Properties

Label 3808.2.a.i.1.4
Level $3808$
Weight $2$
Character 3808.1
Self dual yes
Analytic conductor $30.407$
Analytic rank $1$
Dimension $6$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [3808,2,Mod(1,3808)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(3808, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("3808.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 3808 = 2^{5} \cdot 7 \cdot 17 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 3808.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(30.4070330897\)
Analytic rank: \(1\)
Dimension: \(6\)
Coefficient field: 6.6.80686992.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{6} - x^{5} - 10x^{4} + 15x^{3} + 8x^{2} - 15x + 3 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 2 \)
Twist minimal: yes
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.4
Root \(0.856749\) of defining polynomial
Character \(\chi\) \(=\) 3808.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+0.601565 q^{3} -4.19936 q^{5} +1.00000 q^{7} -2.63812 q^{9} +2.71475 q^{11} +5.83748 q^{13} -2.52619 q^{15} -1.00000 q^{17} -6.47912 q^{19} +0.601565 q^{21} -3.86701 q^{23} +12.6346 q^{25} -3.39169 q^{27} +0.714752 q^{29} +9.96821 q^{31} +1.63310 q^{33} -4.19936 q^{35} +7.80796 q^{37} +3.51162 q^{39} -3.82668 q^{41} -0.681963 q^{43} +11.0784 q^{45} -7.53322 q^{47} +1.00000 q^{49} -0.601565 q^{51} -7.25346 q^{53} -11.4002 q^{55} -3.89761 q^{57} +1.29375 q^{59} -11.1656 q^{61} -2.63812 q^{63} -24.5137 q^{65} -12.4769 q^{67} -2.32625 q^{69} +6.76563 q^{71} +1.60282 q^{73} +7.60055 q^{75} +2.71475 q^{77} +16.3681 q^{79} +5.87404 q^{81} -8.58284 q^{83} +4.19936 q^{85} +0.429969 q^{87} -9.67049 q^{89} +5.83748 q^{91} +5.99652 q^{93} +27.2082 q^{95} +9.18910 q^{97} -7.16184 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 6 q - 2 q^{3} - 6 q^{5} + 6 q^{7} + 4 q^{9} - 2 q^{11} - 4 q^{13} + 2 q^{15} - 6 q^{17} - 10 q^{19} - 2 q^{21} + 4 q^{23} + 4 q^{25} - 8 q^{27} - 14 q^{29} + 8 q^{31} - 8 q^{33} - 6 q^{35} - 4 q^{37} + 14 q^{39}+ \cdots - 4 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0.601565 0.347313 0.173657 0.984806i \(-0.444442\pi\)
0.173657 + 0.984806i \(0.444442\pi\)
\(4\) 0 0
\(5\) −4.19936 −1.87801 −0.939006 0.343901i \(-0.888252\pi\)
−0.939006 + 0.343901i \(0.888252\pi\)
\(6\) 0 0
\(7\) 1.00000 0.377964
\(8\) 0 0
\(9\) −2.63812 −0.879373
\(10\) 0 0
\(11\) 2.71475 0.818528 0.409264 0.912416i \(-0.365785\pi\)
0.409264 + 0.912416i \(0.365785\pi\)
\(12\) 0 0
\(13\) 5.83748 1.61903 0.809513 0.587102i \(-0.199731\pi\)
0.809513 + 0.587102i \(0.199731\pi\)
\(14\) 0 0
\(15\) −2.52619 −0.652259
\(16\) 0 0
\(17\) −1.00000 −0.242536
\(18\) 0 0
\(19\) −6.47912 −1.48641 −0.743206 0.669062i \(-0.766696\pi\)
−0.743206 + 0.669062i \(0.766696\pi\)
\(20\) 0 0
\(21\) 0.601565 0.131272
\(22\) 0 0
\(23\) −3.86701 −0.806327 −0.403163 0.915128i \(-0.632089\pi\)
−0.403163 + 0.915128i \(0.632089\pi\)
\(24\) 0 0
\(25\) 12.6346 2.52693
\(26\) 0 0
\(27\) −3.39169 −0.652732
\(28\) 0 0
\(29\) 0.714752 0.132726 0.0663630 0.997796i \(-0.478860\pi\)
0.0663630 + 0.997796i \(0.478860\pi\)
\(30\) 0 0
\(31\) 9.96821 1.79034 0.895172 0.445722i \(-0.147053\pi\)
0.895172 + 0.445722i \(0.147053\pi\)
\(32\) 0 0
\(33\) 1.63310 0.284286
\(34\) 0 0
\(35\) −4.19936 −0.709822
\(36\) 0 0
\(37\) 7.80796 1.28362 0.641810 0.766864i \(-0.278184\pi\)
0.641810 + 0.766864i \(0.278184\pi\)
\(38\) 0 0
\(39\) 3.51162 0.562310
\(40\) 0 0
\(41\) −3.82668 −0.597628 −0.298814 0.954311i \(-0.596591\pi\)
−0.298814 + 0.954311i \(0.596591\pi\)
\(42\) 0 0
\(43\) −0.681963 −0.103998 −0.0519992 0.998647i \(-0.516559\pi\)
−0.0519992 + 0.998647i \(0.516559\pi\)
\(44\) 0 0
\(45\) 11.0784 1.65147
\(46\) 0 0
\(47\) −7.53322 −1.09883 −0.549416 0.835549i \(-0.685150\pi\)
−0.549416 + 0.835549i \(0.685150\pi\)
\(48\) 0 0
\(49\) 1.00000 0.142857
\(50\) 0 0
\(51\) −0.601565 −0.0842359
\(52\) 0 0
\(53\) −7.25346 −0.996339 −0.498170 0.867080i \(-0.665994\pi\)
−0.498170 + 0.867080i \(0.665994\pi\)
\(54\) 0 0
\(55\) −11.4002 −1.53721
\(56\) 0 0
\(57\) −3.89761 −0.516251
\(58\) 0 0
\(59\) 1.29375 0.168433 0.0842163 0.996448i \(-0.473161\pi\)
0.0842163 + 0.996448i \(0.473161\pi\)
\(60\) 0 0
