Properties

Label 3808.2.a.i.1.1
Level $3808$
Weight $2$
Character 3808.1
Self dual yes
Analytic conductor $30.407$
Analytic rank $1$
Dimension $6$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [3808,2,Mod(1,3808)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(3808, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("3808.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 3808 = 2^{5} \cdot 7 \cdot 17 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 3808.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(30.4070330897\)
Analytic rank: \(1\)
Dimension: \(6\)
Coefficient field: 6.6.80686992.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{6} - x^{5} - 10x^{4} + 15x^{3} + 8x^{2} - 15x + 3 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 2 \)
Twist minimal: yes
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.1
Root \(1.76333\) of defining polynomial
Character \(\chi\) \(=\) 3808.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-2.64896 q^{3} -3.47027 q^{5} +1.00000 q^{7} +4.01699 q^{9} -3.20072 q^{11} -1.54672 q^{13} +9.19261 q^{15} -1.00000 q^{17} +0.0113771 q^{19} -2.64896 q^{21} +6.16132 q^{23} +7.04278 q^{25} -2.69397 q^{27} -5.20072 q^{29} -2.66511 q^{31} +8.47858 q^{33} -3.47027 q^{35} +3.06788 q^{37} +4.09720 q^{39} -2.97490 q^{41} +7.60088 q^{43} -13.9401 q^{45} +4.94604 q^{47} +1.00000 q^{49} +2.64896 q^{51} -0.535608 q^{53} +11.1074 q^{55} -0.0301375 q^{57} +8.21252 q^{59} +14.9370 q^{61} +4.01699 q^{63} +5.36754 q^{65} +9.29109 q^{67} -16.3211 q^{69} -1.53804 q^{71} -9.37634 q^{73} -18.6561 q^{75} -3.20072 q^{77} +8.74908 q^{79} -4.91475 q^{81} -1.44402 q^{83} +3.47027 q^{85} +13.7765 q^{87} -6.23128 q^{89} -1.54672 q^{91} +7.05977 q^{93} -0.0394816 q^{95} -3.03705 q^{97} -12.8573 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 6 q - 2 q^{3} - 6 q^{5} + 6 q^{7} + 4 q^{9} - 2 q^{11} - 4 q^{13} + 2 q^{15} - 6 q^{17} - 10 q^{19} - 2 q^{21} + 4 q^{23} + 4 q^{25} - 8 q^{27} - 14 q^{29} + 8 q^{31} - 8 q^{33} - 6 q^{35} - 4 q^{37} + 14 q^{39}+ \cdots - 4 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −2.64896 −1.52938 −0.764689 0.644399i \(-0.777107\pi\)
−0.764689 + 0.644399i \(0.777107\pi\)
\(4\) 0 0
\(5\) −3.47027 −1.55195 −0.775976 0.630762i \(-0.782742\pi\)
−0.775976 + 0.630762i \(0.782742\pi\)
\(6\) 0 0
\(7\) 1.00000 0.377964
\(8\) 0 0
\(9\) 4.01699 1.33900
\(10\) 0 0
\(11\) −3.20072 −0.965053 −0.482527 0.875881i \(-0.660281\pi\)
−0.482527 + 0.875881i \(0.660281\pi\)
\(12\) 0 0
