.967006i \(0.418005\pi\)
\(98\) 0 0
\(99\) −0.0425076 −0.00427217
\(100\) 0 0
\(101\) 0.0659618 0.00656344 0.00328172 0.999995i \(-0.498955\pi\)
0.00328172 + 0.999995i \(0.498955\pi\)
\(102\) 0 0
\(103\) 18.3422 1.80731 0.903653 0.428264i \(-0.140875\pi\)
0.903653 + 0.428264i \(0.140875\pi\)
\(104\) 0 0
\(105\) 1.04225 0.101714
\(106\) 0 0
\(107\) −12.6051 −1.21858 −0.609290 0.792947i \(-0.708546\pi\)
−0.609290 + 0.792947i \(0.708546\pi\)
\(108\) 0 0
\(109\) −2.03695 −0.195105 −0.0975523 0.995230i \(-0.531101\pi\)
−0.0975523 + 0.995230i \(0.531101\pi\)
\(110\) 0 0
\(111\) −10.6989 −1.01549
\(112\) 0 0
\(113\) −20.0268 −1.88396 −0.941980 0.335669i \(-0.891037\pi\)
−0.941980 + 0.335669i \(0.891037\pi\)
\(114\) 0 0
\(115\) −7.10887 −0.662905
\(116\) 0 0
\(117\) 0.493388 0.0456137
\(118\) 0 0
\(119\) −1.00000 −0.0916698
\(120\) 0 0
\(121\) −10.9992 −0.999931
\(122\) 0 0
\(123\) −4.36044 −0.393167
\(124\) 0 0
\(125\) −7.99412 −0.715016
\(126\) 0 0
\(127\) −0.858651 −0.0761929 −0.0380965 0.999274i \(-0.512129\pi\)
−0.0380965 + 0.999274i \(0.512129\pi\)
\(128\) 0 0
\(129\) −7.19833 −0.633778
\(130\) 0 0
\(131\) −10.2387 −0.894561 −0.447281 0.894394i \(-0.647607\pi\)
−0.447281 + 0.894394i \(0.647607\pi\)
\(132\) 0 0
\(133\) −1.03217 −0.0895008
\(134\) 0 0
\(135\) −4.73643 −0.407647
\(136\) 0 0
\(137\) 9.66474 0.825714 0.412857 0.910796i \(-0.364531\pi\)
0.412857 + 0.910796i \(0.364531\pi\)
\(138\) 0 0
\(139\) −0.726913 −0.0616559 −0.0308280 0.999525i \(-0.509814\pi\)
−0.0308280 + 0.999525i \(0.509814\pi\)
\(140\) 0 0
\(141\) 9.95673 0.838508
\(142\) 0 0
\(143\) −0.00879277 −0.000735288 0
\(144\) 0 0
\(145\) −1.70399 −0.141509
\(146\) 0 0
\(147\) 1.20648 0.0995084
\(148\) 0 0
\(149\) 12.9796 1.06333 0.531663 0.846956i \(-0.321567\pi\)
0.531663 + 0.846956i \(0.321567\pi\)
\(150\) 0 0
\(151\) 14.6718 1.19397 0.596985 0.802252i \(-0.296365\pi\)
0.596985 + 0.802252i \(0.296365\pi\)
\(152\) 0 0
\(153\) 1.54442 0.124859
\(154\) 0 0
\(155\) −7.01583 −0.563525
\(156\) 0 0
\(157\) 10.3700 0.827617 0.413808 0.910364i \(-0.364198\pi\)
0.413808 + 0.910364i \(0.364198\pi\)
\(158\) 0 0
\(159\) 9.83133 0.779675
\(160\) 0 0
\(161\) −8.22897 −0.648534
\(162\) 0 0
\(163\) 8.52240 0.667526 0.333763 0.942657i \(-0.391682\pi\)
0.333763 + 0.942657i \(0.391682\pi\)
\(164\) 0 0
\(165\) 0.0286863 0.00223323
\(166\) 0 0
\(167\) −3.08921 −0.239050 −0.119525 0.992831i \(-0.538137\pi\)
−0.119525 + 0.992831i \(0.538137\pi\)
\(168\) 0 0
\(169\) −12.8979 −0.992149
\(170\) 0 0
\(171\) 1.59411 0.121904
\(172\) 0 0
\(173\) −13.2257 −1.00554 −0.502768 0.864422i \(-0.667685\pi\)
−0.502768 + 0.864422i \(0.667685\pi\)
\(174\) 0 0
\(175\) −4.25371 −0.321550
\(176\) 0 0
\(177\) 8.86235 0.666135
\(178\) 0 0
\(179\) −2.66039 −0.198847 −0.0994235 0.995045i \(-0.531700\pi\)
−0.0994235 + 0.995045i \(0.531700\pi\)
\(180\) 0 0
\(181\) 26.4437 1.96554 0.982772 0.184824i \(-0.0591714\pi\)
0.982772 + 0.184824i \(0.0591714\pi\)
\(182\) 0 0
\(183\) −0.888619 −0.0656886
\(184\) 0 0
\(185\) −7.66083 −0.563235
\(186\) 0 0
\(187\) −0.0275234 −0.00201271
\(188\) 0 0
\(189\) −5.48273 −0.398810
\(190\) 0 0
\(191\) 9.45741 0.684314 0.342157 0.939643i \(-0.388843\pi\)
0.342157 + 0.939643i \(0.388843\pi\)
\(192\) 0 0
\(193\) −12.8762 −0.926847 −0.463423 0.886137i \(-0.653379\pi\)
−0.463423 + 0.886137i \(0.653379\pi\)
\(194\) 0 0
\(195\) −0.332964 −0.0238440
\(196\) 0 0
\(197\) −21.2695 −1.51539 −0.757695 0.652609i \(-0.773674\pi\)
−0.757695 + 0.652609i \(0.773674\pi\)
\(198\) 0 0
\(199\) −0.186186 −0.0131984 −0.00659919 0.999978i \(-0.502101\pi\)