\(61\) −11.1656 −1.42960 −0.714802 0.699327i \(-0.753483\pi\)
−0.714802 + 0.699327i \(0.753483\pi\)
\(62\) 0 0
\(63\) −2.63812 −0.332372
\(64\) 0 0
\(65\) −24.5137 −3.04055
\(66\) 0 0
\(67\) −12.4769 −1.52429 −0.762145 0.647406i \(-0.775854\pi\)
−0.762145 + 0.647406i \(0.775854\pi\)
\(68\) 0 0
\(69\) −2.32625 −0.280048
\(70\) 0 0
\(71\) 6.76563 0.802932 0.401466 0.915874i \(-0.368501\pi\)
0.401466 + 0.915874i \(0.368501\pi\)
\(72\) 0 0
\(73\) 1.60282 0.187596 0.0937979 0.995591i \(-0.470099\pi\)
0.0937979 + 0.995591i \(0.470099\pi\)
\(74\) 0 0
\(75\) 7.60055 0.877636
\(76\) 0 0
\(77\) 2.71475 0.309375
\(78\) 0 0
\(79\) 16.3681 1.84156 0.920779 0.390085i \(-0.127555\pi\)
0.920779 + 0.390085i \(0.127555\pi\)
\(80\) 0 0
\(81\) 5.87404 0.652671
\(82\) 0 0
\(83\) −8.58284 −0.942089 −0.471044 0.882109i \(-0.656123\pi\)
−0.471044 + 0.882109i \(0.656123\pi\)
\(84\) 0 0
\(85\) 4.19936 0.455485
\(86\) 0 0
\(87\) 0.429969 0.0460975
\(88\) 0 0
\(89\) −9.67049 −1.02507 −0.512535 0.858666i \(-0.671293\pi\)
−0.512535 + 0.858666i \(0.671293\pi\)
\(90\) 0 0
\(91\) 5.83748 0.611934
\(92\) 0 0
\(93\) 5.99652 0.621810
\(94\) 0 0
\(95\) 27.2082 2.79150
\(96\) 0 0
\(97\) 9.18910 0.933012 0.466506 0.884518i \(-0.345513\pi\)
0.466506 + 0.884518i \(0.345513\pi\)
\(98\) 0 0
\(99\) −7.16184 −0.719792
\(100\) 0 0
\(101\) 2.32586 0.231432 0.115716 0.993282i \(-0.463084\pi\)
0.115716 + 0.993282i \(0.463084\pi\)
\(102\) 0 0
\(103\) −0.0433398 −0.00427039 −0.00213520 0.999998i \(-0.500680\pi\)
−0.00213520 + 0.999998i \(0.500680\pi\)
\(104\) 0 0
\(105\) −2.52619 −0.246531
\(106\) 0 0
\(107\) 1.17336 0.113433 0.0567164 0.998390i \(-0.481937\pi\)
0.0567164 + 0.998390i \(0.481937\pi\)
\(108\) 0 0
\(109\) −17.7481 −1.69996 −0.849979 0.526817i \(-0.823385\pi\)
−0.849979 + 0.526817i \(0.823385\pi\)
\(110\) 0 0
\(111\) 4.69699 0.445819
\(112\) 0 0
\(113\) −15.3449 −1.44352 −0.721762 0.692141i \(-0.756668\pi\)
−0.721762 + 0.692141i \(0.756668\pi\)
\(114\) 0 0
\(115\) 16.2390 1.51429
\(116\) 0 0
\(117\) −15.4000 −1.42373
\(118\) 0 0
\(119\) −1.00000 −0.0916698
\(120\) 0 0
\(121\) −3.63012 −0.330011
\(122\) 0 0
\(123\) −2.30200 −0.207564
\(124\) 0 0
\(125\) −32.0606 −2.86759
\(126\) 0 0
\(127\) 2.17737 0.193210 0.0966052 0.995323i \(-0.469202\pi\)
0.0966052 + 0.995323i \(0.469202\pi\)
\(128\) 0 0
\(129\) −0.410245 −0.0361201
\(130\) 0 0
\(131\) −12.3361 −1.07781 −0.538904 0.842367i \(-0.681162\pi\)
−0.538904 + 0.842367i \(0.681162\pi\)
\(132\) 0 0
\(133\) −6.47912 −0.561811
\(134\) 0 0
\(135\) 14.2429 1.22584
\(136\) 0 0
\(137\) −6.22867 −0.532151 −0.266075 0.963952i \(-0.585727\pi\)
−0.266075 + 0.963952i \(0.585727\pi\)
\(138\) 0 0
\(139\) −21.1112 −1.79063 −0.895315 0.445434i \(-0.853049\pi\)
−0.895315 + 0.445434i \(0.853049\pi\)
\(140\) 0 0
\(141\) −4.53172 −0.381639
\(142\) 0 0
\(143\) 15.8473 1.32522
\(144\) 0 0
\(145\) −3.00150 −0.249261
\(146\) 0 0
\(147\) 0.601565 0.0496162
\(148\) 0 0
\(149\) −11.8305 −0.969194 −0.484597 0.874738i \(-0.661034\pi\)
−0.484597 + 0.874738i \(0.661034\pi\)
\(150\) 0 0
\(151\) 0.273196 0.0222324 0.0111162 0.999938i \(-0.496462\pi\)
0.0111162 + 0.999938i \(0.496462\pi\)
\(152\) 0 0
\(153\) 2.63812 0.213279
\(154\) 0 0
\(155\) −41.8601 −3.36229
\(156\) 0 0
\(157\) −11.8928 −0.949151 −0.474576 0.880215i \(-0.657398\pi\)
−0.474576 + 0.880215i \(0.657398\pi\)
\(158\) 0 0
\(159\) −4.36342 −0.346042
\(160\) 0 0
\(161\) −3.86701 −0.304763
\(162\) 0 0
\(163\) −20.8222 −1.63092 −0.815460 0.578813i \(-0.803516\pi\)
−0.815460 + 0.578813i \(0.803516\pi\)
\(164\) 0 0
\(165\) −6.85797 −0.533892
\(166\) 0 0
\(167\) −8.96118 −0.693437 −0.346718 0.937969i \(-0.612704\pi\)
−0.346718 + 0.937969i \(0.612704\pi\)
\(168\) 0 0
\(169\) 21.0762 1.62125
\(170\) 0 0
\(171\) 17.0927 1.30711
\(172\) 0 0
\(173\) 20.2835 1.54213 0.771063 0.636758i \(-0.219725\pi\)
0.771063 + 0.636758i \(0.219725\pi\)
\(174\) 0 0
\(175\) 12.6346 0.955089
\(176\) 0 0
\(177\) 0.778277 0.0584989
\(178\) 0 0
\(179\) 9.56350 0.714809 0.357405 0.933950i \(-0.383662\pi\)
0.357405 + 0.933950i \(0.383662\pi\)
\(180\) 0 0
\(181\) −10.2199 −0.759641 −0.379820 0.925060i \(-0.624014\pi\)
−0.379820 + 0.925060i \(0.624014\pi\)
\(182\) 0 0
\(183\) −6.71681 −0.496521
\(184\) 0 0
\(185\) −32.7884 −2.41065