\(13\) −1.54672 −0.428983 −0.214492 0.976726i \(-0.568809\pi\)
−0.214492 + 0.976726i \(0.568809\pi\)
\(14\) 0 0
\(15\) 9.19261 2.37352
\(16\) 0 0
\(17\) −1.00000 −0.242536
\(18\) 0 0
\(19\) 0.0113771 0.00261008 0.00130504 0.999999i \(-0.499585\pi\)
0.00130504 + 0.999999i \(0.499585\pi\)
\(20\) 0 0
\(21\) −2.64896 −0.578051
\(22\) 0 0
\(23\) 6.16132 1.28472 0.642362 0.766401i \(-0.277954\pi\)
0.642362 + 0.766401i \(0.277954\pi\)
\(24\) 0 0
\(25\) 7.04278 1.40856
\(26\) 0 0
\(27\) −2.69397 −0.518455
\(28\) 0 0
\(29\) −5.20072 −0.965749 −0.482875 0.875689i \(-0.660407\pi\)
−0.482875 + 0.875689i \(0.660407\pi\)
\(30\) 0 0
\(31\) −2.66511 −0.478668 −0.239334 0.970937i \(-0.576929\pi\)
−0.239334 + 0.970937i \(0.576929\pi\)
\(32\) 0 0
\(33\) 8.47858 1.47593
\(34\) 0 0
\(35\) −3.47027 −0.586583
\(36\) 0 0
\(37\) 3.06788 0.504357 0.252178 0.967681i \(-0.418853\pi\)
0.252178 + 0.967681i \(0.418853\pi\)
\(38\) 0 0
\(39\) 4.09720 0.656077
\(40\) 0 0
\(41\) −2.97490 −0.464601 −0.232301 0.972644i \(-0.574625\pi\)
−0.232301 + 0.972644i \(0.574625\pi\)
\(42\) 0 0
\(43\) 7.60088 1.15912 0.579562 0.814928i \(-0.303224\pi\)
0.579562 + 0.814928i \(0.303224\pi\)
\(44\) 0 0
\(45\) −13.9401 −2.07806
\(46\) 0 0
\(47\) 4.94604 0.721454 0.360727 0.932671i \(-0.382529\pi\)
0.360727 + 0.932671i \(0.382529\pi\)
\(48\) 0 0
\(49\) 1.00000 0.142857
\(50\) 0 0
\(51\) 2.64896 0.370929
\(52\) 0 0
\(53\) −0.535608 −0.0735714 −0.0367857 0.999323i \(-0.511712\pi\)
−0.0367857 + 0.999323i \(0.511712\pi\)
\(54\) 0 0
\(55\) 11.1074 1.49772
\(56\) 0 0
\(57\) −0.0301375 −0.00399181
\(58\) 0 0
\(59\) 8.21252 1.06918 0.534590 0.845112i \(-0.320466\pi\)
0.534590 + 0.845112i \(0.320466\pi\)
\(60\) 0 0
\(61\) 14.9370 1.91248 0.956242 0.292576i \(-0.0945125\pi\)
0.956242 + 0.292576i \(0.0945125\pi\)
\(62\) 0 0
\(63\) 4.01699 0.506093
\(64\) 0 0
\(65\) 5.36754 0.665761
\(66\) 0 0
\(67\) 9.29109 1.13509 0.567544 0.823343i \(-0.307894\pi\)
0.567544 + 0.823343i \(0.307894\pi\)
\(68\) 0 0
\(69\) −16.3211 −1.96483
\(70\) 0 0
\(71\) −1.53804 −0.182531 −0.0912657 0.995827i \(-0.529091\pi\)
−0.0912657 + 0.995827i \(0.529091\pi\)
\(72\) 0 0
\(73\) −9.37634 −1.09742 −0.548709 0.836014i \(-0.684880\pi\)
−0.548709 + 0.836014i \(0.684880\pi\)
\(74\) 0 0
\(75\) −18.6561 −2.15422
\(76\) 0 0
\(77\) −3.20072 −0.364756
\(78\) 0 0
\(79\) 8.74908 0.984349 0.492174 0.870497i \(-0.336202\pi\)
0.492174 + 0.870497i \(0.336202\pi\)
\(80\) 0 0
\(81\) −4.91475 −0.546084
\(82\) 0 0
\(83\) −1.44402 −0.158502 −0.0792509 0.996855i \(-0.525253\pi\)
−0.0792509 + 0.996855i \(0.525253\pi\)