−0.00659919 + 0.999978i \(0.502101\pi\)
\(200\) 0 0
\(201\) 0.652306 0.0460101
\(202\) 0 0
\(203\) −1.97248 −0.138441
\(204\) 0 0
\(205\) −3.12224 −0.218067
\(206\) 0 0
\(207\) 12.7090 0.883334
\(208\) 0 0
\(209\) −0.0284089 −0.00196509
\(210\) 0 0
\(211\) 15.8289 1.08970 0.544852 0.838533i \(-0.316586\pi\)
0.544852 + 0.838533i \(0.316586\pi\)
\(212\) 0 0
\(213\) −2.12457 −0.145573
\(214\) 0 0
\(215\) −5.15428 −0.351519
\(216\) 0 0
\(217\) −8.12128 −0.551308
\(218\) 0 0
\(219\) −4.29402 −0.290163
\(220\) 0 0
\(221\) 0.319466 0.0214896
\(222\) 0 0
\(223\) 4.03321 0.270083 0.135042 0.990840i \(-0.456883\pi\)
0.135042 + 0.990840i \(0.456883\pi\)
\(224\) 0 0
\(225\) 6.56950 0.437967
\(226\) 0 0
\(227\) −6.62369 −0.439630 −0.219815 0.975542i \(-0.570545\pi\)
−0.219815 + 0.975542i \(0.570545\pi\)
\(228\) 0 0
\(229\) −24.4539 −1.61596 −0.807979 0.589212i \(-0.799438\pi\)
−0.807979 + 0.589212i \(0.799438\pi\)
\(230\) 0 0
\(231\) 0.0332063 0.00218481
\(232\) 0 0
\(233\) −6.11565 −0.400649 −0.200325 0.979730i \(-0.564200\pi\)
−0.200325 + 0.979730i \(0.564200\pi\)
\(234\) 0 0
\(235\) 7.12941 0.465071
\(236\) 0 0
\(237\) 15.9929 1.03885
\(238\) 0 0
\(239\) 20.8687 1.34988 0.674941 0.737871i \(-0.264169\pi\)
0.674941 + 0.737871i \(0.264169\pi\)
\(240\) 0 0
\(241\) 19.5329 1.25822 0.629112 0.777315i \(-0.283419\pi\)
0.629112 + 0.777315i \(0.283419\pi\)
\(242\) 0 0
\(243\) 14.0575 0.901790
\(244\) 0 0
\(245\) 0.863883 0.0551914
\(246\) 0 0
\(247\) 0.329744 0.0209811
\(248\) 0 0
\(249\) 8.77785 0.556274
\(250\) 0 0
\(251\) −17.0716 −1.07755 −0.538775 0.842450i \(-0.681113\pi\)
−0.538775 + 0.842450i \(0.681113\pi\)
\(252\) 0 0
\(253\) −0.226489 −0.0142392
\(254\) 0 0
\(255\) −1.04225 −0.0652684
\(256\) 0 0
\(257\) −9.42232 −0.587748 −0.293874 0.955844i \(-0.594945\pi\)
−0.293874 + 0.955844i \(0.594945\pi\)
\(258\) 0 0
\(259\) −8.86790 −0.551025
\(260\) 0 0
\(261\) 3.04633 0.188563
\(262\) 0 0
\(263\) 17.1982 1.06048 0.530242 0.847846i \(-0.322101\pi\)
0.530242 + 0.847846i \(0.322101\pi\)
\(264\) 0 0
\(265\) 7.03961 0.432440
\(266\) 0 0
\(267\) −9.19710 −0.562854
\(268\) 0 0
\(269\) −12.8406 −0.782903 −0.391451 0.920199i \(-0.628027\pi\)
−0.391451 + 0.920199i \(0.628027\pi\)
\(270\) 0 0
\(271\) 5.63072 0.342042 0.171021 0.985267i \(-0.445293\pi\)
0.171021 + 0.985267i \(0.445293\pi\)
\(272\) 0 0
\(273\) −0.385427 −0.0233271
\(274\) 0 0
\(275\) −0.117076 −0.00705997
\(276\) 0 0
\(277\) −31.8414 −1.91316 −0.956582 0.291464i \(-0.905858\pi\)
−0.956582 + 0.291464i \(0.905858\pi\)
\(278\) 0 0
\(279\) 12.5426 0.750908
\(280\) 0 0
\(281\) −10.7801 −0.643087 −0.321544 0.946895i \(-0.604202\pi\)
−0.321544 + 0.946895i \(0.604202\pi\)
\(282\) 0 0
\(283\) −13.0285 −0.774464 −0.387232 0.921982i \(-0.626569\pi\)
−0.387232 + 0.921982i \(0.626569\pi\)
\(284\) 0 0
\(285\) −1.07579 −0.0637241
\(286\) 0 0
\(287\) −3.61419 −0.213339
\(288\) 0 0
\(289\) 1.00000 0.0588235
\(290\) 0 0
\(291\) 6.05421 0.354904
\(292\) 0 0
\(293\) 23.0193 1.34480 0.672401 0.740187i \(-0.265263\pi\)
0.672401 + 0.740187i \(0.265263\pi\)
\(294\) 0 0
\(295\) 6.34578 0.369466
\(296\) 0 0
\(297\) −0.150903 −0.00875629
\(298\) 0 0
\(299\) 2.62887 0.152032
\(300\) 0 0
\(301\) −5.96641 −0.343898
\(302\) 0 0
\(303\) 0.0795812 0.00457182
\(304\) 0 0
\(305\) −0.636285 −0.0364336
\(306\) 0 0
\(307\) −20.2243 −1.15426 −0.577130 0.816652i \(-0.695828\pi\)
−0.577130 + 0.816652i \(0.695828\pi\)
\(308\) 0 0
\(309\) 22.1294 1.25890
\(310\) 0 0
\(311\) 17.0862 0.968871 0.484435 0.874827i \(-0.339025\pi\)
0.484435 + 0.874827i \(0.339025\pi\)
\(312\) 0 0