\(186\) 0 0
\(187\) −2.71475 −0.198522
\(188\) 0 0
\(189\) −3.39169 −0.246709
\(190\) 0 0
\(191\) 24.6797 1.78576 0.892880 0.450294i \(-0.148681\pi\)
0.892880 + 0.450294i \(0.148681\pi\)
\(192\) 0 0
\(193\) −18.7981 −1.35312 −0.676558 0.736389i \(-0.736529\pi\)
−0.676558 + 0.736389i \(0.736529\pi\)
\(194\) 0 0
\(195\) −14.7466 −1.05602
\(196\) 0 0
\(197\) 7.43530 0.529744 0.264872 0.964284i \(-0.414670\pi\)
0.264872 + 0.964284i \(0.414670\pi\)
\(198\) 0 0
\(199\) −23.3389 −1.65445 −0.827225 0.561871i \(-0.810082\pi\)
−0.827225 + 0.561871i \(0.810082\pi\)
\(200\) 0 0
\(201\) −7.50564 −0.529407
\(202\) 0 0
\(203\) 0.714752 0.0501657
\(204\) 0 0
\(205\) 16.0696 1.12235
\(206\) 0 0
\(207\) 10.2016 0.709062
\(208\) 0 0
\(209\) −17.5892 −1.21667
\(210\) 0 0
\(211\) −26.5094 −1.82498 −0.912492 0.409095i \(-0.865845\pi\)
−0.912492 + 0.409095i \(0.865845\pi\)
\(212\) 0 0
\(213\) 4.06996 0.278869
\(214\) 0 0
\(215\) 2.86381 0.195310
\(216\) 0 0
\(217\) 9.96821 0.676686
\(218\) 0 0
\(219\) 0.964199 0.0651545
\(220\) 0 0
\(221\) −5.83748 −0.392672
\(222\) 0 0
\(223\) 5.63310 0.377220 0.188610 0.982052i \(-0.439602\pi\)
0.188610 + 0.982052i \(0.439602\pi\)
\(224\) 0 0
\(225\) −33.3317 −2.22211
\(226\) 0 0
\(227\) −2.60774 −0.173081 −0.0865407 0.996248i \(-0.527581\pi\)
−0.0865407 + 0.996248i \(0.527581\pi\)
\(228\) 0 0
\(229\) −8.18328 −0.540766 −0.270383 0.962753i \(-0.587150\pi\)
−0.270383 + 0.962753i \(0.587150\pi\)
\(230\) 0 0
\(231\) 1.63310 0.107450
\(232\) 0 0
\(233\) −8.27277 −0.541967 −0.270984 0.962584i \(-0.587349\pi\)
−0.270984 + 0.962584i \(0.587349\pi\)
\(234\) 0 0
\(235\) 31.6347 2.06362
\(236\) 0 0
\(237\) 9.84648 0.639598
\(238\) 0 0
\(239\) −9.06562 −0.586406 −0.293203 0.956050i \(-0.594721\pi\)
−0.293203 + 0.956050i \(0.594721\pi\)
\(240\) 0 0
\(241\) −2.34859 −0.151286 −0.0756431 0.997135i \(-0.524101\pi\)
−0.0756431 + 0.997135i \(0.524101\pi\)
\(242\) 0 0
\(243\) 13.7087 0.879413
\(244\) 0 0
\(245\) −4.19936 −0.268287
\(246\) 0 0
\(247\) −37.8218 −2.40654
\(248\) 0 0
\(249\) −5.16313 −0.327200
\(250\) 0 0
\(251\) 15.4228 0.973478 0.486739 0.873547i \(-0.338186\pi\)
0.486739 + 0.873547i \(0.338186\pi\)
\(252\) 0 0
\(253\) −10.4980 −0.660001
\(254\) 0 0
\(255\) 2.52619 0.158196
\(256\) 0 0
\(257\) 12.4305 0.775396 0.387698 0.921786i \(-0.373270\pi\)
0.387698 + 0.921786i \(0.373270\pi\)
\(258\) 0 0
\(259\) 7.80796 0.485163
\(260\) 0 0
\(261\) −1.88560 −0.116716
\(262\) 0 0
\(263\) 22.7654 1.40377 0.701886 0.712289i \(-0.252341\pi\)
0.701886 + 0.712289i \(0.252341\pi\)
\(264\) 0 0
\(265\) 30.4599 1.87114
\(266\) 0 0
\(267\) −5.81742 −0.356021
\(268\) 0 0
\(269\) −21.4176 −1.30585 −0.652927 0.757421i \(-0.726459\pi\)
−0.652927 + 0.757421i \(0.726459\pi\)
\(270\) 0 0
\(271\) 4.38599 0.266430 0.133215 0.991087i \(-0.457470\pi\)
0.133215 + 0.991087i \(0.457470\pi\)
\(272\) 0 0
\(273\) 3.51162 0.212533
\(274\) 0 0
\(275\) 34.2999 2.06836
\(276\) 0 0
\(277\) 12.2418 0.735536 0.367768 0.929918i \(-0.380122\pi\)
0.367768 + 0.929918i \(0.380122\pi\)
\(278\) 0 0
\(279\) −26.2973 −1.57438
\(280\) 0 0
\(281\) 10.6538 0.635554 0.317777 0.948165i \(-0.397064\pi\)
0.317777 + 0.948165i \(0.397064\pi\)
\(282\) 0 0
\(283\) 7.29060 0.433381 0.216691 0.976240i \(-0.430474\pi\)
0.216691 + 0.976240i \(0.430474\pi\)
\(284\) 0 0
\(285\) 16.3675 0.969526
\(286\) 0 0
\(287\) −3.82668 −0.225882
\(288\) 0 0
\(289\) 1.00000 0.0588235
\(290\) 0 0
\(291\) 5.52784 0.324048
\(292\) 0 0
\(293\) 15.9027 0.929044 0.464522 0.885562i \(-0.346226\pi\)
0.464522 + 0.885562i \(0.346226\pi\)
\(294\) 0 0
\(295\) −5.43294 −0.316318
\(296\) 0 0
\(297\) −9.20761 −0.534279
\(298\) 0 0
\(299\) −22.5736 −1.30546
\(300\) 0 0
\(301\) −0.681963 −0.0393077
\(302\) 0 0
\(303\) 1.39915 0.0803793
\(304\) 0 0
\(305\) 46.8882 2.68481
\(306\) 0 0
\(307\) 33.5581 1.91526 0.957632 0.287994i \(-0.0929882\pi\)
0.957632 + 0.287994i \(0.0929882\pi\)
\(308\) 0 0
\(309\) −0.0260717 −0.00148317
\(310\) 0 0
\(311\) −26.5609 −1.50613 −0.753065 0.657947i \(-0.771425\pi\)
−0.753065 + 0.657947i \(0.771425\pi\)
\(312\) 0 0
\(313\) −24.3573 −1.37676 −0.688378 0.725353i \(-0.741677\pi\)
−0.688378 + 0.725353i \(0.741677\pi\)
\(314\) 0 0
\(315\) 11.0784 0.624198
\(316\) 0 0
