Properties

Label 3808.2.a.i.1.3
Level $3808$
Weight $2$
Character 3808.1
Self dual yes
Analytic conductor $30.407$
Analytic rank $1$
Dimension $6$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [3808,2,Mod(1,3808)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(3808, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("3808.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 3808 = 2^{5} \cdot 7 \cdot 17 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 3808.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(30.4070330897\)
Analytic rank: \(1\)
Dimension: \(6\)
Coefficient field: 6.6.80686992.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{6} - x^{5} - 10x^{4} + 15x^{3} + 8x^{2} - 15x + 3 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 2 \)
Twist minimal: yes
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.3
Root \(0.243788\) of defining polynomial
Character \(\chi\) \(=\) 3808.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-1.03321 q^{3} +1.36630 q^{5} +1.00000 q^{7} -1.93247 q^{9} -3.61819 q^{11} -0.433831 q^{13} -1.41168 q^{15} -1.00000 q^{17} +7.98338 q^{19} -1.03321 q^{21} -1.16816 q^{23} -3.13322 q^{25} +5.09629 q^{27} -5.61819 q^{29} +8.77427 q^{31} +3.73836 q^{33} +1.36630 q^{35} -2.03582 q^{37} +0.448240 q^{39} +2.09740 q^{41} +4.28400 q^{43} -2.64034 q^{45} -3.77537 q^{47} +1.00000 q^{49} +1.03321 q^{51} -12.3925 q^{53} -4.94353 q^{55} -8.24854 q^{57} -13.6386 q^{59} -4.23839 q^{61} -1.93247 q^{63} -0.592744 q^{65} -0.392876 q^{67} +1.20696 q^{69} -6.47096 q^{71} -5.13898 q^{73} +3.23729 q^{75} -3.61819 q^{77} -1.81298 q^{79} +0.531853 q^{81} -3.02836 q^{83} -1.36630 q^{85} +5.80478 q^{87} +15.3734 q^{89} -0.433831 q^{91} -9.06569 q^{93} +10.9077 q^{95} +0.986216 q^{97} +6.99204 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 6 q - 2 q^{3} - 6 q^{5} + 6 q^{7} + 4 q^{9} - 2 q^{11} - 4 q^{13} + 2 q^{15} - 6 q^{17} - 10 q^{19} - 2 q^{21} + 4 q^{23} + 4 q^{25} - 8 q^{27} - 14 q^{29} + 8 q^{31} - 8 q^{33} - 6 q^{35} - 4 q^{37} + 14 q^{39}+ \cdots - 4 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −1.03321 −0.596526 −0.298263 0.954484i \(-0.596407\pi\)
−0.298263 + 0.954484i \(0.596407\pi\)
\(4\) 0 0
\(5\) 1.36630 0.611029 0.305514 0.952187i \(-0.401172\pi\)
0.305514 + 0.952187i \(0.401172\pi\)
\(6\) 0 0
\(7\) 1.00000 0.377964
\(8\) 0 0
\(9\) −1.93247 −0.644157
\(10\) 0 0
\(11\) −3.61819 −1.09092 −0.545462 0.838135i \(-0.683646\pi\)
−0.545462 + 0.838135i \(0.683646\pi\)
\(12\) 0 0
\(13\) −0.433831 −0.120323 −0.0601615 0.998189i \(-0.519162\pi\)
−0.0601615 + 0.998189i \(0.519162\pi\)
\(14\) 0 0
\(15\) −1.41168 −0.364494
\(16\) 0 0
\(17\) −1.00000 −0.242536
\(18\) 0 0
\(19\) 7.98338 1.83151 0.915757 0.401733i \(-0.131592\pi\)
0.915757 + 0.401733i \(0.131592\pi\)
\(20\) 0 0
\(21\) −1.03321 −0.225466
\(22\) 0 0
\(23\) −1.16816 −0.243579 −0.121789 0.992556i \(-0.538863\pi\)
−0.121789 + 0.992556i \(0.538863\pi\)
\(24\) 0 0
\(25\) −3.13322 −0.626644
\(26\) 0 0
\(27\) 5.09629 0.980782
\(28\) 0 0
\(29\) −5.61819 −1.04327 −0.521636 0.853168i \(-0.674678\pi\)
−0.521636 + 0.853168i \(0.674678\pi\)
\(30\) 0 0
\(31\) 8.77427 1.57591 0.787953 0.615736i \(-0.211141\pi\)
0.787953 + 0.615736i \(0.211141\pi\)
\(32\) 0 0
\(33\) 3.73836 0.650765
\(34\) 0 0
\(35\) 1.36630 0.230947
\(36\) 0 0
\(37\) −2.03582 −0.334687 −0.167344 0.985899i \(-0.553519\pi\)
−0.167344 + 0.985899i \(0.553519\pi\)
\(38\) 0 0
\(39\) 0.448240 0.0717758
\(40\) 0 0
\(41\) 2.09740 0.327558 0.163779 0.986497i \(-0.447632\pi\)
0.163779 + 0.986497i \(0.447632\pi\)
\(42\) 0 0
\(43\) 4.28400 0.653303 0.326652 0.945145i \(-0.394080\pi\)
0.326652 + 0.945145i \(0.394080\pi\)
\(44\) 0 0
\(45\) −2.64034 −0.393598
\(46\) 0 0
\(47\) −3.77537 −0.550695 −0.275347 0.961345i \(-0.588793\pi\)
−0.275347 + 0.961345i \(0.588793\pi\)
\(48\) 0 0
\(49\) 1.00000 0.142857
\(50\) 0 0
\(51\) 1.03321 0.144679
\(52\) 0 0
\(53\) −12.3925 −1.70223 −0.851117 0.524976i \(-0.824074\pi\)
−0.851117 + 0.524976i \(0.824074\pi\)
\(54\) 0 0
\(55\) −4.94353 −0.666586
\(56\) 0 0
\(57\) −8.24854 −1.09255
\(58\) 0 0
\(59\) −13.6386 −1.77559 −0.887796 0.460237i \(-0.847765\pi\)
−0.887796 + 0.460237i \(0.847765\pi\)
\(60\) 0 0