\(313\) 23.0644 1.30368 0.651838 0.758358i \(-0.273998\pi\)
0.651838 + 0.758358i \(0.273998\pi\)
\(314\) 0 0
\(315\) −1.33420 −0.0751734
\(316\) 0 0
\(317\) −30.3014 −1.70189 −0.850947 0.525252i \(-0.823971\pi\)
−0.850947 + 0.525252i \(0.823971\pi\)
\(318\) 0 0
\(319\) −0.0542892 −0.00303961
\(320\) 0 0
\(321\) −15.2077 −0.848813
\(322\) 0 0
\(323\) 1.03217 0.0574317
\(324\) 0 0
\(325\) 1.35891 0.0753789
\(326\) 0 0
\(327\) −2.45753 −0.135902
\(328\) 0 0
\(329\) 8.25275 0.454989
\(330\) 0 0
\(331\) −20.1929 −1.10990 −0.554950 0.831884i \(-0.687263\pi\)
−0.554950 + 0.831884i \(0.687263\pi\)
\(332\) 0 0
\(333\) 13.6957 0.750522
\(334\) 0 0
\(335\) 0.467076 0.0255191
\(336\) 0 0
\(337\) −8.83676 −0.481369 −0.240684 0.970603i \(-0.577372\pi\)
−0.240684 + 0.970603i \(0.577372\pi\)
\(338\) 0 0
\(339\) −24.1618 −1.31229
\(340\) 0 0
\(341\) −0.223525 −0.0121046
\(342\) 0 0
\(343\) 1.00000 0.0539949
\(344\) 0 0
\(345\) −8.57667 −0.461752
\(346\) 0 0
\(347\) 20.4777 1.09930 0.549650 0.835395i \(-0.314761\pi\)
0.549650 + 0.835395i \(0.314761\pi\)
\(348\) 0 0
\(349\) −17.6705 −0.945879 −0.472939 0.881095i \(-0.656807\pi\)
−0.472939 + 0.881095i \(0.656807\pi\)
\(350\) 0 0
\(351\) 1.75154 0.0934904
\(352\) 0 0
\(353\) −21.6850 −1.15418 −0.577089 0.816681i \(-0.695811\pi\)
−0.577089 + 0.816681i \(0.695811\pi\)
\(354\) 0 0
\(355\) −1.52127 −0.0807408
\(356\) 0 0
\(357\) −1.20648 −0.0638534
\(358\) 0 0
\(359\) −20.6693 −1.09088 −0.545441 0.838149i \(-0.683638\pi\)
−0.545441 + 0.838149i \(0.683638\pi\)
\(360\) 0 0
\(361\) −17.9346 −0.943927
\(362\) 0 0
\(363\) −13.2703 −0.696511
\(364\) 0 0
\(365\) −3.07469 −0.160936
\(366\) 0 0
\(367\) 24.3930 1.27330 0.636651 0.771152i \(-0.280319\pi\)
0.636651 + 0.771152i \(0.280319\pi\)
\(368\) 0 0
\(369\) 5.58182 0.290578
\(370\) 0 0
\(371\) 8.14880 0.423065
\(372\) 0 0
\(373\) −9.70361 −0.502434 −0.251217 0.967931i \(-0.580831\pi\)
−0.251217 + 0.967931i \(0.580831\pi\)
\(374\) 0 0
\(375\) −9.64471 −0.498050
\(376\) 0 0
\(377\) 0.630138 0.0324538
\(378\) 0 0
\(379\) −30.0747 −1.54483 −0.772417 0.635115i \(-0.780953\pi\)
−0.772417 + 0.635115i \(0.780953\pi\)
\(380\) 0 0
\(381\) −1.03594 −0.0530729
\(382\) 0 0
\(383\) 25.4911 1.30253 0.651267 0.758849i \(-0.274238\pi\)
0.651267 + 0.758849i \(0.274238\pi\)
\(384\) 0 0
\(385\) 0.0237770 0.00121179
\(386\) 0 0
\(387\) 9.21463 0.468406
\(388\) 0 0
\(389\) 3.38598 0.171676 0.0858381 0.996309i \(-0.472643\pi\)
0.0858381 + 0.996309i \(0.472643\pi\)
\(390\) 0 0
\(391\) 8.22897 0.416157
\(392\) 0 0
\(393\) −12.3528 −0.623115
\(394\) 0 0
\(395\) 11.4516 0.576190
\(396\) 0 0
\(397\) −8.34551 −0.418849 −0.209425 0.977825i \(-0.567159\pi\)
−0.209425 + 0.977825i \(0.567159\pi\)
\(398\) 0 0
\(399\) −1.24529 −0.0623426
\(400\) 0 0
\(401\) 10.5736 0.528020 0.264010 0.964520i \(-0.414955\pi\)
0.264010 + 0.964520i \(0.414955\pi\)
\(402\) 0 0
\(403\) 2.59447 0.129240
\(404\) 0 0
\(405\) −1.71180 −0.0850602
\(406\) 0 0
\(407\) −0.244074 −0.0120983
\(408\) 0 0
\(409\) −2.72811 −0.134896 −0.0674481 0.997723i \(-0.521486\pi\)
−0.0674481 + 0.997723i \(0.521486\pi\)
\(410\) 0 0
\(411\) 11.6603 0.575159
\(412\) 0 0
\(413\) 7.34565 0.361456
\(414\) 0 0
\(415\) 6.28528 0.308532
\(416\) 0 0
\(417\) −0.877003 −0.0429470
\(418\) 0 0
\(419\) −8.20105 −0.400647 −0.200324 0.979730i \(-0.564199\pi\)
−0.200324 + 0.979730i \(0.564199\pi\)
\(420\) 0 0
\(421\) 24.8388 1.21057 0.605285 0.796009i \(-0.293059\pi\)
0.605285 + 0.796009i \(0.293059\pi\)
\(422\) 0 0
\(423\) −12.7457 −0.619716
\(424\) 0 0
\(425\) 4.25371 0.206335
\(426\) 0 0
\(427\) −0.736541 −0.0356437
\(428\) 0 0