\(317\) −13.6081 −0.764305 −0.382152 0.924099i \(-0.624817\pi\)
−0.382152 + 0.924099i \(0.624817\pi\)
\(318\) 0 0
\(319\) 1.94037 0.108640
\(320\) 0 0
\(321\) 0.705851 0.0393967
\(322\) 0 0
\(323\) 6.47912 0.360508
\(324\) 0 0
\(325\) 73.7545 4.09116
\(326\) 0 0
\(327\) −10.6766 −0.590418
\(328\) 0 0
\(329\) −7.53322 −0.415320
\(330\) 0 0
\(331\) 17.1597 0.943184 0.471592 0.881817i \(-0.343680\pi\)
0.471592 + 0.881817i \(0.343680\pi\)
\(332\) 0 0
\(333\) −20.5983 −1.12878
\(334\) 0 0
\(335\) 52.3948 2.86264
\(336\) 0 0
\(337\) 17.1331 0.933300 0.466650 0.884442i \(-0.345461\pi\)
0.466650 + 0.884442i \(0.345461\pi\)
\(338\) 0 0
\(339\) −9.23093 −0.501355
\(340\) 0 0
\(341\) 27.0612 1.46545
\(342\) 0 0
\(343\) 1.00000 0.0539949
\(344\) 0 0
\(345\) 9.76878 0.525934
\(346\) 0 0
\(347\) 13.2188 0.709621 0.354811 0.934938i \(-0.384545\pi\)
0.354811 + 0.934938i \(0.384545\pi\)
\(348\) 0 0
\(349\) −10.9389 −0.585544 −0.292772 0.956182i \(-0.594578\pi\)
−0.292772 + 0.956182i \(0.594578\pi\)
\(350\) 0 0
\(351\) −19.7989 −1.05679
\(352\) 0 0
\(353\) −15.4555 −0.822615 −0.411307 0.911497i \(-0.634928\pi\)
−0.411307 + 0.911497i \(0.634928\pi\)
\(354\) 0 0
\(355\) −28.4113 −1.50792
\(356\) 0 0
\(357\) −0.601565 −0.0318382
\(358\) 0 0
\(359\) 8.87902 0.468617 0.234308 0.972162i \(-0.424717\pi\)
0.234308 + 0.972162i \(0.424717\pi\)
\(360\) 0 0
\(361\) 22.9790 1.20942
\(362\) 0 0
\(363\) −2.18375 −0.114617
\(364\) 0 0
\(365\) −6.73082 −0.352307
\(366\) 0 0
\(367\) −13.9183 −0.726531 −0.363266 0.931686i \(-0.618338\pi\)
−0.363266 + 0.931686i \(0.618338\pi\)
\(368\) 0 0
\(369\) 10.0953 0.525538
\(370\) 0 0
\(371\) −7.25346 −0.376581
\(372\) 0 0
\(373\) −7.31656 −0.378837 −0.189419 0.981896i \(-0.560660\pi\)
−0.189419 + 0.981896i \(0.560660\pi\)
\(374\) 0 0
\(375\) −19.2865 −0.995952
\(376\) 0 0
\(377\) 4.17235 0.214887
\(378\) 0 0
\(379\) 14.3982 0.739585 0.369792 0.929114i \(-0.379429\pi\)
0.369792 + 0.929114i \(0.379429\pi\)
\(380\) 0 0
\(381\) 1.30983 0.0671046
\(382\) 0 0
\(383\) −15.2999 −0.781788 −0.390894 0.920436i \(-0.627834\pi\)
−0.390894 + 0.920436i \(0.627834\pi\)
\(384\) 0 0
\(385\) −11.4002 −0.581009
\(386\) 0 0
\(387\) 1.79910 0.0914534
\(388\) 0 0
\(389\) −27.4474 −1.39164 −0.695819 0.718217i \(-0.744959\pi\)
−0.695819 + 0.718217i \(0.744959\pi\)
\(390\) 0 0
\(391\) 3.86701 0.195563
\(392\) 0 0
\(393\) −7.42095 −0.374338
\(394\) 0 0
\(395\) −68.7357 −3.45847
\(396\) 0 0
\(397\) −22.2906 −1.11873 −0.559367 0.828920i \(-0.688956\pi\)
−0.559367 + 0.828920i \(0.688956\pi\)
\(398\) 0 0
\(399\) −3.89761 −0.195125
\(400\) 0 0
\(401\) 4.00679 0.200089 0.100045 0.994983i \(-0.468101\pi\)
0.100045 + 0.994983i \(0.468101\pi\)
\(402\) 0 0
\(403\) 58.1892 2.89861
\(404\) 0 0
\(405\) −24.6672 −1.22572
\(406\) 0 0
\(407\) 21.1967 1.05068
\(408\) 0 0
\(409\) −11.8248 −0.584698 −0.292349 0.956312i \(-0.594437\pi\)
−0.292349 + 0.956312i \(0.594437\pi\)
\(410\) 0 0
\(411\) −3.74694 −0.184823
\(412\) 0 0
\(413\) 1.29375 0.0636615
\(414\) 0 0
\(415\) 36.0424 1.76925
\(416\) 0 0
\(417\) −12.6998 −0.621910
\(418\) 0 0
\(419\) −19.3712 −0.946347 −0.473174 0.880969i \(-0.656892\pi\)
−0.473174 + 0.880969i \(0.656892\pi\)
\(420\) 0 0
\(421\) 11.3651 0.553900 0.276950 0.960884i \(-0.410676\pi\)
0.276950 + 0.960884i \(0.410676\pi\)
\(422\) 0 0
\(423\) 19.8735 0.966284
\(424\) 0 0
\(425\) −12.6346 −0.612870
\(426\) 0 0
\(427\) −11.1656 −0.540339
\(428\) 0 0
\(429\) 9.53318 0.460266
\(430\) 0 0
\(431\) 2.46761 0.118861 0.0594304 0.998232i \(-0.481072\pi\)
0.0594304 + 0.998232i \(0.481072\pi\)
\(432\) 0 0
\(433\) 37.5583 1.80494 0.902469 0.430754i \(-0.141752\pi\)
0.902469 + 0.430754i \(0.141752\pi\)
\(434\) 0 0
\(435\) −1.80560 −0.0865717
\(436\) 0 0
\(437\) 25.0548 1.19853
\(438\) 0 0
\(439\) 2.33859 0.111615 0.0558074 0.998442i \(-0.482227\pi\)
0.0558074 + 0.998442i \(0.482227\pi\)
\(440\) 0 0
\(441\) −2.63812 −0.125625
\(442\) 0 0
\(443\) 11.8358 0.562334 0.281167 0.959659i \(-0.409279\pi\)
0.281167 + 0.959659i \(0.409279\pi\)
\(444\) 0 0
\(445\) 40.6099 1.92509
\(446\) 0 0
\(447\) −7.11682 −0.336614
\(448\) 0 0
\(449\) −13.5460 −0.639273 −0.319637 0.947540i \(-0.603561\pi\)
−0.319637 + 0.947540i \(0.603561\pi\)
\(450\) 0 0
\(451\) −10.3885 −0.489175