\(61\) −4.23839 −0.542670 −0.271335 0.962485i \(-0.587465\pi\)
−0.271335 + 0.962485i \(0.587465\pi\)
\(62\) 0 0
\(63\) −1.93247 −0.243468
\(64\) 0 0
\(65\) −0.592744 −0.0735208
\(66\) 0 0
\(67\) −0.392876 −0.0479975 −0.0239987 0.999712i \(-0.507640\pi\)
−0.0239987 + 0.999712i \(0.507640\pi\)
\(68\) 0 0
\(69\) 1.20696 0.145301
\(70\) 0 0
\(71\) −6.47096 −0.767962 −0.383981 0.923341i \(-0.625447\pi\)
−0.383981 + 0.923341i \(0.625447\pi\)
\(72\) 0 0
\(73\) −5.13898 −0.601472 −0.300736 0.953707i \(-0.597232\pi\)
−0.300736 + 0.953707i \(0.597232\pi\)
\(74\) 0 0
\(75\) 3.23729 0.373809
\(76\) 0 0
\(77\) −3.61819 −0.412331
\(78\) 0 0
\(79\) −1.81298 −0.203976 −0.101988 0.994786i \(-0.532520\pi\)
−0.101988 + 0.994786i \(0.532520\pi\)
\(80\) 0 0
\(81\) 0.531853 0.0590947
\(82\) 0 0
\(83\) −3.02836 −0.332406 −0.166203 0.986092i \(-0.553151\pi\)
−0.166203 + 0.986092i \(0.553151\pi\)
\(84\) 0 0
\(85\) −1.36630 −0.148196
\(86\) 0 0
\(87\) 5.80478 0.622338
\(88\) 0 0
\(89\) 15.3734 1.62958 0.814790 0.579756i \(-0.196852\pi\)
0.814790 + 0.579756i \(0.196852\pi\)
\(90\) 0 0
\(91\) −0.433831 −0.0454779
\(92\) 0 0
\(93\) −9.06569 −0.940068
\(94\) 0 0
\(95\) 10.9077 1.11911
\(96\) 0 0
\(97\) 0.986216 0.100135 0.0500675 0.998746i \(-0.484056\pi\)
0.0500675 + 0.998746i \(0.484056\pi\)
\(98\) 0 0
\(99\) 6.99204 0.702726
\(100\) 0 0
\(101\) −0.882071 −0.0877694 −0.0438847 0.999037i \(-0.513973\pi\)
−0.0438847 + 0.999037i \(0.513973\pi\)
\(102\) 0 0
\(103\) 11.4525 1.12845 0.564225 0.825621i \(-0.309175\pi\)
0.564225 + 0.825621i \(0.309175\pi\)
\(104\) 0 0
\(105\) −1.41168 −0.137766
\(106\) 0 0
\(107\) −15.4503 −1.49364 −0.746819 0.665027i \(-0.768420\pi\)
−0.746819 + 0.665027i \(0.768420\pi\)
\(108\) 0 0
\(109\) −7.06371 −0.676580 −0.338290 0.941042i \(-0.609849\pi\)
−0.338290 + 0.941042i \(0.609849\pi\)
\(110\) 0 0
\(111\) 2.10344 0.199650
\(112\) 0 0
\(113\) −3.29054 −0.309548 −0.154774 0.987950i \(-0.549465\pi\)
−0.154774 + 0.987950i \(0.549465\pi\)
\(114\) 0 0
\(115\) −1.59606 −0.148833
\(116\) 0 0
\(117\) 0.838366 0.0775069
\(118\) 0 0
\(119\) −1.00000 −0.0916698
\(120\) 0 0
\(121\) 2.09127 0.190116
\(122\) 0 0
\(123\) −2.16706 −0.195397
\(124\) 0 0
\(125\) −11.1124 −0.993926
\(126\) 0 0
\(127\) −2.36854 −0.210174 −0.105087 0.994463i \(-0.533512\pi\)
−0.105087 + 0.994463i \(0.533512\pi\)
\(128\) 0 0
\(129\) −4.42628 −0.389712
\(130\) 0 0
\(131\) −0.796553 −0.0695951 −0.0347976 0.999394i \(-0.511079\pi\)
−0.0347976 + 0.999394i \(0.511079\pi\)
\(132\) 0 0
\(133\) 7.98338 0.692247
\(134\) 0 0
\(135\) 6.96307 0.599286
\(136\) 0 0
\(137\) −17.7504 −1.51652 −0.758259 0.651953i \(-0.773950\pi\)
−0.758259 + 0.651953i \(0.773950\pi\)
\(138\) 0 0
\(139\) −6.02547 −0.511074 −0.255537 0.966799i \(-0.582252\pi\)
−0.255537 + 0.966799i \(0.582252\pi\)
\(140\) 0 0
\(141\) 3.90076 0.328504
\(142\) 0 0
\(143\) 1.56968 0.131263
\(144\) 0 0
\(145\) −7.67614 −0.637468
\(146\) 0 0
\(147\) −1.03321 −0.0852180
\(148\) 0 0
\(149\) −8.95136 −0.733324 −0.366662 0.930354i \(-0.619499\pi\)
−0.366662 + 0.930354i \(0.619499\pi\)
\(150\) 0 0
\(151\) 12.0604 0.981460 0.490730 0.871312i \(-0.336730\pi\)
0.490730 + 0.871312i \(0.336730\pi\)
\(152\) 0 0
\(153\) 1.93247 0.156231
\(154\) 0 0
\(155\) 11.9883 0.962923
\(156\) 0 0
\(157\) −11.2192 −0.895387 −0.447693 0.894187i \(-0.647754\pi\)
−0.447693 + 0.894187i \(0.647754\pi\)
\(158\) 0 0
\(159\) 12.8040 1.01543
\(160\) 0 0
\(161\) −1.16816 −0.0920640
\(162\) 0 0
\(163\) 2.89259 0.226565 0.113283 0.993563i \(-0.463863\pi\)
0.113283 + 0.993563i \(0.463863\pi\)
\(164\) 0 0
\(165\) 5.10772 0.397636
\(166\) 0 0
\(167\) −10.4106 −0.805595 −0.402797 0.915289i \(-0.631962\pi\)
−0.402797 + 0.915289i \(0.631962\pi\)
\(168\) 0 0
\(169\) −12.8118 −0.985522
\(170\) 0 0
\(171\) −15.4277 −1.17978
\(172\) 0 0
\(173\) 8.39337 0.638136 0.319068 0.947732i \(-0.396630\pi\)
0.319068 + 0.947732i \(0.396630\pi\)
\(174\) 0 0
\(175\) −3.13322 −0.236849
\(176\) 0 0
\(177\) 14.0916 1.05919
\(178\) 0 0
\(179\) 14.6527 1.09519 0.547597 0.836742i \(-0.315543\pi\)
0.547597 + 0.836742i \(0.315543\pi\)
\(180\) 0 0
\(181\) 0.291311 0.0216530 0.0108265 0.999941i \(-0.496554\pi\)
0.0108265 + 0.999941i \(0.496554\pi\)
\(182\) 0 0
\(183\) 4.37916 0.323717
\(184\) 0 0
\(185\) −2.78155 −0.204504