\(429\) −0.0106083 −0.000512172 0
\(430\) 0 0
\(431\) −3.74898 −0.180582 −0.0902909 0.995915i \(-0.528780\pi\)
−0.0902909 + 0.995915i \(0.528780\pi\)
\(432\) 0 0
\(433\) 22.0047 1.05748 0.528739 0.848785i \(-0.322665\pi\)
0.528739 + 0.848785i \(0.322665\pi\)
\(434\) 0 0
\(435\) −2.05582 −0.0985690
\(436\) 0 0
\(437\) 8.49373 0.406310
\(438\) 0 0
\(439\) 1.64364 0.0784466 0.0392233 0.999230i \(-0.487512\pi\)
0.0392233 + 0.999230i \(0.487512\pi\)
\(440\) 0 0
\(441\) −1.54442 −0.0735437
\(442\) 0 0
\(443\) 8.88095 0.421947 0.210973 0.977492i \(-0.432337\pi\)
0.210973 + 0.977492i \(0.432337\pi\)
\(444\) 0 0
\(445\) −6.58548 −0.312182
\(446\) 0 0
\(447\) 15.6595 0.740669
\(448\) 0 0
\(449\) 13.6112 0.642354 0.321177 0.947019i \(-0.395922\pi\)
0.321177 + 0.947019i \(0.395922\pi\)
\(450\) 0 0
\(451\) −0.0994748 −0.00468409
\(452\) 0 0
\(453\) 17.7011 0.831671
\(454\) 0 0
\(455\) −0.275981 −0.0129382
\(456\) 0 0
\(457\) 15.0680 0.704851 0.352426 0.935840i \(-0.385357\pi\)
0.352426 + 0.935840i \(0.385357\pi\)
\(458\) 0 0
\(459\) 5.48273 0.255912
\(460\) 0 0
\(461\) −18.3116 −0.852858 −0.426429 0.904521i \(-0.640229\pi\)
−0.426429 + 0.904521i \(0.640229\pi\)
\(462\) 0 0
\(463\) −25.9548 −1.20622 −0.603112 0.797657i \(-0.706073\pi\)
−0.603112 + 0.797657i \(0.706073\pi\)
\(464\) 0 0
\(465\) −8.46443 −0.392529
\(466\) 0 0
\(467\) 30.5791 1.41503 0.707515 0.706698i \(-0.249816\pi\)
0.707515 + 0.706698i \(0.249816\pi\)
\(468\) 0 0
\(469\) 0.540671 0.0249659
\(470\) 0 0
\(471\) 12.5112 0.576484
\(472\) 0 0
\(473\) −0.164216 −0.00755065
\(474\) 0 0
\(475\) 4.39057 0.201453
\(476\) 0 0
\(477\) −12.5852 −0.576235
\(478\) 0 0
\(479\) −11.8367 −0.540834 −0.270417 0.962743i \(-0.587162\pi\)
−0.270417 + 0.962743i \(0.587162\pi\)
\(480\) 0 0
\(481\) 2.83299 0.129173
\(482\) 0 0
\(483\) −9.92805 −0.451742
\(484\) 0 0
\(485\) 4.33505 0.196844
\(486\) 0 0
\(487\) 5.01077 0.227060 0.113530 0.993535i \(-0.463784\pi\)
0.113530 + 0.993535i \(0.463784\pi\)
\(488\) 0 0
\(489\) 10.2821 0.464971
\(490\) 0 0
\(491\) −24.4346 −1.10272 −0.551360 0.834268i \(-0.685891\pi\)
−0.551360 + 0.834268i \(0.685891\pi\)
\(492\) 0 0
\(493\) 1.97248 0.0888359
\(494\) 0 0
\(495\) −0.0367216 −0.00165051
\(496\) 0 0
\(497\) −1.76097 −0.0789904
\(498\) 0 0
\(499\) 38.2375 1.71175 0.855874 0.517185i \(-0.173020\pi\)
0.855874 + 0.517185i \(0.173020\pi\)
\(500\) 0 0
\(501\) −3.72706 −0.166513
\(502\) 0 0
\(503\) −10.3160 −0.459967 −0.229984 0.973194i \(-0.573867\pi\)
−0.229984 + 0.973194i \(0.573867\pi\)
\(504\) 0 0
\(505\) 0.0569832 0.00253572
\(506\) 0 0
\(507\) −15.5610 −0.691090
\(508\) 0 0
\(509\) −42.6986 −1.89258 −0.946292 0.323315i \(-0.895203\pi\)
−0.946292 + 0.323315i \(0.895203\pi\)
\(510\) 0 0
\(511\) −3.55915 −0.157447
\(512\) 0 0
\(513\) 5.65913 0.249857
\(514\) 0 0
\(515\) 15.8455 0.698235
\(516\) 0 0
\(517\) 0.227143 0.00998975
\(518\) 0 0
\(519\) −15.9565 −0.700414
\(520\) 0 0
\(521\) 21.1453 0.926394 0.463197 0.886255i \(-0.346702\pi\)
0.463197 + 0.886255i \(0.346702\pi\)
\(522\) 0 0
\(523\) −38.1388 −1.66769 −0.833846 0.551998i \(-0.813866\pi\)
−0.833846 + 0.551998i \(0.813866\pi\)
\(524\) 0 0
\(525\) −5.13199 −0.223978
\(526\) 0 0
\(527\) 8.12128 0.353769
\(528\) 0 0
\(529\) 44.7159 1.94417
\(530\) 0 0
\(531\) −11.3447 −0.492320
\(532\) 0 0
\(533\) 1.15461 0.0500117
\(534\) 0 0
\(535\) −10.8893 −0.470787
\(536\) 0 0
\(537\) −3.20970 −0.138509
\(538\) 0 0
\(539\) 0.0275234 0.00118552
\(540\) 0 0
\(541\) 4.57525 0.196705 0.0983526 0.995152i \(-0.468643\pi\)
0.0983526 + 0.995152i \(0.468643\pi\)
\(542\) 0 0