\(452\) 0 0
\(453\) 0.164345 0.00772160
\(454\) 0 0
\(455\) −24.5137 −1.14922
\(456\) 0 0
\(457\) −25.7469 −1.20439 −0.602194 0.798350i \(-0.705707\pi\)
−0.602194 + 0.798350i \(0.705707\pi\)
\(458\) 0 0
\(459\) 3.39169 0.158311
\(460\) 0 0
\(461\) 30.3762 1.41476 0.707381 0.706833i \(-0.249877\pi\)
0.707381 + 0.706833i \(0.249877\pi\)
\(462\) 0 0
\(463\) 35.9718 1.67175 0.835875 0.548921i \(-0.184961\pi\)
0.835875 + 0.548921i \(0.184961\pi\)
\(464\) 0 0
\(465\) −25.1816 −1.16777
\(466\) 0 0
\(467\) −2.02508 −0.0937094 −0.0468547 0.998902i \(-0.514920\pi\)
−0.0468547 + 0.998902i \(0.514920\pi\)
\(468\) 0 0
\(469\) −12.4769 −0.576128
\(470\) 0 0
\(471\) −7.15431 −0.329653
\(472\) 0 0
\(473\) −1.85136 −0.0851257
\(474\) 0 0
\(475\) −81.8614 −3.75606
\(476\) 0 0
\(477\) 19.1355 0.876154
\(478\) 0 0
\(479\) −1.40547 −0.0642175 −0.0321087 0.999484i \(-0.510222\pi\)
−0.0321087 + 0.999484i \(0.510222\pi\)
\(480\) 0 0
\(481\) 45.5788 2.07821
\(482\) 0 0
\(483\) −2.32625 −0.105848
\(484\) 0 0
\(485\) −38.5884 −1.75221
\(486\) 0 0
\(487\) 20.6168 0.934238 0.467119 0.884194i \(-0.345292\pi\)
0.467119 + 0.884194i \(0.345292\pi\)
\(488\) 0 0
\(489\) −12.5259 −0.566441
\(490\) 0 0
\(491\) 12.6582 0.571255 0.285627 0.958341i \(-0.407798\pi\)
0.285627 + 0.958341i \(0.407798\pi\)
\(492\) 0 0
\(493\) −0.714752 −0.0321908
\(494\) 0 0
\(495\) 30.0752 1.35178
\(496\) 0 0
\(497\) 6.76563 0.303480
\(498\) 0 0
\(499\) 1.21180 0.0542475 0.0271238 0.999632i \(-0.491365\pi\)
0.0271238 + 0.999632i \(0.491365\pi\)
\(500\) 0 0
\(501\) −5.39073 −0.240840
\(502\) 0 0
\(503\) −16.3368 −0.728421 −0.364211 0.931317i \(-0.618661\pi\)
−0.364211 + 0.931317i \(0.618661\pi\)
\(504\) 0 0
\(505\) −9.76713 −0.434631
\(506\) 0 0
\(507\) 12.6787 0.563081
\(508\) 0 0
\(509\) −33.4299 −1.48176 −0.740878 0.671639i \(-0.765590\pi\)
−0.740878 + 0.671639i \(0.765590\pi\)
\(510\) 0 0
\(511\) 1.60282 0.0709045
\(512\) 0 0
\(513\) 21.9752 0.970229
\(514\) 0 0
\(515\) 0.181999 0.00801985
\(516\) 0 0
\(517\) −20.4508 −0.899426
\(518\) 0 0
\(519\) 12.2018 0.535601
\(520\) 0 0
\(521\) −28.4945 −1.24837 −0.624183 0.781278i \(-0.714568\pi\)
−0.624183 + 0.781278i \(0.714568\pi\)
\(522\) 0 0
\(523\) −11.1243 −0.486432 −0.243216 0.969972i \(-0.578202\pi\)
−0.243216 + 0.969972i \(0.578202\pi\)
\(524\) 0 0
\(525\) 7.60055 0.331715
\(526\) 0 0
\(527\) −9.96821 −0.434222
\(528\) 0 0
\(529\) −8.04626 −0.349837
\(530\) 0 0
\(531\) −3.41308 −0.148115
\(532\) 0 0
\(533\) −22.3382 −0.967575
\(534\) 0 0
\(535\) −4.92736 −0.213028
\(536\) 0 0
\(537\) 5.75306 0.248263
\(538\) 0 0
\(539\) 2.71475 0.116933
\(540\) 0 0
\(541\) 7.25734 0.312017 0.156009 0.987756i \(-0.450137\pi\)
0.156009 + 0.987756i \(0.450137\pi\)
\(542\) 0 0
\(543\) −6.14794 −0.263833
\(544\) 0 0
\(545\) 74.5306 3.19254
\(546\) 0 0
\(547\) 38.8270 1.66012 0.830062 0.557671i \(-0.188305\pi\)
0.830062 + 0.557671i \(0.188305\pi\)
\(548\) 0 0
\(549\) 29.4561 1.25716
\(550\) 0 0
\(551\) −4.63096 −0.197286
\(552\) 0 0
\(553\) 16.3681 0.696043
\(554\) 0 0
\(555\) −19.7244 −0.837253
\(556\) 0 0
\(557\) −2.44271 −0.103501 −0.0517504 0.998660i \(-0.516480\pi\)
−0.0517504 + 0.998660i \(0.516480\pi\)
\(558\) 0 0
\(559\) −3.98095 −0.168376
\(560\) 0 0
\(561\) −1.63310 −0.0689495
\(562\) 0 0
\(563\) −25.3635 −1.06894 −0.534471 0.845187i \(-0.679489\pi\)
−0.534471 + 0.845187i \(0.679489\pi\)
\(564\) 0 0
\(565\) 64.4387 2.71096
\(566\) 0 0
\(567\) 5.87404 0.246686
\(568\) 0 0
\(569\) 1.12728 0.0472582 0.0236291 0.999721i \(-0.492478\pi\)
0.0236291 + 0.999721i \(0.492478\pi\)
\(570\) 0 0
\(571\) 33.9373 1.42023 0.710115 0.704086i \(-0.248643\pi\)
0.710115 + 0.704086i \(0.248643\pi\)
\(572\) 0 0
\(573\) 14.8464 0.620219
\(574\) 0 0
\(575\) −48.8582 −2.03753
\(576\) 0 0
\(577\) −9.37704 −0.390371 −0.195186 0.980766i \(-0.562531\pi\)
−0.195186 + 0.980766i \(0.562531\pi\)
\(578\) 0 0
\(579\) −11.3083 −0.469955
\(580\) 0 0
\(581\) −8.58284 −0.356076
\(582\) 0 0
\(583\) −19.6913 −0.815532
\(584\) 0 0
\(585\) 64.6701 2.67378
\(586\) 0 0
\(587\) −19.9820 −0.824747 −0.412373 0.911015i \(-0.635300\pi\)
−0.412373 + 0.911015i \(0.635300\pi\)
\(588\) 0 0
\(589\) −64.5853 −2.66119
\(590\) 0 0
\(591\) 4.47282 0.183987
\(592\) 0 0