\(186\) 0 0
\(187\) 3.61819 0.264588
\(188\) 0 0
\(189\) 5.09629 0.370701
\(190\) 0 0
\(191\) −11.4243 −0.826634 −0.413317 0.910587i \(-0.635630\pi\)
−0.413317 + 0.910587i \(0.635630\pi\)
\(192\) 0 0
\(193\) −5.99180 −0.431300 −0.215650 0.976471i \(-0.569187\pi\)
−0.215650 + 0.976471i \(0.569187\pi\)
\(194\) 0 0
\(195\) 0.612431 0.0438571
\(196\) 0 0
\(197\) 20.5297 1.46268 0.731340 0.682014i \(-0.238895\pi\)
0.731340 + 0.682014i \(0.238895\pi\)
\(198\) 0 0
\(199\) 11.1808 0.792585 0.396293 0.918124i \(-0.370297\pi\)
0.396293 + 0.918124i \(0.370297\pi\)
\(200\) 0 0
\(201\) 0.405925 0.0286317
\(202\) 0 0
\(203\) −5.61819 −0.394319
\(204\) 0 0
\(205\) 2.86568 0.200148
\(206\) 0 0
\(207\) 2.25744 0.156903
\(208\) 0 0
\(209\) −28.8854 −1.99804
\(210\) 0 0
\(211\) −26.5734 −1.82939 −0.914694 0.404148i \(-0.867568\pi\)
−0.914694 + 0.404148i \(0.867568\pi\)
\(212\) 0 0
\(213\) 6.68588 0.458109
\(214\) 0 0
\(215\) 5.85323 0.399187
\(216\) 0 0
\(217\) 8.77427 0.595636
\(218\) 0 0
\(219\) 5.30966 0.358793
\(220\) 0 0
\(221\) 0.433831 0.0291826
\(222\) 0 0
\(223\) 7.73836 0.518199 0.259099 0.965851i \(-0.416574\pi\)
0.259099 + 0.965851i \(0.416574\pi\)
\(224\) 0 0
\(225\) 6.05486 0.403657
\(226\) 0 0
\(227\) −3.11135 −0.206508 −0.103254 0.994655i \(-0.532925\pi\)
−0.103254 + 0.994655i \(0.532925\pi\)
\(228\) 0 0
\(229\) −20.0645 −1.32590 −0.662949 0.748665i \(-0.730695\pi\)
−0.662949 + 0.748665i \(0.730695\pi\)
\(230\) 0 0
\(231\) 3.73836 0.245966
\(232\) 0 0
\(233\) 20.5285 1.34487 0.672433 0.740158i \(-0.265249\pi\)
0.672433 + 0.740158i \(0.265249\pi\)
\(234\) 0 0
\(235\) −5.15830 −0.336490
\(236\) 0 0
\(237\) 1.87320 0.121677
\(238\) 0 0
\(239\) 16.2161 1.04893 0.524466 0.851431i \(-0.324265\pi\)
0.524466 + 0.851431i \(0.324265\pi\)
\(240\) 0 0
\(241\) −19.2949 −1.24290 −0.621448 0.783456i \(-0.713455\pi\)
−0.621448 + 0.783456i \(0.713455\pi\)
\(242\) 0 0
\(243\) −15.8384 −1.01603
\(244\) 0 0
\(245\) 1.36630 0.0872898
\(246\) 0 0
\(247\) −3.46344 −0.220373
\(248\) 0 0
\(249\) 3.12894 0.198289
\(250\) 0 0
\(251\) −17.5859 −1.11001 −0.555005 0.831847i \(-0.687284\pi\)
−0.555005 + 0.831847i \(0.687284\pi\)
\(252\) 0 0
\(253\) 4.22663 0.265726
\(254\) 0 0
\(255\) 1.41168 0.0884029
\(256\) 0 0
\(257\) −7.72685 −0.481987 −0.240994 0.970527i \(-0.577473\pi\)
−0.240994 + 0.970527i \(0.577473\pi\)
\(258\) 0 0
\(259\) −2.03582 −0.126500
\(260\) 0 0
\(261\) 10.8570 0.672030
\(262\) 0 0
\(263\) −9.69908 −0.598071 −0.299035 0.954242i \(-0.596665\pi\)
−0.299035 + 0.954242i \(0.596665\pi\)
\(264\) 0 0
\(265\) −16.9318 −1.04011
\(266\) 0 0
\(267\) −15.8840 −0.972087
\(268\) 0 0
\(269\) −11.5468 −0.704021 −0.352010 0.935996i \(-0.614502\pi\)
−0.352010 + 0.935996i \(0.614502\pi\)
\(270\) 0 0
\(271\) 11.8003 0.716817 0.358409 0.933565i \(-0.383319\pi\)
0.358409 + 0.933565i \(0.383319\pi\)
\(272\) 0 0
\(273\) 0.448240 0.0271287
\(274\) 0 0
\(275\) 11.3366 0.683621
\(276\) 0 0
\(277\) 10.8177 0.649974 0.324987 0.945719i \(-0.394640\pi\)
0.324987 + 0.945719i \(0.394640\pi\)
\(278\) 0 0
\(279\) −16.9560 −1.01513
\(280\) 0 0
\(281\) −0.770799 −0.0459820 −0.0229910 0.999736i \(-0.507319\pi\)
−0.0229910 + 0.999736i \(0.507319\pi\)
\(282\) 0 0
\(283\) −24.5012 −1.45645 −0.728224 0.685340i \(-0.759654\pi\)
−0.728224 + 0.685340i \(0.759654\pi\)
\(284\) 0 0
\(285\) −11.2700 −0.667577
\(286\) 0 0
\(287\) 2.09740 0.123805
\(288\) 0 0
\(289\) 1.00000 0.0588235
\(290\) 0 0
\(291\) −1.01897 −0.0597331
\(292\) 0 0
\(293\) −26.8790 −1.57029 −0.785145 0.619312i \(-0.787411\pi\)
−0.785145 + 0.619312i \(0.787411\pi\)
\(294\) 0 0
\(295\) −18.6344 −1.08494
\(296\) 0 0
\(297\) −18.4393 −1.06996
\(298\) 0 0
\(299\) 0.506785 0.0293081
\(300\) 0 0
\(301\) 4.28400 0.246925
\(302\) 0 0
\(303\) 0.911368 0.0523567
\(304\) 0 0
\(305\) −5.79092 −0.331587
\(306\) 0 0
\(307\) 3.14124 0.179280 0.0896402 0.995974i \(-0.471428\pi\)
0.0896402 + 0.995974i \(0.471428\pi\)
\(308\) 0 0
\(309\) −11.8329 −0.673150
\(310\) 0 0
\(311\) −11.8061 −0.669465 −0.334732 0.942313i \(-0.608646\pi\)
−0.334732 + 0.942313i \(0.608646\pi\)
\(312\) 0 0
\(313\) 5.16859 0.292146 0.146073 0.989274i \(-0.453337\pi\)
0.146073 + 0.989274i \(0.453337\pi\)
\(314\) 0 0
\(315\) −2.64034 −0.148766
\(316\) 0 0