\(543\) 31.9037 1.36912
\(544\) 0 0
\(545\) −1.75969 −0.0753768
\(546\) 0 0
\(547\) 8.53985 0.365138 0.182569 0.983193i \(-0.441559\pi\)
0.182569 + 0.983193i \(0.441559\pi\)
\(548\) 0 0
\(549\) 1.13753 0.0485485
\(550\) 0 0
\(551\) 2.03594 0.0867339
\(552\) 0 0
\(553\) 13.2559 0.563699
\(554\) 0 0
\(555\) −9.24260 −0.392326
\(556\) 0 0
\(557\) 11.7382 0.497365 0.248682 0.968585i \(-0.420002\pi\)
0.248682 + 0.968585i \(0.420002\pi\)
\(558\) 0 0
\(559\) 1.90606 0.0806179
\(560\) 0 0
\(561\) −0.0332063 −0.00140197
\(562\) 0 0
\(563\) −28.1802 −1.18765 −0.593827 0.804592i \(-0.702384\pi\)
−0.593827 + 0.804592i \(0.702384\pi\)
\(564\) 0 0
\(565\) −17.3008 −0.727849
\(566\) 0 0
\(567\) −1.98152 −0.0832162
\(568\) 0 0
\(569\) −27.6547 −1.15934 −0.579672 0.814850i \(-0.696819\pi\)
−0.579672 + 0.814850i \(0.696819\pi\)
\(570\) 0 0
\(571\) 22.2631 0.931682 0.465841 0.884869i \(-0.345752\pi\)
0.465841 + 0.884869i \(0.345752\pi\)
\(572\) 0 0
\(573\) 11.4101 0.476665
\(574\) 0 0
\(575\) 35.0036 1.45975
\(576\) 0 0
\(577\) 20.6422 0.859346 0.429673 0.902985i \(-0.358629\pi\)
0.429673 + 0.902985i \(0.358629\pi\)
\(578\) 0 0
\(579\) −15.5348 −0.645603
\(580\) 0 0
\(581\) 7.27562 0.301844
\(582\) 0 0
\(583\) 0.224283 0.00928883
\(584\) 0 0
\(585\) 0.426230 0.0176224
\(586\) 0 0
\(587\) 3.43818 0.141909 0.0709544 0.997480i \(-0.477396\pi\)
0.0709544 + 0.997480i \(0.477396\pi\)
\(588\) 0 0
\(589\) 8.38257 0.345398
\(590\) 0 0
\(591\) −25.6611 −1.05556
\(592\) 0 0
\(593\) 2.39809 0.0984779 0.0492390 0.998787i \(-0.484320\pi\)
0.0492390 + 0.998787i \(0.484320\pi\)
\(594\) 0 0
\(595\) −0.863883 −0.0354157
\(596\) 0 0
\(597\) −0.224629 −0.00919345
\(598\) 0 0
\(599\) −7.01935 −0.286803 −0.143401 0.989665i \(-0.545804\pi\)
−0.143401 + 0.989665i \(0.545804\pi\)
\(600\) 0 0
\(601\) −22.5322 −0.919109 −0.459555 0.888149i \(-0.651991\pi\)
−0.459555 + 0.888149i \(0.651991\pi\)
\(602\) 0 0
\(603\) −0.835021 −0.0340047
\(604\) 0 0
\(605\) −9.50206 −0.386314
\(606\) 0 0
\(607\) 46.9338 1.90498 0.952492 0.304564i \(-0.0985107\pi\)
0.952492 + 0.304564i \(0.0985107\pi\)
\(608\) 0 0
\(609\) −2.37974 −0.0964321
\(610\) 0 0
\(611\) −2.63647 −0.106660
\(612\) 0 0
\(613\) 40.4369 1.63323 0.816615 0.577183i \(-0.195848\pi\)
0.816615 + 0.577183i \(0.195848\pi\)
\(614\) 0 0
\(615\) −3.76691 −0.151896
\(616\) 0 0
\(617\) −30.4224 −1.22476 −0.612380 0.790563i \(-0.709788\pi\)
−0.612380 + 0.790563i \(0.709788\pi\)
\(618\) 0 0
\(619\) −20.1168 −0.808561 −0.404280 0.914635i \(-0.632478\pi\)
−0.404280 + 0.914635i \(0.632478\pi\)
\(620\) 0 0
\(621\) 45.1172 1.81049
\(622\) 0 0
\(623\) −7.62312 −0.305414
\(624\) 0 0
\(625\) 14.3626 0.574502
\(626\) 0 0
\(627\) −0.0342746 −0.00136880
\(628\) 0 0
\(629\) 8.86790 0.353586
\(630\) 0 0
\(631\) −1.72730 −0.0687627 −0.0343813 0.999409i \(-0.510946\pi\)
−0.0343813 + 0.999409i \(0.510946\pi\)
\(632\) 0 0
\(633\) 19.0971 0.759042
\(634\) 0 0
\(635\) −0.741774 −0.0294364
\(636\) 0 0
\(637\) −0.319466 −0.0126577
\(638\) 0 0
\(639\) 2.71968 0.107589
\(640\) 0 0
\(641\) 49.1915 1.94295 0.971474 0.237146i \(-0.0762120\pi\)
0.971474 + 0.237146i \(0.0762120\pi\)
\(642\) 0 0
\(643\) −31.4107 −1.23872 −0.619358 0.785109i \(-0.712607\pi\)
−0.619358 + 0.785109i \(0.712607\pi\)
\(644\) 0 0
\(645\) −6.21852 −0.244854
\(646\) 0 0
\(647\) −33.6520 −1.32300 −0.661498 0.749947i \(-0.730079\pi\)
−0.661498 + 0.749947i \(0.730079\pi\)
\(648\) 0 0
\(649\) 0.202177 0.00793614
\(650\) 0 0
\(651\) −9.79812 −0.384019
\(652\) 0 0
\(653\) −5.17182 −0.202389 −0.101194 0.994867i \(-0.532266\pi\)
−0.101194 + 0.994867i \(0.532266\pi\)