\(84\) 0 0
\(85\) 3.47027 0.376404
\(86\) 0 0
\(87\) 13.7765 1.47700
\(88\) 0 0
\(89\) −6.23128 −0.660515 −0.330257 0.943891i \(-0.607136\pi\)
−0.330257 + 0.943891i \(0.607136\pi\)
\(90\) 0 0
\(91\) −1.54672 −0.162140
\(92\) 0 0
\(93\) 7.05977 0.732064
\(94\) 0 0
\(95\) −0.0394816 −0.00405073
\(96\) 0 0
\(97\) −3.03705 −0.308366 −0.154183 0.988042i \(-0.549275\pi\)
−0.154183 + 0.988042i \(0.549275\pi\)
\(98\) 0 0
\(99\) −12.8573 −1.29220
\(100\) 0 0
\(101\) −5.64392 −0.561591 −0.280796 0.959768i \(-0.590598\pi\)
−0.280796 + 0.959768i \(0.590598\pi\)
\(102\) 0 0
\(103\) −9.19907 −0.906411 −0.453206 0.891406i \(-0.649720\pi\)
−0.453206 + 0.891406i \(0.649720\pi\)
\(104\) 0 0
\(105\) 9.19261 0.897107
\(106\) 0 0
\(107\) 10.6372 1.02834 0.514169 0.857689i \(-0.328100\pi\)
0.514169 + 0.857689i \(0.328100\pi\)
\(108\) 0 0
\(109\) 3.82950 0.366800 0.183400 0.983038i \(-0.441290\pi\)
0.183400 + 0.983038i \(0.441290\pi\)
\(110\) 0 0
\(111\) −8.12670 −0.771352
\(112\) 0 0
\(113\) −6.55468 −0.616612 −0.308306 0.951287i \(-0.599762\pi\)
−0.308306 + 0.951287i \(0.599762\pi\)
\(114\) 0 0
\(115\) −21.3815 −1.99383
\(116\) 0 0
\(117\) −6.21316 −0.574407
\(118\) 0 0
\(119\) −1.00000 −0.0916698
\(120\) 0 0
\(121\) −0.755397 −0.0686725
\(122\) 0 0
\(123\) 7.88039 0.710551
\(124\) 0 0
\(125\) −7.08901 −0.634060
\(126\) 0 0
\(127\) −7.45151 −0.661215 −0.330607 0.943768i \(-0.607254\pi\)
−0.330607 + 0.943768i \(0.607254\pi\)
\(128\) 0 0
\(129\) −20.1344 −1.77274
\(130\) 0 0
\(131\) −22.8184 −1.99366 −0.996828 0.0795834i \(-0.974641\pi\)
−0.996828 + 0.0795834i \(0.974641\pi\)
\(132\) 0 0
\(133\) 0.0113771 0.000986519 0
\(134\) 0 0
\(135\) 9.34881 0.804618
\(136\) 0 0
\(137\) 6.63694 0.567032 0.283516 0.958967i \(-0.408499\pi\)
0.283516 + 0.958967i \(0.408499\pi\)
\(138\) 0 0
\(139\) 1.53989 0.130612 0.0653059 0.997865i \(-0.479198\pi\)
0.0653059 + 0.997865i \(0.479198\pi\)
\(140\) 0 0
\(141\) −13.1019 −1.10338
\(142\) 0 0
\(143\) 4.95062 0.413992
\(144\) 0 0
\(145\) 18.0479 1.49880
\(146\) 0 0
\(147\) −2.64896 −0.218483
\(148\) 0 0
\(149\) 8.99432 0.736843 0.368422 0.929659i \(-0.379898\pi\)
0.368422 + 0.929659i \(0.379898\pi\)
\(150\) 0 0
\(151\) 20.4497 1.66417 0.832087 0.554645i \(-0.187146\pi\)
0.832087 + 0.554645i \(0.187146\pi\)
\(152\) 0 0
\(153\) −4.01699 −0.324755
\(154\) 0 0
\(155\) 9.24866 0.742870
\(156\) 0 0
\(157\) 9.20876 0.734939 0.367470 0.930036i \(-0.380224\pi\)
0.367470 + 0.930036i \(0.380224\pi\)
\(158\) 0 0
\(159\) 1.41880 0.112519
\(160\) 0 0
\(161\) 6.16132 0.485580