\(593\) 4.26062 0.174963 0.0874814 0.996166i \(-0.472118\pi\)
0.0874814 + 0.996166i \(0.472118\pi\)
\(594\) 0 0
\(595\) 4.19936 0.172157
\(596\) 0 0
\(597\) −14.0398 −0.574613
\(598\) 0 0
\(599\) 41.8610 1.71039 0.855196 0.518304i \(-0.173437\pi\)
0.855196 + 0.518304i \(0.173437\pi\)
\(600\) 0 0
\(601\) 0.727778 0.0296867 0.0148433 0.999890i \(-0.495275\pi\)
0.0148433 + 0.999890i \(0.495275\pi\)
\(602\) 0 0
\(603\) 32.9154 1.34042
\(604\) 0 0
\(605\) 15.2442 0.619765
\(606\) 0 0
\(607\) −7.51445 −0.305002 −0.152501 0.988303i \(-0.548733\pi\)
−0.152501 + 0.988303i \(0.548733\pi\)
\(608\) 0 0
\(609\) 0.429969 0.0174232
\(610\) 0 0
\(611\) −43.9750 −1.77904
\(612\) 0 0
\(613\) 2.71707 0.109741 0.0548706 0.998493i \(-0.482525\pi\)
0.0548706 + 0.998493i \(0.482525\pi\)
\(614\) 0 0
\(615\) 9.66692 0.389808
\(616\) 0 0
\(617\) 30.5867 1.23138 0.615688 0.787990i \(-0.288878\pi\)
0.615688 + 0.787990i \(0.288878\pi\)
\(618\) 0 0
\(619\) 7.73567 0.310923 0.155461 0.987842i \(-0.450314\pi\)
0.155461 + 0.987842i \(0.450314\pi\)
\(620\) 0 0
\(621\) 13.1157 0.526315
\(622\) 0 0
\(623\) −9.67049 −0.387440
\(624\) 0 0
\(625\) 71.4610 2.85844
\(626\) 0 0
\(627\) −10.5810 −0.422566
\(628\) 0 0
\(629\) −7.80796 −0.311324
\(630\) 0 0
\(631\) 20.6191 0.820835 0.410418 0.911898i \(-0.365383\pi\)
0.410418 + 0.911898i \(0.365383\pi\)
\(632\) 0 0
\(633\) −15.9471 −0.633842
\(634\) 0 0
\(635\) −9.14357 −0.362852
\(636\) 0 0
\(637\) 5.83748 0.231289
\(638\) 0 0
\(639\) −17.8485 −0.706077
\(640\) 0 0
\(641\) −10.3399 −0.408400 −0.204200 0.978929i \(-0.565459\pi\)
−0.204200 + 0.978929i \(0.565459\pi\)
\(642\) 0 0
\(643\) 15.3243 0.604332 0.302166 0.953255i \(-0.402290\pi\)
0.302166 + 0.953255i \(0.402290\pi\)
\(644\) 0 0
\(645\) 1.72277 0.0678339
\(646\) 0 0
\(647\) 36.5061 1.43520 0.717601 0.696454i \(-0.245240\pi\)
0.717601 + 0.696454i \(0.245240\pi\)
\(648\) 0 0
\(649\) 3.51222 0.137867
\(650\) 0 0
\(651\) 5.99652 0.235022
\(652\) 0 0
\(653\) 43.5312 1.70351 0.851754 0.523941i \(-0.175539\pi\)
0.851754 + 0.523941i \(0.175539\pi\)
\(654\) 0 0
\(655\) 51.8037 2.02414
\(656\) 0 0
\(657\) −4.22843 −0.164967
\(658\) 0 0
\(659\) −10.1417 −0.395064 −0.197532 0.980296i \(-0.563293\pi\)
−0.197532 + 0.980296i \(0.563293\pi\)
\(660\) 0 0
\(661\) 6.37601 0.247998 0.123999 0.992282i \(-0.460428\pi\)
0.123999 + 0.992282i \(0.460428\pi\)
\(662\) 0 0
\(663\) −3.51162 −0.136380
\(664\) 0 0
\(665\) 27.2082 1.05509
\(666\) 0 0
\(667\) −2.76395 −0.107021
\(668\) 0 0
\(669\) 3.38867 0.131014
\(670\) 0 0
\(671\) −30.3117 −1.17017
\(672\) 0 0
\(673\) −8.14535 −0.313980 −0.156990 0.987600i \(-0.550179\pi\)
−0.156990 + 0.987600i \(0.550179\pi\)
\(674\) 0 0
\(675\) −42.8528 −1.64941
\(676\) 0 0
\(677\) −36.1064 −1.38768 −0.693840 0.720129i \(-0.744083\pi\)
−0.693840 + 0.720129i \(0.744083\pi\)
\(678\) 0 0
\(679\) 9.18910 0.352645
\(680\) 0 0
\(681\) −1.56872 −0.0601135
\(682\) 0 0
\(683\) −30.9620 −1.18473 −0.592363 0.805671i \(-0.701805\pi\)
−0.592363 + 0.805671i \(0.701805\pi\)
\(684\) 0 0
\(685\) 26.1564 0.999386
\(686\) 0 0
\(687\) −4.92277 −0.187815
\(688\) 0 0
\(689\) −42.3419 −1.61310
\(690\) 0 0
\(691\) 23.8493 0.907268 0.453634 0.891188i \(-0.350127\pi\)
0.453634 + 0.891188i \(0.350127\pi\)
\(692\) 0 0
\(693\) −7.16184 −0.272056
\(694\) 0 0
\(695\) 88.6536 3.36282
\(696\) 0 0
\(697\) 3.82668 0.144946
\(698\) 0 0
\(699\) −4.97661 −0.188233
\(700\) 0 0
\(701\) −25.2608 −0.954088 −0.477044 0.878879i \(-0.658292\pi\)
−0.477044 + 0.878879i \(0.658292\pi\)
\(702\) 0 0
\(703\) −50.5887 −1.90799
\(704\) 0 0
\(705\) 19.0303 0.716723
\(706\) 0 0
\(707\) 2.32586 0.0874730
\(708\) 0 0
\(709\) −1.18527 −0.0445137 −0.0222568 0.999752i \(-0.507085\pi\)
−0.0222568 + 0.999752i \(0.507085\pi\)
\(710\) 0 0
\(711\) −43.1811 −1.61942
\(712\) 0 0
\(713\) −38.5471 −1.44360
\(714\) 0 0
\(715\) −66.5486 −2.48878
\(716\) 0 0
\(717\) −5.45356 −0.203667
\(718\) 0 0
\(719\) 16.3988 0.611572 0.305786 0.952100i \(-0.401081\pi\)
0.305786 + 0.952100i \(0.401081\pi\)
\(720\) 0 0
\(721\) −0.0433398 −0.00161406
\(722\) 0 0
\(723\) −1.41283 −0.0525438
\(724\) 0 0
\(725\) 9.03063 0.335389
\(726\) 0 0
\(727\) −21.2325 −0.787470 −0.393735 0.919224i \(-0.628817\pi\)
−0.393735 + 0.919224i \(0.628817\pi\)
\(728\) 0 0