\(317\) 9.45956 0.531302 0.265651 0.964069i \(-0.414413\pi\)
0.265651 + 0.964069i \(0.414413\pi\)
\(318\) 0 0
\(319\) 20.3276 1.13813
\(320\) 0 0
\(321\) 15.9635 0.890994
\(322\) 0 0
\(323\) −7.98338 −0.444207
\(324\) 0 0
\(325\) 1.35929 0.0753998
\(326\) 0 0
\(327\) 7.29831 0.403598
\(328\) 0 0
\(329\) −3.77537 −0.208143
\(330\) 0 0
\(331\) −27.2197 −1.49613 −0.748065 0.663625i \(-0.769017\pi\)
−0.748065 + 0.663625i \(0.769017\pi\)
\(332\) 0 0
\(333\) 3.93417 0.215591
\(334\) 0 0
\(335\) −0.536788 −0.0293278
\(336\) 0 0
\(337\) −23.7410 −1.29325 −0.646626 0.762807i \(-0.723821\pi\)
−0.646626 + 0.762807i \(0.723821\pi\)
\(338\) 0 0
\(339\) 3.39983 0.184653
\(340\) 0 0
\(341\) −31.7469 −1.71919
\(342\) 0 0
\(343\) 1.00000 0.0539949
\(344\) 0 0
\(345\) 1.64907 0.0887830
\(346\) 0 0
\(347\) −6.39856 −0.343493 −0.171746 0.985141i \(-0.554941\pi\)
−0.171746 + 0.985141i \(0.554941\pi\)
\(348\) 0 0
\(349\) −15.2053 −0.813921 −0.406960 0.913446i \(-0.633411\pi\)
−0.406960 + 0.913446i \(0.633411\pi\)
\(350\) 0 0
\(351\) −2.21093 −0.118011
\(352\) 0 0
\(353\) 31.9967 1.70301 0.851505 0.524346i \(-0.175690\pi\)
0.851505 + 0.524346i \(0.175690\pi\)
\(354\) 0 0
\(355\) −8.84128 −0.469247
\(356\) 0 0
\(357\) 1.03321 0.0546834
\(358\) 0 0
\(359\) 11.5311 0.608586 0.304293 0.952578i \(-0.401580\pi\)
0.304293 + 0.952578i \(0.401580\pi\)
\(360\) 0 0
\(361\) 44.7344 2.35444
\(362\) 0 0
\(363\) −2.16073 −0.113409
\(364\) 0 0
\(365\) −7.02139 −0.367516
\(366\) 0 0
\(367\) −17.0671 −0.890896 −0.445448 0.895308i \(-0.646956\pi\)
−0.445448 + 0.895308i \(0.646956\pi\)
\(368\) 0 0
\(369\) −4.05316 −0.210999
\(370\) 0 0
\(371\) −12.3925 −0.643384
\(372\) 0 0
\(373\) −9.13050 −0.472759 −0.236380 0.971661i \(-0.575961\pi\)
−0.236380 + 0.971661i \(0.575961\pi\)
\(374\) 0 0
\(375\) 11.4815 0.592903
\(376\) 0 0
\(377\) 2.43734 0.125530
\(378\) 0 0
\(379\) 0.961890 0.0494090 0.0247045 0.999695i \(-0.492136\pi\)
0.0247045 + 0.999695i \(0.492136\pi\)
\(380\) 0 0
\(381\) 2.44721 0.125374
\(382\) 0 0
\(383\) 9.18606 0.469386 0.234693 0.972070i \(-0.424592\pi\)
0.234693 + 0.972070i \(0.424592\pi\)
\(384\) 0 0
\(385\) −4.94353 −0.251946
\(386\) 0 0
\(387\) −8.27869 −0.420830
\(388\) 0 0
\(389\) −30.1569 −1.52902 −0.764509 0.644614i \(-0.777018\pi\)
−0.764509 + 0.644614i \(0.777018\pi\)
\(390\) 0 0
\(391\) 1.16816 0.0590765
\(392\) 0 0
\(393\) 0.823009 0.0415153
\(394\) 0 0
\(395\) −2.47708 −0.124635
\(396\) 0 0
\(397\) 7.97859 0.400434 0.200217 0.979752i \(-0.435835\pi\)
0.200217 + 0.979752i \(0.435835\pi\)
\(398\) 0 0
\(399\) −8.24854 −0.412943
\(400\) 0 0
\(401\) −30.1922 −1.50772 −0.753862 0.657032i \(-0.771811\pi\)
−0.753862 + 0.657032i \(0.771811\pi\)
\(402\) 0 0
\(403\) −3.80655 −0.189618
\(404\) 0 0
\(405\) 0.726671 0.0361086
\(406\) 0 0
\(407\) 7.36599 0.365119
\(408\) 0 0
\(409\) 37.8398 1.87106 0.935528 0.353253i \(-0.114924\pi\)
0.935528 + 0.353253i \(0.114924\pi\)
\(410\) 0 0
\(411\) 18.3399 0.904642
\(412\) 0 0
\(413\) −13.6386 −0.671111
\(414\) 0 0
\(415\) −4.13765 −0.203109
\(416\) 0 0
\(417\) 6.22560 0.304869
\(418\) 0 0
\(419\) 5.97012 0.291659 0.145830 0.989310i \(-0.453415\pi\)
0.145830 + 0.989310i \(0.453415\pi\)
\(420\) 0 0
\(421\) 6.38246 0.311062 0.155531 0.987831i \(-0.450291\pi\)
0.155531 + 0.987831i \(0.450291\pi\)
\(422\) 0 0
\(423\) 7.29579 0.354734
\(424\) 0 0
\(425\) 3.13322 0.151984
\(426\) 0 0
\(427\) −4.23839 −0.205110
\(428\) 0 0
\(429\) −1.62182 −0.0783020
\(430\) 0 0
\(431\) −0.0788856 −0.00379978 −0.00189989 0.999998i \(-0.500605\pi\)
−0.00189989 + 0.999998i \(0.500605\pi\)
\(432\) 0 0
\(433\) −29.6701 −1.42585 −0.712926 0.701239i \(-0.752630\pi\)
−0.712926 + 0.701239i \(0.752630\pi\)
\(434\) 0 0
\(435\) 7.93109 0.380266
\(436\) 0 0
\(437\) −9.32588 −0.446117
\(438\) 0 0
\(439\) 14.1016 0.673033 0.336516 0.941678i \(-0.390751\pi\)
0.336516 + 0.941678i \(0.390751\pi\)
\(440\) 0 0
\(441\) −1.93247 −0.0920224
\(442\) 0 0
\(443\) −7.36923 −0.350123 −0.175061 0.984558i \(-0.556012\pi\)
−0.175061 + 0.984558i \(0.556012\pi\)
\(444\) 0 0
\(445\) 21.0047 0.995720
\(446\) 0 0
\(447\) 9.24867 0.437447
\(448\) 0 0
\(449\) 8.75753 0.413293 0.206647 0.978416i \(-0.433745\pi\)
0.206647 + 0.978416i \(0.433745\pi\)
\(450\) 0 0