\(162\) 0 0
\(163\) 1.97242 0.154492 0.0772458 0.997012i \(-0.475387\pi\)
0.0772458 + 0.997012i \(0.475387\pi\)
\(164\) 0 0
\(165\) −29.4230 −2.29057
\(166\) 0 0
\(167\) 2.91168 0.225313 0.112656 0.993634i \(-0.464064\pi\)
0.112656 + 0.993634i \(0.464064\pi\)
\(168\) 0 0
\(169\) −10.6077 −0.815973
\(170\) 0 0
\(171\) 0.0457017 0.00349490
\(172\) 0 0
\(173\) −24.5219 −1.86436 −0.932182 0.361990i \(-0.882098\pi\)
−0.932182 + 0.361990i \(0.882098\pi\)
\(174\) 0 0
\(175\) 7.04278 0.532384
\(176\) 0 0
\(177\) −21.7546 −1.63518
\(178\) 0 0
\(179\) 14.9089 1.11434 0.557171 0.830398i \(-0.311887\pi\)
0.557171 + 0.830398i \(0.311887\pi\)
\(180\) 0 0
\(181\) −25.2389 −1.87599 −0.937997 0.346642i \(-0.887322\pi\)
−0.937997 + 0.346642i \(0.887322\pi\)
\(182\) 0 0
\(183\) −39.5675 −2.92491
\(184\) 0 0
\(185\) −10.6464 −0.782738
\(186\) 0 0
\(187\) 3.20072 0.234060
\(188\) 0 0
\(189\) −2.69397 −0.195958
\(190\) 0 0
\(191\) 16.6866 1.20740 0.603698 0.797213i \(-0.293693\pi\)
0.603698 + 0.797213i \(0.293693\pi\)
\(192\) 0 0
\(193\) −24.5256 −1.76539 −0.882695 0.469946i \(-0.844273\pi\)
−0.882695 + 0.469946i \(0.844273\pi\)
\(194\) 0 0
\(195\) −14.2184 −1.01820
\(196\) 0 0
\(197\) −20.2406 −1.44208 −0.721042 0.692891i \(-0.756337\pi\)
−0.721042 + 0.692891i \(0.756337\pi\)
\(198\) 0 0
\(199\) −13.6553 −0.967996 −0.483998 0.875069i \(-0.660816\pi\)
−0.483998 + 0.875069i \(0.660816\pi\)
\(200\) 0 0
\(201\) −24.6117 −1.73598
\(202\) 0 0
\(203\) −5.20072 −0.365019
\(204\) 0 0
\(205\) 10.3237 0.721039
\(206\) 0 0
\(207\) 24.7500 1.72024
\(208\) 0 0
\(209\) −0.0364149 −0.00251887
\(210\) 0 0
\(211\) 2.38354 0.164090 0.0820448 0.996629i \(-0.473855\pi\)
0.0820448 + 0.996629i \(0.473855\pi\)
\(212\) 0 0
\(213\) 4.07420 0.279159
\(214\) 0 0
\(215\) −26.3771 −1.79890
\(216\) 0 0
\(217\) −2.66511 −0.180920
\(218\) 0 0
\(219\) 24.8376 1.67837
\(220\) 0 0
\(221\) 1.54672 0.104044
\(222\) 0 0
\(223\) 12.4786 0.835627 0.417814 0.908533i \(-0.362796\pi\)
0.417814 + 0.908533i \(0.362796\pi\)
\(224\) 0 0
\(225\) 28.2908 1.88605
\(226\) 0 0
\(227\) −28.2900 −1.87767 −0.938837 0.344362i \(-0.888095\pi\)
−0.938837 + 0.344362i \(0.888095\pi\)
\(228\) 0 0
\(229\) 19.6231 1.29673 0.648366 0.761329i \(-0.275453\pi\)
0.648366 + 0.761329i \(0.275453\pi\)
\(230\) 0 0
\(231\) 8.47858 0.557850
\(232\) 0 0
\(233\) −11.8839 −0.778540 −0.389270 0.921124i \(-0.627273\pi\)
−0.389270 + 0.921124i \(0.627273\pi\)
\(234\) 0 0
\(235\) −17.1641 −1.11966
\(236\) 0 0
\(237\) −23.1760 −1.50544
\(238\) 0 0