\(729\) −9.37545 −0.347239
\(730\) 0 0
\(731\) 0.681963 0.0252233
\(732\) 0 0
\(733\) −39.3742 −1.45432 −0.727160 0.686468i \(-0.759160\pi\)
−0.727160 + 0.686468i \(0.759160\pi\)
\(734\) 0 0
\(735\) −2.52619 −0.0931798
\(736\) 0 0
\(737\) −33.8716 −1.24768
\(738\) 0 0
\(739\) 5.65369 0.207974 0.103987 0.994579i \(-0.466840\pi\)
0.103987 + 0.994579i \(0.466840\pi\)
\(740\) 0 0
\(741\) −22.7522 −0.835824
\(742\) 0 0
\(743\) 16.2700 0.596889 0.298444 0.954427i \(-0.403532\pi\)
0.298444 + 0.954427i \(0.403532\pi\)
\(744\) 0 0
\(745\) 49.6806 1.82016
\(746\) 0 0
\(747\) 22.6426 0.828448
\(748\) 0 0
\(749\) 1.17336 0.0428736
\(750\) 0 0
\(751\) −10.0946 −0.368357 −0.184179 0.982893i \(-0.558963\pi\)
−0.184179 + 0.982893i \(0.558963\pi\)
\(752\) 0 0
\(753\) 9.27781 0.338102
\(754\) 0 0
\(755\) −1.14725 −0.0417527
\(756\) 0 0
\(757\) 4.45496 0.161918 0.0809591 0.996717i \(-0.474202\pi\)
0.0809591 + 0.996717i \(0.474202\pi\)
\(758\) 0 0
\(759\) −6.31520 −0.229227
\(760\) 0 0
\(761\) −19.1923 −0.695720 −0.347860 0.937547i \(-0.613092\pi\)
−0.347860 + 0.937547i \(0.613092\pi\)
\(762\) 0 0
\(763\) −17.7481 −0.642523
\(764\) 0 0
\(765\) −11.0784 −0.400541
\(766\) 0 0
\(767\) 7.55227 0.272697
\(768\) 0 0
\(769\) −5.39903 −0.194694 −0.0973471 0.995250i \(-0.531036\pi\)
−0.0973471 + 0.995250i \(0.531036\pi\)
\(770\) 0 0
\(771\) 7.47778 0.269306
\(772\) 0 0
\(773\) 21.8900 0.787327 0.393664 0.919255i \(-0.371207\pi\)
0.393664 + 0.919255i \(0.371207\pi\)
\(774\) 0 0
\(775\) 125.945 4.52407
\(776\) 0 0
\(777\) 4.69699 0.168504
\(778\) 0 0
\(779\) 24.7936 0.888321
\(780\) 0 0
\(781\) 18.3670 0.657223
\(782\) 0 0
\(783\) −2.42422 −0.0866345
\(784\) 0 0
\(785\) 49.9423 1.78252
\(786\) 0 0
\(787\) −24.8816 −0.886934 −0.443467 0.896291i \(-0.646252\pi\)
−0.443467 + 0.896291i \(0.646252\pi\)
\(788\) 0 0
\(789\) 13.6948 0.487549
\(790\) 0 0
\(791\) −15.3449 −0.545601
\(792\) 0 0
\(793\) −65.1788 −2.31457
\(794\) 0 0
\(795\) 18.3236 0.649871
\(796\) 0 0
\(797\) −40.8512 −1.44702 −0.723511 0.690312i \(-0.757473\pi\)
−0.723511 + 0.690312i \(0.757473\pi\)
\(798\) 0 0
\(799\) 7.53322 0.266506
\(800\) 0 0
\(801\) 25.5119 0.901419
\(802\) 0 0
\(803\) 4.35126 0.153552
\(804\) 0 0
\(805\) 16.2390 0.572348
\(806\) 0 0
\(807\) −12.8841 −0.453541
\(808\) 0 0
\(809\) −24.4825 −0.860760 −0.430380 0.902648i \(-0.641620\pi\)
−0.430380 + 0.902648i \(0.641620\pi\)
\(810\) 0 0
\(811\) 31.7212 1.11388 0.556942 0.830551i \(-0.311975\pi\)
0.556942 + 0.830551i \(0.311975\pi\)
\(812\) 0 0
\(813\) 2.63846 0.0925347
\(814\) 0 0
\(815\) 87.4399 3.06289
\(816\) 0 0
\(817\) 4.41852 0.154585
\(818\) 0 0
\(819\) −15.4000 −0.538119
\(820\) 0 0
\(821\) −15.2705 −0.532943 −0.266472 0.963843i \(-0.585858\pi\)
−0.266472 + 0.963843i \(0.585858\pi\)
\(822\) 0 0
\(823\) −36.6918 −1.27900 −0.639498 0.768792i \(-0.720858\pi\)
−0.639498 + 0.768792i \(0.720858\pi\)
\(824\) 0 0
\(825\) 20.6336 0.718370
\(826\) 0 0
\(827\) −26.3945 −0.917826 −0.458913 0.888481i \(-0.651761\pi\)
−0.458913 + 0.888481i \(0.651761\pi\)
\(828\) 0 0
\(829\) 42.0709 1.46118 0.730591 0.682815i \(-0.239245\pi\)
0.730591 + 0.682815i \(0.239245\pi\)
\(830\) 0 0
\(831\) 7.36421 0.255462
\(832\) 0 0
\(833\) −1.00000 −0.0346479
\(834\) 0 0
\(835\) 37.6312 1.30228
\(836\) 0 0
\(837\) −33.8091 −1.16861
\(838\) 0 0
\(839\) 50.6353 1.74812 0.874062 0.485814i \(-0.161477\pi\)
0.874062 + 0.485814i \(0.161477\pi\)
\(840\) 0 0
\(841\) −28.4891 −0.982384
\(842\) 0 0
\(843\) 6.40897 0.220737
\(844\) 0 0
\(845\) −88.5066 −3.04472
\(846\) 0 0
\(847\) −3.63012 −0.124733
\(848\) 0 0
\(849\) 4.38577 0.150519
\(850\) 0 0
\(851\) −30.1934 −1.03502
\(852\) 0 0
\(853\) −7.91684 −0.271067 −0.135534 0.990773i \(-0.543275\pi\)
−0.135534 + 0.990773i \(0.543275\pi\)
\(854\) 0 0
\(855\) −71.7785 −2.45477
\(856\) 0 0
\(857\) 38.5967 1.31844 0.659218 0.751952i \(-0.270887\pi\)
0.659218 + 0.751952i \(0.270887\pi\)
\(858\) 0 0
\(859\) −40.1499 −1.36990 −0.684949 0.728591i \(-0.740176\pi\)
−0.684949 + 0.728591i \(0.740176\pi\)
\(860\) 0 0
\(861\) −2.30200 −0.0784519
\(862\) 0 0
\(863\) −17.5729 −0.598187 −0.299094 0.954224i \(-0.596684\pi\)
−0.299094 + 0.954224i \(0.596684\pi\)
\(864\) 0 0
\(865\) −85.1778 −2.89613
\(866\) 0 0