\(451\) −7.58877 −0.357341
\(452\) 0 0
\(453\) −12.4609 −0.585466
\(454\) 0 0
\(455\) −0.592744 −0.0277883
\(456\) 0 0
\(457\) −20.9184 −0.978519 −0.489260 0.872138i \(-0.662733\pi\)
−0.489260 + 0.872138i \(0.662733\pi\)
\(458\) 0 0
\(459\) −5.09629 −0.237875
\(460\) 0 0
\(461\) 25.3568 1.18099 0.590493 0.807043i \(-0.298933\pi\)
0.590493 + 0.807043i \(0.298933\pi\)
\(462\) 0 0
\(463\) 29.4000 1.36633 0.683167 0.730262i \(-0.260602\pi\)
0.683167 + 0.730262i \(0.260602\pi\)
\(464\) 0 0
\(465\) −12.3865 −0.574409
\(466\) 0 0
\(467\) 34.7409 1.60762 0.803809 0.594888i \(-0.202803\pi\)
0.803809 + 0.594888i \(0.202803\pi\)
\(468\) 0 0
\(469\) −0.392876 −0.0181413
\(470\) 0 0
\(471\) 11.5918 0.534121
\(472\) 0 0
\(473\) −15.5003 −0.712704
\(474\) 0 0
\(475\) −25.0137 −1.14771
\(476\) 0 0
\(477\) 23.9481 1.09651
\(478\) 0 0
\(479\) 21.3771 0.976743 0.488371 0.872636i \(-0.337591\pi\)
0.488371 + 0.872636i \(0.337591\pi\)
\(480\) 0 0
\(481\) 0.883203 0.0402706
\(482\) 0 0
\(483\) 1.20696 0.0549186
\(484\) 0 0
\(485\) 1.34747 0.0611854
\(486\) 0 0
\(487\) 31.1361 1.41091 0.705456 0.708754i \(-0.250742\pi\)
0.705456 + 0.708754i \(0.250742\pi\)
\(488\) 0 0
\(489\) −2.98866 −0.135152
\(490\) 0 0
\(491\) 23.8418 1.07596 0.537982 0.842957i \(-0.319187\pi\)
0.537982 + 0.842957i \(0.319187\pi\)
\(492\) 0 0
\(493\) 5.61819 0.253030
\(494\) 0 0
\(495\) 9.55323 0.429386
\(496\) 0 0
\(497\) −6.47096 −0.290262
\(498\) 0 0
\(499\) 31.5541 1.41256 0.706278 0.707934i \(-0.250373\pi\)
0.706278 + 0.707934i \(0.250373\pi\)
\(500\) 0 0
\(501\) 10.7563 0.480558
\(502\) 0 0
\(503\) −9.12790 −0.406993 −0.203496 0.979076i \(-0.565231\pi\)
−0.203496 + 0.979076i \(0.565231\pi\)
\(504\) 0 0
\(505\) −1.20517 −0.0536296
\(506\) 0 0
\(507\) 13.2373 0.587890
\(508\) 0 0
\(509\) 28.7629 1.27489 0.637447 0.770494i \(-0.279991\pi\)
0.637447 + 0.770494i \(0.279991\pi\)
\(510\) 0 0
\(511\) −5.13898 −0.227335
\(512\) 0 0
\(513\) 40.6857 1.79632
\(514\) 0 0
\(515\) 15.6476 0.689516
\(516\) 0 0
\(517\) 13.6600 0.600766
\(518\) 0 0
\(519\) −8.67214 −0.380665
\(520\) 0 0
\(521\) 18.9095 0.828439 0.414220 0.910177i \(-0.364055\pi\)
0.414220 + 0.910177i \(0.364055\pi\)
\(522\) 0 0
\(523\) −0.124841 −0.00545890 −0.00272945 0.999996i \(-0.500869\pi\)
−0.00272945 + 0.999996i \(0.500869\pi\)
\(524\) 0 0
\(525\) 3.23729 0.141287
\(526\) 0 0
\(527\) −8.77427 −0.382213
\(528\) 0 0
\(529\) −21.6354 −0.940670
\(530\) 0 0
\(531\) 26.3562 1.14376
\(532\) 0 0
\(533\) −0.909916 −0.0394128
\(534\) 0 0
\(535\) −21.1098 −0.912656
\(536\) 0 0
\(537\) −15.1394 −0.653312
\(538\) 0 0
\(539\) −3.61819 −0.155846
\(540\) 0 0
\(541\) −6.38332 −0.274440 −0.137220 0.990541i \(-0.543817\pi\)
−0.137220 + 0.990541i \(0.543817\pi\)
\(542\) 0 0
\(543\) −0.300986 −0.0129166
\(544\) 0 0
\(545\) −9.65115 −0.413410
\(546\) 0 0
\(547\) −34.4049 −1.47105 −0.735523 0.677500i \(-0.763063\pi\)
−0.735523 + 0.677500i \(0.763063\pi\)
\(548\) 0 0
\(549\) 8.19056 0.349565
\(550\) 0 0
\(551\) −44.8521 −1.91077
\(552\) 0 0
\(553\) −1.81298 −0.0770958
\(554\) 0 0
\(555\) 2.87393 0.121992
\(556\) 0 0
\(557\) 10.7281 0.454565 0.227282 0.973829i \(-0.427016\pi\)
0.227282 + 0.973829i \(0.427016\pi\)
\(558\) 0 0
\(559\) −1.85853 −0.0786075
\(560\) 0 0
\(561\) −3.73836 −0.157834
\(562\) 0 0
\(563\) 6.18082 0.260491 0.130245 0.991482i \(-0.458424\pi\)
0.130245 + 0.991482i \(0.458424\pi\)
\(564\) 0 0
\(565\) −4.49587 −0.189143
\(566\) 0 0
\(567\) 0.531853 0.0223357
\(568\) 0 0
\(569\) 2.11127 0.0885090 0.0442545 0.999020i \(-0.485909\pi\)
0.0442545 + 0.999020i \(0.485909\pi\)
\(570\) 0 0
\(571\) −18.3029 −0.765952 −0.382976 0.923758i \(-0.625101\pi\)
−0.382976 + 0.923758i \(0.625101\pi\)
\(572\) 0 0
\(573\) 11.8037 0.493109
\(574\) 0 0
\(575\) 3.66011 0.152637
\(576\) 0 0
\(577\) −14.6759 −0.610966 −0.305483 0.952197i \(-0.598818\pi\)
−0.305483 + 0.952197i \(0.598818\pi\)
\(578\) 0 0
\(579\) 6.19081 0.257281
\(580\) 0 0
\(581\) −3.02836 −0.125638
\(582\) 0 0
\(583\) 44.8382 1.85701
\(584\) 0 0
\(585\) 1.14546 0.0473589
\(586\) 0 0
\(587\) −21.3369 −0.880669 −0.440334 0.897834i \(-0.645140\pi\)
−0.440334 + 0.897834i \(0.645140\pi\)
\(588\) 0 0
\(589\) 70.0484 2.88629
\(590\) 0 0
\(591\) −21.2115 −0.872526
\(592\) 0 0