\(654\) 0 0
\(655\) −8.84506 −0.345605
\(656\) 0 0
\(657\) 5.49681 0.214451
\(658\) 0 0
\(659\) −11.7798 −0.458875 −0.229438 0.973323i \(-0.573689\pi\)
−0.229438 + 0.973323i \(0.573689\pi\)
\(660\) 0 0
\(661\) 11.9276 0.463929 0.231964 0.972724i \(-0.425485\pi\)
0.231964 + 0.972724i \(0.425485\pi\)
\(662\) 0 0
\(663\) 0.385427 0.0149688
\(664\) 0 0
\(665\) −0.891677 −0.0345778
\(666\) 0 0
\(667\) 16.2314 0.628484
\(668\) 0 0
\(669\) 4.86596 0.188129
\(670\) 0 0
\(671\) −0.0202721 −0.000782596 0
\(672\) 0 0
\(673\) −21.6291 −0.833740 −0.416870 0.908966i \(-0.636873\pi\)
−0.416870 + 0.908966i \(0.636873\pi\)
\(674\) 0 0
\(675\) 23.3219 0.897661
\(676\) 0 0
\(677\) −19.0156 −0.730831 −0.365415 0.930845i \(-0.619073\pi\)
−0.365415 + 0.930845i \(0.619073\pi\)
\(678\) 0 0
\(679\) 5.01810 0.192577
\(680\) 0 0
\(681\) −7.99132 −0.306228
\(682\) 0 0
\(683\) −3.82222 −0.146253 −0.0731266 0.997323i \(-0.523298\pi\)
−0.0731266 + 0.997323i \(0.523298\pi\)
\(684\) 0 0
\(685\) 8.34920 0.319007
\(686\) 0 0
\(687\) −29.5030 −1.12561
\(688\) 0 0
\(689\) −2.60326 −0.0991764
\(690\) 0 0
\(691\) 2.56638 0.0976297 0.0488149 0.998808i \(-0.484456\pi\)
0.0488149 + 0.998808i \(0.484456\pi\)
\(692\) 0 0
\(693\) −0.0425076 −0.00161473
\(694\) 0 0
\(695\) −0.627968 −0.0238202
\(696\) 0 0
\(697\) 3.61419 0.136897
\(698\) 0 0
\(699\) −7.37838 −0.279076
\(700\) 0 0
\(701\) 26.1915 0.989239 0.494620 0.869110i \(-0.335307\pi\)
0.494620 + 0.869110i \(0.335307\pi\)
\(702\) 0 0
\(703\) 9.15322 0.345220
\(704\) 0 0
\(705\) 8.60145 0.323949
\(706\) 0 0
\(707\) 0.0659618 0.00248075
\(708\) 0 0
\(709\) −45.1855 −1.69698 −0.848489 0.529212i \(-0.822487\pi\)
−0.848489 + 0.529212i \(0.822487\pi\)
\(710\) 0 0
\(711\) −20.4727 −0.767785
\(712\) 0 0
\(713\) 66.8298 2.50279
\(714\) 0 0
\(715\) −0.00759592 −0.000284071 0
\(716\) 0 0
\(717\) 25.1776 0.940273
\(718\) 0 0
\(719\) −47.8520 −1.78458 −0.892290 0.451463i \(-0.850902\pi\)
−0.892290 + 0.451463i \(0.850902\pi\)
\(720\) 0 0
\(721\) 18.3422 0.683098
\(722\) 0 0
\(723\) 23.5660 0.876427
\(724\) 0 0
\(725\) 8.39034 0.311609
\(726\) 0 0
\(727\) −0.509972 −0.0189138 −0.00945690 0.999955i \(-0.503010\pi\)
−0.00945690 + 0.999955i \(0.503010\pi\)
\(728\) 0 0
\(729\) 22.9046 0.848319
\(730\) 0 0
\(731\) 5.96641 0.220676
\(732\) 0 0
\(733\) 37.5811 1.38809 0.694045 0.719932i \(-0.255827\pi\)
0.694045 + 0.719932i \(0.255827\pi\)
\(734\) 0 0
\(735\) 1.04225 0.0384441
\(736\) 0 0
\(737\) 0.0148811 0.000548152 0
\(738\) 0 0
\(739\) −5.34764 −0.196716 −0.0983581 0.995151i \(-0.531359\pi\)
−0.0983581 + 0.995151i \(0.531359\pi\)
\(740\) 0 0
\(741\) 0.397828 0.0146146
\(742\) 0 0
\(743\) 28.6060 1.04945 0.524727 0.851271i \(-0.324167\pi\)
0.524727 + 0.851271i \(0.324167\pi\)
\(744\) 0 0
\(745\) 11.2128 0.410806
\(746\) 0 0
\(747\) −11.2366 −0.411125
\(748\) 0 0
\(749\) −12.6051 −0.460580
\(750\) 0 0
\(751\) 32.3236 1.17950 0.589752 0.807584i \(-0.299225\pi\)
0.589752 + 0.807584i \(0.299225\pi\)
\(752\) 0 0
\(753\) −20.5965 −0.750576
\(754\) 0 0
\(755\) 12.6747 0.461279
\(756\) 0 0
\(757\) 9.95916 0.361972 0.180986 0.983486i \(-0.442071\pi\)
0.180986 + 0.983486i \(0.442071\pi\)
\(758\) 0 0
\(759\) −0.273253 −0.00991847
\(760\) 0 0
\(761\) 47.4810 1.72119 0.860593 0.509293i \(-0.170093\pi\)
0.860593 + 0.509293i \(0.170093\pi\)
\(762\) 0 0
\(763\) −2.03695 −0.0737426
\(764\) 0 0
\(765\) 1.33420 0.0482379
\(766\) 0 0
\(767\) −2.34668 −0.0847338
\(768\) 0 0
\(769\) 54.7024 1.97262 0.986310 0.164901i \(-0.0527305\pi\)
0.986310 + 0.164901i \(0.0527305\pi\)
\(770\) 0 0
\(771\) −11.3678 −0.409401