\(239\) −22.4124 −1.44974 −0.724870 0.688886i \(-0.758100\pi\)
−0.724870 + 0.688886i \(0.758100\pi\)
\(240\) 0 0
\(241\) 9.23371 0.594796 0.297398 0.954754i \(-0.403881\pi\)
0.297398 + 0.954754i \(0.403881\pi\)
\(242\) 0 0
\(243\) 21.1009 1.35362
\(244\) 0 0
\(245\) −3.47027 −0.221707
\(246\) 0 0
\(247\) −0.0175972 −0.00111968
\(248\) 0 0
\(249\) 3.82515 0.242409
\(250\) 0 0
\(251\) −7.60242 −0.479860 −0.239930 0.970790i \(-0.577125\pi\)
−0.239930 + 0.970790i \(0.577125\pi\)
\(252\) 0 0
\(253\) −19.7207 −1.23983
\(254\) 0 0
\(255\) −9.19261 −0.575664
\(256\) 0 0
\(257\) 16.3597 1.02049 0.510244 0.860030i \(-0.329555\pi\)
0.510244 + 0.860030i \(0.329555\pi\)
\(258\) 0 0
\(259\) 3.06788 0.190629
\(260\) 0 0
\(261\) −20.8912 −1.29314
\(262\) 0 0
\(263\) −17.0815 −1.05329 −0.526644 0.850086i \(-0.676550\pi\)
−0.526644 + 0.850086i \(0.676550\pi\)
\(264\) 0 0
\(265\) 1.85871 0.114179
\(266\) 0 0
\(267\) 16.5064 1.01018
\(268\) 0 0
\(269\) 16.1464 0.984464 0.492232 0.870464i \(-0.336181\pi\)
0.492232 + 0.870464i \(0.336181\pi\)
\(270\) 0 0
\(271\) −0.0670645 −0.00407388 −0.00203694 0.999998i \(-0.500648\pi\)
−0.00203694 + 0.999998i \(0.500648\pi\)
\(272\) 0 0
\(273\) 4.09720 0.247974
\(274\) 0 0
\(275\) −22.5420 −1.35933
\(276\) 0 0
\(277\) 0.875160 0.0525833 0.0262916 0.999654i \(-0.491630\pi\)
0.0262916 + 0.999654i \(0.491630\pi\)
\(278\) 0 0
\(279\) −10.7057 −0.640935
\(280\) 0 0
\(281\) 16.7138 0.997062 0.498531 0.866872i \(-0.333873\pi\)
0.498531 + 0.866872i \(0.333873\pi\)
\(282\) 0 0
\(283\) 3.60884 0.214523 0.107262 0.994231i \(-0.465792\pi\)
0.107262 + 0.994231i \(0.465792\pi\)
\(284\) 0 0
\(285\) 0.104585 0.00619509
\(286\) 0 0
\(287\) −2.97490 −0.175603
\(288\) 0 0
\(289\) 1.00000 0.0588235
\(290\) 0 0
\(291\) 8.04503 0.471608
\(292\) 0 0
\(293\) −21.8592 −1.27703 −0.638513 0.769611i \(-0.720450\pi\)
−0.638513 + 0.769611i \(0.720450\pi\)
\(294\) 0 0
\(295\) −28.4997 −1.65932
\(296\) 0 0
\(297\) 8.62265 0.500337
\(298\) 0 0
\(299\) −9.52985 −0.551125
\(300\) 0 0
\(301\) 7.60088 0.438107
\(302\) 0 0
\(303\) 14.9505 0.858885
\(304\) 0 0
\(305\) −51.8354 −2.96809
\(306\) 0 0
\(307\) −30.1814 −1.72254 −0.861272 0.508145i \(-0.830332\pi\)
−0.861272 + 0.508145i \(0.830332\pi\)
\(308\) 0 0
\(309\) 24.3680 1.38625
\(310\) 0 0
\(311\) −3.27625 −0.185779 −0.0928895 0.995676i \(-0.529610\pi\)
−0.0928895 + 0.995676i \(0.529610\pi\)
\(312\) 0 0
\(313\) 17.6038 0.995024 0.497512 0.867457i \(-0.334247\pi\)
0.497512 + 0.867457i \(0.334247\pi\)
\(314\) 0 0
\(315\) −13.9401 −0.785433
\(316\) 0 0