\(867\) 0.601565 0.0204302
\(868\) 0 0
\(869\) 44.4354 1.50737
\(870\) 0 0
\(871\) −72.8334 −2.46787
\(872\) 0 0
\(873\) −24.2419 −0.820466
\(874\) 0 0
\(875\) −32.0606 −1.08385
\(876\) 0 0
\(877\) 44.0334 1.48690 0.743451 0.668791i \(-0.233188\pi\)
0.743451 + 0.668791i \(0.233188\pi\)
\(878\) 0 0
\(879\) 9.56649 0.322670
\(880\) 0 0
\(881\) −53.8149 −1.81307 −0.906534 0.422132i \(-0.861282\pi\)
−0.906534 + 0.422132i \(0.861282\pi\)
\(882\) 0 0
\(883\) −16.4929 −0.555032 −0.277516 0.960721i \(-0.589511\pi\)
−0.277516 + 0.960721i \(0.589511\pi\)
\(884\) 0 0
\(885\) −3.26827 −0.109862
\(886\) 0 0
\(887\) −20.1825 −0.677663 −0.338831 0.940847i \(-0.610032\pi\)
−0.338831 + 0.940847i \(0.610032\pi\)
\(888\) 0 0
\(889\) 2.17737 0.0730267
\(890\) 0 0
\(891\) 15.9466 0.534230
\(892\) 0 0
\(893\) 48.8086 1.63332
\(894\) 0 0
\(895\) −40.1606 −1.34242
\(896\) 0 0
\(897\) −13.5795 −0.453405
\(898\) 0 0
\(899\) 7.12479 0.237625
\(900\) 0 0
\(901\) 7.25346 0.241648
\(902\) 0 0
\(903\) −0.410245 −0.0136521
\(904\) 0 0
\(905\) 42.9171 1.42661
\(906\) 0 0
\(907\) 4.76682 0.158280 0.0791398 0.996864i \(-0.474783\pi\)
0.0791398 + 0.996864i \(0.474783\pi\)
\(908\) 0 0
\(909\) −6.13590 −0.203515
\(910\) 0 0
\(911\) −13.3297 −0.441631 −0.220816 0.975316i \(-0.570872\pi\)
−0.220816 + 0.975316i \(0.570872\pi\)
\(912\) 0 0
\(913\) −23.3003 −0.771126
\(914\) 0 0
\(915\) 28.2063 0.932472
\(916\) 0 0
\(917\) −12.3361 −0.407373
\(918\) 0 0
\(919\) 18.9560 0.625300 0.312650 0.949868i \(-0.398783\pi\)
0.312650 + 0.949868i \(0.398783\pi\)
\(920\) 0 0
\(921\) 20.1874 0.665197
\(922\) 0 0
\(923\) 39.4942 1.29997
\(924\) 0 0
\(925\) 98.6507 3.24362
\(926\) 0 0
\(927\) 0.114336 0.00375527
\(928\) 0 0
\(929\) 20.0587 0.658104 0.329052 0.944312i \(-0.393271\pi\)
0.329052 + 0.944312i \(0.393271\pi\)
\(930\) 0 0
\(931\) −6.47912 −0.212345
\(932\) 0 0
\(933\) −15.9781 −0.523099
\(934\) 0 0
\(935\) 11.4002 0.372827
\(936\) 0 0
\(937\) −7.86978 −0.257095 −0.128547 0.991703i \(-0.541031\pi\)
−0.128547 + 0.991703i \(0.541031\pi\)
\(938\) 0 0
\(939\) −14.6525 −0.478166
\(940\) 0 0
\(941\) −6.23437 −0.203235 −0.101617 0.994824i \(-0.532402\pi\)
−0.101617 + 0.994824i \(0.532402\pi\)
\(942\) 0 0
\(943\) 14.7978 0.481883
\(944\) 0 0
\(945\) 14.2429 0.463323
\(946\) 0 0
\(947\) −22.9566 −0.745989 −0.372995 0.927833i \(-0.621669\pi\)
−0.372995 + 0.927833i \(0.621669\pi\)
\(948\) 0 0
\(949\) 9.35643 0.303722
\(950\) 0 0
\(951\) −8.18613 −0.265453
\(952\) 0 0
\(953\) −17.3898 −0.563311 −0.281655 0.959516i \(-0.590884\pi\)
−0.281655 + 0.959516i \(0.590884\pi\)
\(954\) 0 0
\(955\) −103.639 −3.35368
\(956\) 0 0
\(957\) 1.16726 0.0377322
\(958\) 0 0
\(959\) −6.22867 −0.201134
\(960\) 0 0
\(961\) 68.3652 2.20533
\(962\) 0 0
\(963\) −3.09546 −0.0997498
\(964\) 0 0
\(965\) 78.9400 2.54117
\(966\) 0 0
\(967\) 10.1071 0.325023 0.162511 0.986707i \(-0.448041\pi\)
0.162511 + 0.986707i \(0.448041\pi\)
\(968\) 0 0
\(969\) 3.89761 0.125209
\(970\) 0 0
\(971\) 29.8026 0.956412 0.478206 0.878248i \(-0.341287\pi\)
0.478206 + 0.878248i \(0.341287\pi\)
\(972\) 0 0
\(973\) −21.1112 −0.676794
\(974\) 0 0
\(975\) 44.3681 1.42092
\(976\) 0 0
\(977\) −21.5430 −0.689221 −0.344610 0.938746i \(-0.611989\pi\)
−0.344610 + 0.938746i \(0.611989\pi\)
\(978\) 0 0
\(979\) −26.2530 −0.839049
\(980\) 0 0
\(981\) 46.8216 1.49490
\(982\) 0 0
\(983\) −24.4596 −0.780142 −0.390071 0.920785i \(-0.627549\pi\)
−0.390071 + 0.920785i \(0.627549\pi\)
\(984\) 0 0
\(985\) −31.2235 −0.994865
\(986\) 0 0
\(987\) −4.53172 −0.144246
\(988\) 0 0
\(989\) 2.63716 0.0838567
\(990\) 0 0
\(991\) 12.4456 0.395348 0.197674 0.980268i \(-0.436661\pi\)
0.197674 + 0.980268i \(0.436661\pi\)
\(992\) 0 0
\(993\) 10.3227 0.327580
\(994\) 0 0
\(995\) 98.0084 3.10708
\(996\) 0 0
\(997\) −57.1391 −1.80961 −0.904807 0.425821i \(-0.859985\pi\)
−0.904807 + 0.425821i \(0.859985\pi\)
\(998\) 0 0
\(999\) −26.4822 −0.837860
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 3808.2.a.i.1.4 6
4.3 odd 2 3808.2.a.m.1.3 yes 6
8.3 odd 2 7616.2.a.bx.1.4 6
8.5 even 2 7616.2.a.cb.1.3 6
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
3808.2.a.i.1.4 6 1.1 even 1 trivial
3808.2.a.m.1.3 yes 6 4.3 odd 2
7616.2.a.bx.1.4 6 8.3 odd 2
7616.2.a.cb.1.3 6 8.5 even 2