\(772\) 0 0
\(773\) −13.0118 −0.468001 −0.234000 0.972237i \(-0.575182\pi\)
−0.234000 + 0.972237i \(0.575182\pi\)
\(774\) 0 0
\(775\) 34.5455 1.24091
\(776\) 0 0
\(777\) −10.6989 −0.383821
\(778\) 0 0
\(779\) 3.73048 0.133658
\(780\) 0 0
\(781\) −0.0484679 −0.00173432
\(782\) 0 0
\(783\) 10.8146 0.386481
\(784\) 0 0
\(785\) 8.95847 0.319742
\(786\) 0 0
\(787\) −18.4700 −0.658385 −0.329193 0.944263i \(-0.606777\pi\)
−0.329193 + 0.944263i \(0.606777\pi\)
\(788\) 0 0
\(789\) 20.7492 0.738690
\(790\) 0 0
\(791\) −20.0268 −0.712070
\(792\) 0 0
\(793\) 0.235300 0.00835573
\(794\) 0 0
\(795\) 8.49312 0.301220
\(796\) 0 0
\(797\) −34.8265 −1.23362 −0.616809 0.787113i \(-0.711575\pi\)
−0.616809 + 0.787113i \(0.711575\pi\)
\(798\) 0 0
\(799\) −8.25275 −0.291961
\(800\) 0 0
\(801\) 11.7733 0.415988
\(802\) 0 0
\(803\) −0.0979597 −0.00345692
\(804\) 0 0
\(805\) −7.10887 −0.250555
\(806\) 0 0
\(807\) −15.4918 −0.545338
\(808\) 0 0
\(809\) −26.3022 −0.924737 −0.462369 0.886688i \(-0.653000\pi\)
−0.462369 + 0.886688i \(0.653000\pi\)
\(810\) 0 0
\(811\) −47.8836 −1.68142 −0.840710 0.541486i \(-0.817862\pi\)
−0.840710 + 0.541486i \(0.817862\pi\)
\(812\) 0 0
\(813\) 6.79332 0.238252
\(814\) 0 0
\(815\) 7.36235 0.257892
\(816\) 0 0
\(817\) 6.15838 0.215454
\(818\) 0 0
\(819\) 0.493388 0.0172404
\(820\) 0 0
\(821\) −30.1712 −1.05298 −0.526492 0.850180i \(-0.676493\pi\)
−0.526492 + 0.850180i \(0.676493\pi\)
\(822\) 0 0
\(823\) 34.0486 1.18686 0.593430 0.804886i \(-0.297773\pi\)
0.593430 + 0.804886i \(0.297773\pi\)
\(824\) 0 0
\(825\) −0.141250 −0.00491768
\(826\) 0 0
\(827\) −38.4326 −1.33643 −0.668217 0.743966i \(-0.732942\pi\)
−0.668217 + 0.743966i \(0.732942\pi\)
\(828\) 0 0
\(829\) 1.28720 0.0447063 0.0223531 0.999750i \(-0.492884\pi\)
0.0223531 + 0.999750i \(0.492884\pi\)
\(830\) 0 0
\(831\) −38.4159 −1.33263
\(832\) 0 0
\(833\) −1.00000 −0.0346479
\(834\) 0 0
\(835\) −2.66872 −0.0923548
\(836\) 0 0
\(837\) 44.5268 1.53907
\(838\) 0 0
\(839\) −52.6767 −1.81860 −0.909301 0.416138i \(-0.863383\pi\)
−0.909301 + 0.416138i \(0.863383\pi\)
\(840\) 0 0
\(841\) −25.1093 −0.865839
\(842\) 0 0
\(843\) −13.0059 −0.447948
\(844\) 0 0
\(845\) −11.1423 −0.383307
\(846\) 0 0
\(847\) −10.9992 −0.377938
\(848\) 0 0
\(849\) −15.7186 −0.539460
\(850\) 0 0
\(851\) 72.9737 2.50151
\(852\) 0 0
\(853\) −17.7304 −0.607079 −0.303539 0.952819i \(-0.598168\pi\)
−0.303539 + 0.952819i \(0.598168\pi\)
\(854\) 0 0
\(855\) 1.37712 0.0470966
\(856\) 0 0
\(857\) 16.7675 0.572766 0.286383 0.958115i \(-0.407547\pi\)
0.286383 + 0.958115i \(0.407547\pi\)
\(858\) 0 0
\(859\) −16.5719 −0.565424 −0.282712 0.959205i \(-0.591234\pi\)
−0.282712 + 0.959205i \(0.591234\pi\)
\(860\) 0 0
\(861\) −4.36044 −0.148603
\(862\) 0 0
\(863\) −16.3388 −0.556178 −0.278089 0.960555i \(-0.589701\pi\)
−0.278089 + 0.960555i \(0.589701\pi\)
\(864\) 0 0
\(865\) −11.4255 −0.388479
\(866\) 0 0
\(867\) 1.20648 0.0409741
\(868\) 0 0
\(869\) 0.364847 0.0123766
\(870\) 0 0
\(871\) −0.172726 −0.00585259
\(872\) 0 0
\(873\) −7.75004 −0.262299
\(874\) 0 0
\(875\) −7.99412 −0.270251
\(876\) 0 0
\(877\) 43.1610 1.45744 0.728722 0.684810i \(-0.240115\pi\)
0.728722 + 0.684810i \(0.240115\pi\)
\(878\) 0 0
\(879\) 27.7722 0.936733
\(880\) 0 0
\(881\) 14.0920 0.474770 0.237385 0.971416i \(-0.423710\pi\)
0.237385 + 0.971416i \(0.423710\pi\)
\(882\) 0 0
\(883\) −5.71528 −0.192334 −0.0961672 0.995365i \(-0.530658\pi\)
−0.0961672 + 0.995365i \(0.530658\pi\)
\(884\) 0 0
\(885\) 7.65603 0.257355
\(886\) 0 0
\(887\) 32.1785 1.08045 0.540225 0.841521i \(-0.318339\pi\)