\(317\) 1.37930 0.0774691 0.0387346 0.999250i \(-0.487667\pi\)
0.0387346 + 0.999250i \(0.487667\pi\)
\(318\) 0 0
\(319\) 16.6460 0.931999
\(320\) 0 0
\(321\) −28.1775 −1.57272
\(322\) 0 0
\(323\) −0.0113771 −0.000633038 0
\(324\) 0 0
\(325\) −10.8932 −0.604247
\(326\) 0 0
\(327\) −10.1442 −0.560976
\(328\) 0 0
\(329\) 4.94604 0.272684
\(330\) 0 0
\(331\) −33.9723 −1.86728 −0.933642 0.358207i \(-0.883388\pi\)
−0.933642 + 0.358207i \(0.883388\pi\)
\(332\) 0 0
\(333\) 12.3237 0.675332
\(334\) 0 0
\(335\) −32.2426 −1.76160
\(336\) 0 0
\(337\) −7.43345 −0.404926 −0.202463 0.979290i \(-0.564895\pi\)
−0.202463 + 0.979290i \(0.564895\pi\)
\(338\) 0 0
\(339\) 17.3631 0.943033
\(340\) 0 0
\(341\) 8.53027 0.461940
\(342\) 0 0
\(343\) 1.00000 0.0539949
\(344\) 0 0
\(345\) 56.6386 3.04932
\(346\) 0 0
\(347\) −25.7875 −1.38435 −0.692173 0.721731i \(-0.743347\pi\)
−0.692173 + 0.721731i \(0.743347\pi\)
\(348\) 0 0
\(349\) −1.82999 −0.0979572 −0.0489786 0.998800i \(-0.515597\pi\)
−0.0489786 + 0.998800i \(0.515597\pi\)
\(350\) 0 0
\(351\) 4.16682 0.222408
\(352\) 0 0
\(353\) −24.8569 −1.32300 −0.661499 0.749946i \(-0.730079\pi\)
−0.661499 + 0.749946i \(0.730079\pi\)
\(354\) 0 0
\(355\) 5.33740 0.283280
\(356\) 0 0
\(357\) 2.64896 0.140198
\(358\) 0 0
\(359\) 20.5506 1.08462 0.542309 0.840179i \(-0.317550\pi\)
0.542309 + 0.840179i \(0.317550\pi\)
\(360\) 0 0
\(361\) −18.9999 −0.999993
\(362\) 0 0
\(363\) 2.00102 0.105026
\(364\) 0 0
\(365\) 32.5384 1.70314
\(366\) 0 0
\(367\) 6.59274 0.344138 0.172069 0.985085i \(-0.444955\pi\)
0.172069 + 0.985085i \(0.444955\pi\)
\(368\) 0 0
\(369\) −11.9502 −0.622100
\(370\) 0 0
\(371\) −0.535608 −0.0278074
\(372\) 0 0
\(373\) 15.1702 0.785484 0.392742 0.919649i \(-0.371527\pi\)
0.392742 + 0.919649i \(0.371527\pi\)
\(374\) 0 0
\(375\) 18.7785 0.969718
\(376\) 0 0
\(377\) 8.04406 0.414290
\(378\) 0 0
\(379\) −2.30255 −0.118274 −0.0591371 0.998250i \(-0.518835\pi\)
−0.0591371 + 0.998250i \(0.518835\pi\)
\(380\) 0 0
\(381\) 19.7388 1.01125
\(382\) 0 0
\(383\) −10.2770 −0.525131 −0.262566 0.964914i \(-0.584569\pi\)
−0.262566 + 0.964914i \(0.584569\pi\)
\(384\) 0 0
\(385\) 11.1074 0.566084
\(386\) 0 0
\(387\) 30.5327 1.55206
\(388\) 0 0
\(389\) −11.5364 −0.584920 −0.292460 0.956278i \(-0.594474\pi\)
−0.292460 + 0.956278i \(0.594474\pi\)
\(390\) 0 0
\(391\) −6.16132 −0.311592
\(392\) 0 0
\(393\) 60.4451 3.04905
\(394\) 0 0
\(395\) −30.3617 −1.52766
\(396\) 0 0
\(397\) 33.2102 1.66677 0.833385 0.552693i \(-0.186400\pi\)
0.833385 + 0.552693i \(0.186400\pi\)
\(398\) 0 0