\(593\) 20.7197 0.850857 0.425428 0.904992i \(-0.360123\pi\)
0.425428 + 0.904992i \(0.360123\pi\)
\(594\) 0 0
\(595\) −1.36630 −0.0560129
\(596\) 0 0
\(597\) −11.5521 −0.472798
\(598\) 0 0
\(599\) 33.9551 1.38737 0.693684 0.720279i \(-0.255986\pi\)
0.693684 + 0.720279i \(0.255986\pi\)
\(600\) 0 0
\(601\) 2.47422 0.100925 0.0504627 0.998726i \(-0.483930\pi\)
0.0504627 + 0.998726i \(0.483930\pi\)
\(602\) 0 0
\(603\) 0.759222 0.0309179
\(604\) 0 0
\(605\) 2.85731 0.116166
\(606\) 0 0
\(607\) −10.6420 −0.431947 −0.215974 0.976399i \(-0.569293\pi\)
−0.215974 + 0.976399i \(0.569293\pi\)
\(608\) 0 0
\(609\) 5.80478 0.235222
\(610\) 0 0
\(611\) 1.63787 0.0662613
\(612\) 0 0
\(613\) −32.6990 −1.32070 −0.660349 0.750959i \(-0.729592\pi\)
−0.660349 + 0.750959i \(0.729592\pi\)
\(614\) 0 0
\(615\) −2.96085 −0.119393
\(616\) 0 0
\(617\) −26.4645 −1.06542 −0.532711 0.846297i \(-0.678827\pi\)
−0.532711 + 0.846297i \(0.678827\pi\)
\(618\) 0 0
\(619\) −19.7169 −0.792490 −0.396245 0.918145i \(-0.629687\pi\)
−0.396245 + 0.918145i \(0.629687\pi\)
\(620\) 0 0
\(621\) −5.95329 −0.238897
\(622\) 0 0
\(623\) 15.3734 0.615923
\(624\) 0 0
\(625\) 0.483174 0.0193269
\(626\) 0 0
\(627\) 29.8448 1.19188
\(628\) 0 0
\(629\) 2.03582 0.0811736
\(630\) 0 0
\(631\) −33.1790 −1.32083 −0.660417 0.750899i \(-0.729621\pi\)
−0.660417 + 0.750899i \(0.729621\pi\)
\(632\) 0 0
\(633\) 27.4560 1.09128
\(634\) 0 0
\(635\) −3.23615 −0.128423
\(636\) 0 0
\(637\) −0.433831 −0.0171890
\(638\) 0 0
\(639\) 12.5049 0.494688
\(640\) 0 0
\(641\) −28.5498 −1.12765 −0.563825 0.825894i \(-0.690671\pi\)
−0.563825 + 0.825894i \(0.690671\pi\)
\(642\) 0 0
\(643\) 0.629729 0.0248341 0.0124170 0.999923i \(-0.496047\pi\)
0.0124170 + 0.999923i \(0.496047\pi\)
\(644\) 0 0
\(645\) −6.04763 −0.238125
\(646\) 0 0
\(647\) −26.9956 −1.06131 −0.530654 0.847588i \(-0.678054\pi\)
−0.530654 + 0.847588i \(0.678054\pi\)
\(648\) 0 0
\(649\) 49.3469 1.93704
\(650\) 0 0
\(651\) −9.06569 −0.355312
\(652\) 0 0
\(653\) 41.7136 1.63238 0.816189 0.577785i \(-0.196083\pi\)
0.816189 + 0.577785i \(0.196083\pi\)
\(654\) 0 0
\(655\) −1.08833 −0.0425246
\(656\) 0 0
\(657\) 9.93092 0.387442
\(658\) 0 0
\(659\) −36.2324 −1.41141 −0.705707 0.708503i \(-0.749371\pi\)
−0.705707 + 0.708503i \(0.749371\pi\)
\(660\) 0 0
\(661\) 31.9036 1.24091 0.620453 0.784244i \(-0.286949\pi\)
0.620453 + 0.784244i \(0.286949\pi\)
\(662\) 0 0
\(663\) −0.448240 −0.0174082
\(664\) 0 0
\(665\) 10.9077 0.422983
\(666\) 0 0
\(667\) 6.56295 0.254118
\(668\) 0 0
\(669\) −7.99537 −0.309119
\(670\) 0 0
\(671\) 15.3353 0.592012
\(672\) 0 0
\(673\) 41.4779 1.59885 0.799427 0.600763i \(-0.205136\pi\)
0.799427 + 0.600763i \(0.205136\pi\)
\(674\) 0 0
\(675\) −15.9678 −0.614601
\(676\) 0 0
\(677\) 36.9997 1.42201 0.711007 0.703185i \(-0.248239\pi\)
0.711007 + 0.703185i \(0.248239\pi\)
\(678\) 0 0
\(679\) 0.986216 0.0378475
\(680\) 0 0
\(681\) 3.21469 0.123187
\(682\) 0 0
\(683\) 24.2529 0.928012 0.464006 0.885832i \(-0.346412\pi\)
0.464006 + 0.885832i \(0.346412\pi\)
\(684\) 0 0
\(685\) −24.2524 −0.926636
\(686\) 0 0
\(687\) 20.7309 0.790933
\(688\) 0 0
\(689\) 5.37623 0.204818
\(690\) 0 0
\(691\) −8.62679 −0.328178 −0.164089 0.986446i \(-0.552468\pi\)
−0.164089 + 0.986446i \(0.552468\pi\)
\(692\) 0 0
\(693\) 6.99204 0.265606
\(694\) 0 0
\(695\) −8.23261 −0.312281
\(696\) 0 0
\(697\) −2.09740 −0.0794446
\(698\) 0 0
\(699\) −21.2103 −0.802248
\(700\) 0 0
\(701\) 46.9485 1.77322 0.886610 0.462517i \(-0.153054\pi\)
0.886610 + 0.462517i \(0.153054\pi\)
\(702\) 0 0
\(703\) −16.2528 −0.612985
\(704\) 0 0
\(705\) 5.32962 0.200725
\(706\) 0 0
\(707\) −0.882071 −0.0331737
\(708\) 0 0
\(709\) −7.55462 −0.283720 −0.141860 0.989887i \(-0.545308\pi\)
−0.141860 + 0.989887i \(0.545308\pi\)
\(710\) 0 0
\(711\) 3.50353 0.131393
\(712\) 0 0
\(713\) −10.2498 −0.383857
\(714\) 0 0
\(715\) 2.14466 0.0802057
\(716\) 0 0
\(717\) −16.7547 −0.625715
\(718\) 0 0
\(719\) 27.7902 1.03640 0.518201 0.855259i \(-0.326602\pi\)
0.518201 + 0.855259i \(0.326602\pi\)
\(720\) 0 0
\(721\) 11.4525 0.426514
\(722\) 0 0
\(723\) 19.9358 0.741419
\(724\) 0 0
\(725\) 17.6030 0.653760
\(726\) 0 0
\(727\) 33.3418 1.23658 0.618289 0.785951i \(-0.287826\pi\)
0.618289 + 0.785951i \(0.287826\pi\)
\(728\) 0 0