0.540225 + 0.841521i \(0.318339\pi\)
\(888\) 0 0
\(889\) −0.858651 −0.0287982
\(890\) 0 0
\(891\) −0.0545382 −0.00182710
\(892\) 0 0
\(893\) −8.51827 −0.285053
\(894\) 0 0
\(895\) −2.29827 −0.0768226
\(896\) 0 0
\(897\) 3.17167 0.105899
\(898\) 0 0
\(899\) 16.0190 0.534265
\(900\) 0 0
\(901\) −8.14880 −0.271476
\(902\) 0 0
\(903\) −7.19833 −0.239546
\(904\) 0 0
\(905\) 22.8442 0.759368
\(906\) 0 0
\(907\) 44.9177 1.49147 0.745734 0.666244i \(-0.232099\pi\)
0.745734 + 0.666244i \(0.232099\pi\)
\(908\) 0 0
\(909\) −0.101872 −0.00337890
\(910\) 0 0
\(911\) 12.4730 0.413250 0.206625 0.978420i \(-0.433752\pi\)
0.206625 + 0.978420i \(0.433752\pi\)
\(912\) 0 0
\(913\) 0.200250 0.00662729
\(914\) 0 0
\(915\) −0.767663 −0.0253781
\(916\) 0 0
\(917\) −10.2387 −0.338112
\(918\) 0 0
\(919\) 11.1290 0.367113 0.183557 0.983009i \(-0.441239\pi\)
0.183557 + 0.983009i \(0.441239\pi\)
\(920\) 0 0
\(921\) −24.4001 −0.804010
\(922\) 0 0
\(923\) 0.562570 0.0185172
\(924\) 0 0
\(925\) 37.7214 1.24027
\(926\) 0 0
\(927\) −28.3280 −0.930412
\(928\) 0 0
\(929\) −25.6400 −0.841221 −0.420610 0.907241i \(-0.638184\pi\)
−0.420610 + 0.907241i \(0.638184\pi\)
\(930\) 0 0
\(931\) −1.03217 −0.0338281
\(932\) 0 0
\(933\) 20.6141 0.674876
\(934\) 0 0
\(935\) −0.0237770 −0.000777590 0
\(936\) 0 0
\(937\) 28.1337 0.919089 0.459545 0.888155i \(-0.348013\pi\)
0.459545 + 0.888155i \(0.348013\pi\)
\(938\) 0 0
\(939\) 27.8266 0.908087
\(940\) 0 0
\(941\) −14.4410 −0.470762 −0.235381 0.971903i \(-0.575634\pi\)
−0.235381 + 0.971903i \(0.575634\pi\)
\(942\) 0 0
\(943\) 29.7411 0.968503
\(944\) 0 0
\(945\) −4.73643 −0.154076
\(946\) 0 0
\(947\) 43.8291 1.42426 0.712128 0.702050i \(-0.247732\pi\)
0.712128 + 0.702050i \(0.247732\pi\)
\(948\) 0 0
\(949\) 1.13702 0.0369094
\(950\) 0 0
\(951\) −36.5578 −1.18547
\(952\) 0 0
\(953\) −57.7440 −1.87051 −0.935257 0.353971i \(-0.884831\pi\)
−0.935257 + 0.353971i \(0.884831\pi\)
\(954\) 0 0
\(955\) 8.17009 0.264378
\(956\) 0 0
\(957\) −0.0654986 −0.00211727
\(958\) 0 0
\(959\) 9.66474 0.312091
\(960\) 0 0
\(961\) 34.9552 1.12759
\(962\) 0 0
\(963\) 19.4675 0.627332
\(964\) 0 0
\(965\) −11.1235 −0.358078
\(966\) 0 0
\(967\) −13.9404 −0.448294 −0.224147 0.974555i \(-0.571960\pi\)
−0.224147 + 0.974555i \(0.571960\pi\)
\(968\) 0 0
\(969\) 1.24529 0.0400046
\(970\) 0 0
\(971\) 6.31724 0.202730 0.101365 0.994849i \(-0.467679\pi\)
0.101365 + 0.994849i \(0.467679\pi\)
\(972\) 0 0
\(973\) −0.726913 −0.0233038
\(974\) 0 0
\(975\) 1.63949 0.0525059
\(976\) 0 0
\(977\) −39.5447 −1.26515 −0.632573 0.774501i \(-0.718001\pi\)
−0.632573 + 0.774501i \(0.718001\pi\)
\(978\) 0 0
\(979\) −0.209814 −0.00670568
\(980\) 0 0
\(981\) 3.14590 0.100441
\(982\) 0 0
\(983\) −33.0799 −1.05508 −0.527542 0.849529i \(-0.676886\pi\)
−0.527542 + 0.849529i \(0.676886\pi\)
\(984\) 0 0
\(985\) −18.3744 −0.585456
\(986\) 0 0
\(987\) 9.95673 0.316926
\(988\) 0 0
\(989\) 49.0974 1.56121
\(990\) 0 0
\(991\) 23.6516 0.751316 0.375658 0.926758i \(-0.377417\pi\)
0.375658 + 0.926758i \(0.377417\pi\)
\(992\) 0 0
\(993\) −24.3622 −0.773111
\(994\) 0 0
\(995\) −0.160843 −0.00509906
\(996\) 0 0
\(997\) 39.7065 1.25752 0.628759 0.777601i \(-0.283563\pi\)
0.628759 + 0.777601i \(0.283563\pi\)
\(998\) 0 0
\(999\) 48.6203 1.53828
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 3808.2.a.i.1.5 6
4.3 odd 2 3808.2.a.m.1.2 yes 6
8.3 odd 2 7616.2.a.bx.1.5 6
8.5 even 2 7616.2.a.cb.1.2 6
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
3808.2.a.i.1.5 6 1.1 even 1 trivial
3808.2.a.m.1.2 yes 6 4.3 odd 2
7616.2.a.bx.1.5 6 8.3 odd 2
7616.2.a.cb.1.2 6 8.5 even 2