\(399\) −0.0301375 −0.00150876
\(400\) 0 0
\(401\) −12.4388 −0.621162 −0.310581 0.950547i \(-0.600524\pi\)
−0.310581 + 0.950547i \(0.600524\pi\)
\(402\) 0 0
\(403\) 4.12218 0.205341
\(404\) 0 0
\(405\) 17.0555 0.847496
\(406\) 0 0
\(407\) −9.81943 −0.486731
\(408\) 0 0
\(409\) 36.3620 1.79799 0.898993 0.437963i \(-0.144300\pi\)
0.898993 + 0.437963i \(0.144300\pi\)
\(410\) 0 0
\(411\) −17.5810 −0.867207
\(412\) 0 0
\(413\) 8.21252 0.404112
\(414\) 0 0
\(415\) 5.01114 0.245987
\(416\) 0 0
\(417\) −4.07911 −0.199755
\(418\) 0 0
\(419\) 2.66361 0.130126 0.0650629 0.997881i \(-0.479275\pi\)
0.0650629 + 0.997881i \(0.479275\pi\)
\(420\) 0 0
\(421\) 37.2328 1.81461 0.907307 0.420468i \(-0.138134\pi\)
0.907307 + 0.420468i \(0.138134\pi\)
\(422\) 0 0
\(423\) 19.8682 0.966025
\(424\) 0 0
\(425\) −7.04278 −0.341625
\(426\) 0 0
\(427\) 14.9370 0.722851
\(428\) 0 0
\(429\) −13.1140 −0.633150
\(430\) 0 0
\(431\) 37.0726 1.78573 0.892863 0.450329i \(-0.148693\pi\)
0.892863 + 0.450329i \(0.148693\pi\)
\(432\) 0 0
\(433\) 6.12435 0.294317 0.147159 0.989113i \(-0.452987\pi\)
0.147159 + 0.989113i \(0.452987\pi\)
\(434\) 0 0
\(435\) −47.8082 −2.29223
\(436\) 0 0
\(437\) 0.0700980 0.00335324
\(438\) 0 0
\(439\) −18.2035 −0.868804 −0.434402 0.900719i \(-0.643040\pi\)
−0.434402 + 0.900719i \(0.643040\pi\)
\(440\) 0 0
\(441\) 4.01699 0.191285
\(442\) 0 0
\(443\) −12.9973 −0.617519 −0.308760 0.951140i \(-0.599914\pi\)
−0.308760 + 0.951140i \(0.599914\pi\)
\(444\) 0 0
\(445\) 21.6242 1.02509
\(446\) 0 0
\(447\) −23.8256 −1.12691
\(448\) 0 0
\(449\) −4.06157 −0.191677 −0.0958386 0.995397i \(-0.530553\pi\)
−0.0958386 + 0.995397i \(0.530553\pi\)
\(450\) 0 0
\(451\) 9.52182 0.448365
\(452\) 0 0
\(453\) −54.1705 −2.54515
\(454\) 0 0
\(455\) 5.36754 0.251634
\(456\) 0 0
\(457\) 2.30315 0.107737 0.0538685 0.998548i \(-0.482845\pi\)
0.0538685 + 0.998548i \(0.482845\pi\)
\(458\) 0 0
\(459\) 2.69397 0.125744
\(460\) 0 0
\(461\) 14.9436 0.695994 0.347997 0.937496i \(-0.386862\pi\)
0.347997 + 0.937496i \(0.386862\pi\)
\(462\) 0 0
\(463\) 7.78313 0.361713 0.180856 0.983510i \(-0.442113\pi\)
0.180856 + 0.983510i \(0.442113\pi\)
\(464\) 0 0
\(465\) −24.4993 −1.13613
\(466\) 0 0
\(467\) 13.9498 0.645520 0.322760 0.946481i \(-0.395389\pi\)
0.322760 + 0.946481i \(0.395389\pi\)
\(468\) 0 0
\(469\) 9.29109 0.429023
\(470\) 0 0
\(471\) −24.3936 −1.12400
\(472\) 0 0
\(473\) −24.3283 −1.11862
\(474\) 0 0
\(475\) 0.0801264 0.00367645
\(476\) 0 0
\(477\) −2.15153 −0.0985119
\(478\) 0 0
\(479\) 25.1103 1.14732 0.573660 0.819094i \(-0.305523\pi\)