\(729\) 14.7689 0.546996
\(730\) 0 0
\(731\) −4.28400 −0.158449
\(732\) 0 0
\(733\) 21.8265 0.806179 0.403089 0.915161i \(-0.367936\pi\)
0.403089 + 0.915161i \(0.367936\pi\)
\(734\) 0 0
\(735\) −1.41168 −0.0520706
\(736\) 0 0
\(737\) 1.42150 0.0523616
\(738\) 0 0
\(739\) −7.99175 −0.293981 −0.146991 0.989138i \(-0.546959\pi\)
−0.146991 + 0.989138i \(0.546959\pi\)
\(740\) 0 0
\(741\) 3.57847 0.131458
\(742\) 0 0
\(743\) −21.5451 −0.790412 −0.395206 0.918592i \(-0.629327\pi\)
−0.395206 + 0.918592i \(0.629327\pi\)
\(744\) 0 0
\(745\) −12.2303 −0.448082
\(746\) 0 0
\(747\) 5.85222 0.214121
\(748\) 0 0
\(749\) −15.4503 −0.564542
\(750\) 0 0
\(751\) 31.1273 1.13585 0.567926 0.823079i \(-0.307746\pi\)
0.567926 + 0.823079i \(0.307746\pi\)
\(752\) 0 0
\(753\) 18.1699 0.662149
\(754\) 0 0
\(755\) 16.4781 0.599700
\(756\) 0 0
\(757\) 51.6759 1.87819 0.939096 0.343655i \(-0.111665\pi\)
0.939096 + 0.343655i \(0.111665\pi\)
\(758\) 0 0
\(759\) −4.36701 −0.158512
\(760\) 0 0
\(761\) 13.0392 0.472671 0.236335 0.971672i \(-0.424054\pi\)
0.236335 + 0.971672i \(0.424054\pi\)
\(762\) 0 0
\(763\) −7.06371 −0.255723
\(764\) 0 0
\(765\) 2.64034 0.0954616
\(766\) 0 0
\(767\) 5.91684 0.213645
\(768\) 0 0
\(769\) 12.8190 0.462264 0.231132 0.972922i \(-0.425757\pi\)
0.231132 + 0.972922i \(0.425757\pi\)
\(770\) 0 0
\(771\) 7.98348 0.287518
\(772\) 0 0
\(773\) −30.1833 −1.08562 −0.542808 0.839857i \(-0.682639\pi\)
−0.542808 + 0.839857i \(0.682639\pi\)
\(774\) 0 0
\(775\) −27.4917 −0.987532
\(776\) 0 0
\(777\) 2.10344 0.0754605
\(778\) 0 0
\(779\) 16.7443 0.599928
\(780\) 0 0
\(781\) 23.4131 0.837788
\(782\) 0 0
\(783\) −28.6319 −1.02322
\(784\) 0 0
\(785\) −15.3288 −0.547107
\(786\) 0 0
\(787\) 44.2604 1.57771 0.788857 0.614577i \(-0.210673\pi\)
0.788857 + 0.614577i \(0.210673\pi\)
\(788\) 0 0
\(789\) 10.0212 0.356765
\(790\) 0 0
\(791\) −3.29054 −0.116998
\(792\) 0 0
\(793\) 1.83874 0.0652957
\(794\) 0 0
\(795\) 17.4942 0.620455
\(796\) 0 0
\(797\) −53.6382 −1.89996 −0.949982 0.312306i \(-0.898899\pi\)
−0.949982 + 0.312306i \(0.898899\pi\)
\(798\) 0 0
\(799\) 3.77537 0.133563
\(800\) 0 0
\(801\) −29.7087 −1.04971
\(802\) 0 0
\(803\) 18.5938 0.656160
\(804\) 0 0
\(805\) −1.59606 −0.0562537
\(806\) 0 0
\(807\) 11.9303 0.419967
\(808\) 0 0
\(809\) −19.0440 −0.669551 −0.334776 0.942298i \(-0.608661\pi\)
−0.334776 + 0.942298i \(0.608661\pi\)
\(810\) 0 0
\(811\) −51.4731 −1.80747 −0.903733 0.428096i \(-0.859184\pi\)
−0.903733 + 0.428096i \(0.859184\pi\)
\(812\) 0 0
\(813\) −12.1922 −0.427600
\(814\) 0 0
\(815\) 3.95215 0.138438
\(816\) 0 0
\(817\) 34.2008 1.19653
\(818\) 0 0
\(819\) 0.838366 0.0292949
\(820\) 0 0
\(821\) 4.50392 0.157188 0.0785940 0.996907i \(-0.474957\pi\)
0.0785940 + 0.996907i \(0.474957\pi\)
\(822\) 0 0
\(823\) 37.6342 1.31185 0.655923 0.754828i \(-0.272280\pi\)
0.655923 + 0.754828i \(0.272280\pi\)
\(824\) 0 0
\(825\) −11.7131 −0.407798
\(826\) 0 0
\(827\) −3.09731 −0.107704 −0.0538520 0.998549i \(-0.517150\pi\)
−0.0538520 + 0.998549i \(0.517150\pi\)
\(828\) 0 0
\(829\) 36.0877 1.25338 0.626688 0.779270i \(-0.284410\pi\)
0.626688 + 0.779270i \(0.284410\pi\)
\(830\) 0 0
\(831\) −11.1770 −0.387726
\(832\) 0 0
\(833\) −1.00000 −0.0346479
\(834\) 0 0
\(835\) −14.2240 −0.492241
\(836\) 0 0
\(837\) 44.7163 1.54562
\(838\) 0 0
\(839\) −41.0497 −1.41719 −0.708597 0.705614i \(-0.750671\pi\)
−0.708597 + 0.705614i \(0.750671\pi\)
\(840\) 0 0
\(841\) 2.56402 0.0884145
\(842\) 0 0
\(843\) 0.796400 0.0274295
\(844\) 0 0
\(845\) −17.5048 −0.602182
\(846\) 0 0
\(847\) 2.09127 0.0718570
\(848\) 0 0
\(849\) 25.3150 0.868809
\(850\) 0 0
\(851\) 2.37817 0.0815226
\(852\) 0 0
\(853\) −2.23419 −0.0764972 −0.0382486 0.999268i \(-0.512178\pi\)
−0.0382486 + 0.999268i \(0.512178\pi\)
\(854\) 0 0
\(855\) −21.0788 −0.720881
\(856\) 0 0
\(857\) −43.1912 −1.47538 −0.737692 0.675137i \(-0.764084\pi\)
−0.737692 + 0.675137i \(0.764084\pi\)
\(858\) 0 0
\(859\) 44.1166 1.50524 0.752619 0.658456i \(-0.228790\pi\)
0.752619 + 0.658456i \(0.228790\pi\)
\(860\) 0 0
\(861\) −2.16706 −0.0738532
\(862\) 0 0
\(863\) 25.1589 0.856419 0.428209 0.903680i \(-0.359145\pi\)
0.428209 + 0.903680i \(0.359145\pi\)
\(864\) 0 0
\(865\) 11.4679 0.389919
\(866\) 0 0
\(867\) −1.03321 −0.0350898
\(868\) 0 0
\(869\) 6.55970 0.222523
\(870\) 0 0
\(871\) 0.170442 0.00577521
\(872\) 0 0
\(873\) −1.90583 −0.0645027
\(874\) 0 0
\(875\) −11.1124 −0.375669
\(876\) 0 0
\(877\) −50.4841 −1.70473 −0.852363 0.522950i \(-0.824831\pi\)
−0.852363 + 0.522950i \(0.824831\pi\)
\(878\) 0 0
\(879\) 27.7718 0.936718
\(880\) 0 0
\(881\) 45.5434 1.53440 0.767198 0.641410i \(-0.221650\pi\)
0.767198 + 0.641410i \(0.221650\pi\)
\(882\) 0 0
\(883\) −4.57926 −0.154104 −0.0770522 0.997027i \(-0.524551\pi\)
−0.0770522 + 0.997027i \(0.524551\pi\)
\(884\) 0 0
\(885\) 19.2533 0.647194
\(886\) 0 0
\(887\) −9.75709 −0.327611 −0.163806 0.986493i \(-0.552377\pi\)
−0.163806 + 0.986493i \(0.552377\pi\)
\(888\) 0 0
\(889\) −2.36854 −0.0794384
\(890\) 0 0
\(891\) −1.92434 −0.0644679
\(892\) 0 0
\(893\) −30.1402 −1.00860
\(894\) 0 0
\(895\) 20.0200 0.669195
\(896\) 0 0
\(897\) −0.523617 −0.0174831
\(898\) 0 0
\(899\) −49.2955 −1.64410
\(900\) 0 0
\(901\) 12.3925 0.412853
\(902\) 0 0
\(903\) −4.42628 −0.147297
\(904\) 0 0
\(905\) 0.398019 0.0132306
\(906\) 0 0
\(907\) 3.29156 0.109294 0.0546472 0.998506i \(-0.482597\pi\)
0.0546472 + 0.998506i \(0.482597\pi\)
\(908\) 0 0
\(909\) 1.70458 0.0565372
\(910\) 0 0
\(911\) −2.19783 −0.0728173 −0.0364086 0.999337i \(-0.511592\pi\)
−0.0364086 + 0.999337i \(0.511592\pi\)
\(912\) 0 0
\(913\) 10.9572 0.362629
\(914\) 0 0
\(915\) 5.98325 0.197800
\(916\) 0 0
\(917\) −0.796553 −0.0263045
\(918\) 0 0
\(919\) −23.4899 −0.774861 −0.387430 0.921899i \(-0.626637\pi\)
−0.387430 + 0.921899i \(0.626637\pi\)
\(920\) 0 0
\(921\) −3.24558 −0.106945
\(922\) 0 0
\(923\) 2.80730 0.0924035
\(924\) 0 0
\(925\) 6.37868 0.209730
\(926\) 0 0
\(927\) −22.1317 −0.726899
\(928\) 0 0
\(929\) −47.6752 −1.56417 −0.782087 0.623170i \(-0.785845\pi\)
−0.782087 + 0.623170i \(0.785845\pi\)
\(930\) 0 0
\(931\) 7.98338 0.261645
\(932\) 0 0
\(933\) 12.1983 0.399353
\(934\) 0 0
\(935\) 4.94353 0.161671
\(936\) 0 0
\(937\) 52.8484 1.72648 0.863241 0.504792i \(-0.168431\pi\)
0.863241 + 0.504792i \(0.168431\pi\)
\(938\) 0 0
\(939\) −5.34026 −0.174273
\(940\) 0 0
\(941\) 19.9202 0.649379 0.324689 0.945821i \(-0.394740\pi\)
0.324689 + 0.945821i \(0.394740\pi\)
\(942\) 0 0
\(943\) −2.45010 −0.0797862
\(944\) 0 0
\(945\) 6.96307 0.226509
\(946\) 0 0
\(947\) −22.3510 −0.726311 −0.363156 0.931729i \(-0.618301\pi\)
−0.363156 + 0.931729i \(0.618301\pi\)
\(948\) 0 0
\(949\) 2.22945 0.0723709
\(950\) 0 0
\(951\) −9.77375 −0.316935
\(952\) 0 0
\(953\) −0.395664 −0.0128168 −0.00640841 0.999979i \(-0.502040\pi\)
−0.00640841 + 0.999979i \(0.502040\pi\)
\(954\) 0 0
\(955\) −15.6090 −0.505097
\(956\) 0 0
\(957\) −21.0028 −0.678924
\(958\) 0 0
\(959\) −17.7504 −0.573190
\(960\) 0 0
\(961\) 45.9878 1.48348
\(962\) 0 0
\(963\) 29.8573 0.962137
\(964\) 0 0
\(965\) −8.18661 −0.263536
\(966\) 0 0
\(967\) −57.7244 −1.85629 −0.928145 0.372218i \(-0.878597\pi\)
−0.928145 + 0.372218i \(0.878597\pi\)
\(968\) 0 0
\(969\) 8.24854 0.264981
\(970\) 0 0
\(971\) 47.8636 1.53602 0.768008 0.640440i \(-0.221248\pi\)
0.768008 + 0.640440i \(0.221248\pi\)
\(972\) 0 0
\(973\) −6.02547 −0.193168
\(974\) 0 0
\(975\) −1.40443 −0.0449779
\(976\) 0 0
\(977\) −3.15545 −0.100952 −0.0504759 0.998725i \(-0.516074\pi\)
−0.0504759 + 0.998725i \(0.516074\pi\)
\(978\) 0 0
\(979\) −55.6239 −1.77775
\(980\) 0 0
\(981\) 13.6504 0.435824
\(982\) 0 0
\(983\) −18.4200 −0.587507 −0.293754 0.955881i \(-0.594904\pi\)
−0.293754 + 0.955881i \(0.594904\pi\)
\(984\) 0 0
\(985\) 28.0497 0.893739
\(986\) 0 0
\(987\) 3.90076 0.124163
\(988\) 0 0
\(989\) −5.00440 −0.159131
\(990\) 0 0
\(991\) 53.7196 1.70646 0.853229 0.521536i \(-0.174641\pi\)
0.853229 + 0.521536i \(0.174641\pi\)
\(992\) 0 0
\(993\) 28.1238 0.892481
\(994\) 0 0
\(995\) 15.2763 0.484292
\(996\) 0 0
\(997\) −52.3921 −1.65928 −0.829638 0.558302i \(-0.811453\pi\)
−0.829638 + 0.558302i \(0.811453\pi\)
\(998\) 0 0
\(999\) −10.3752 −0.328255
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 3808.2.a.i.1.3 6
4.3 odd 2 3808.2.a.m.1.4 yes 6
8.3 odd 2 7616.2.a.bx.1.3 6
8.5 even 2 7616.2.a.cb.1.4 6
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
3808.2.a.i.1.3 6 1.1 even 1 trivial
3808.2.a.m.1.4 yes 6 4.3 odd 2
7616.2.a.bx.1.3 6 8.3 odd 2
7616.2.a.cb.1.4 6 8.5 even 2