0.573660 + 0.819094i \(0.305523\pi\)
\(480\) 0 0
\(481\) −4.74516 −0.216360
\(482\) 0 0
\(483\) −16.3211 −0.742636
\(484\) 0 0
\(485\) 10.5394 0.478569
\(486\) 0 0
\(487\) −0.495306 −0.0224445 −0.0112222 0.999937i \(-0.503572\pi\)
−0.0112222 + 0.999937i \(0.503572\pi\)
\(488\) 0 0
\(489\) −5.22486 −0.236276
\(490\) 0 0
\(491\) −27.8965 −1.25895 −0.629475 0.777021i \(-0.716730\pi\)
−0.629475 + 0.777021i \(0.716730\pi\)
\(492\) 0 0
\(493\) 5.20072 0.234229
\(494\) 0 0
\(495\) 44.6182 2.00544
\(496\) 0 0
\(497\) −1.53804 −0.0689904
\(498\) 0 0
\(499\) −34.8309 −1.55924 −0.779622 0.626251i \(-0.784589\pi\)
−0.779622 + 0.626251i \(0.784589\pi\)
\(500\) 0 0
\(501\) −7.71293 −0.344588
\(502\) 0 0
\(503\) 40.7250 1.81584 0.907920 0.419144i \(-0.137670\pi\)
0.907920 + 0.419144i \(0.137670\pi\)
\(504\) 0 0
\(505\) 19.5859 0.871563
\(506\) 0 0
\(507\) 28.0993 1.24793
\(508\) 0 0
\(509\) 36.2516 1.60682 0.803412 0.595424i \(-0.203016\pi\)
0.803412 + 0.595424i \(0.203016\pi\)
\(510\) 0 0
\(511\) −9.37634 −0.414785
\(512\) 0 0
\(513\) −0.0306496 −0.00135321
\(514\) 0 0
\(515\) 31.9233 1.40671
\(516\) 0 0
\(517\) −15.8309 −0.696242
\(518\) 0 0
\(519\) 64.9575 2.85132
\(520\) 0 0
\(521\) −21.3665 −0.936083 −0.468042 0.883706i \(-0.655040\pi\)
−0.468042 + 0.883706i \(0.655040\pi\)
\(522\) 0 0
\(523\) 21.3287 0.932641 0.466321 0.884616i \(-0.345579\pi\)
0.466321 + 0.884616i \(0.345579\pi\)
\(524\) 0 0
\(525\) −18.6561 −0.814217
\(526\) 0 0
\(527\) 2.66511 0.116094
\(528\) 0 0
\(529\) 14.9619 0.650518
\(530\) 0 0
\(531\) 32.9896 1.43163
\(532\) 0 0
\(533\) 4.60134 0.199306
\(534\) 0 0
\(535\) −36.9140 −1.59593
\(536\) 0 0
\(537\) −39.4930 −1.70425
\(538\) 0 0
\(539\) −3.20072 −0.137865
\(540\) 0 0
\(541\) 37.0080 1.59110 0.795549 0.605889i \(-0.207182\pi\)
0.795549 + 0.605889i \(0.207182\pi\)
\(542\) 0 0
\(543\) 66.8569 2.86911
\(544\) 0 0
\(545\) −13.2894 −0.569256
\(546\) 0 0
\(547\) 5.62675 0.240582 0.120291 0.992739i \(-0.461617\pi\)
0.120291 + 0.992739i \(0.461617\pi\)
\(548\) 0 0
\(549\) 60.0017 2.56081
\(550\) 0 0
\(551\) −0.0591691 −0.00252069
\(552\) 0 0
\(553\) 8.74908 0.372049
\(554\) 0 0
\(555\) 28.2018 1.19710
\(556\) 0 0
\(557\) −18.7841 −0.795908 −0.397954 0.917405i \(-0.630280\pi\)
−0.397954 + 0.917405i \(0.630280\pi\)
\(558\) 0 0
\(559\) −11.7564 −0.497244
\(560\) 0 0
\(561\) −8.47858 −0.357966
\(562\) 0 0
\(563\) −0.743293 −0.0313261 −0.0156630 0.999877i \(-0.504986\pi\)
−0.0156630 + 0.999877i \(0.504986\pi\)
\(564\) 0 0
\(565\) 22.7465 0.956953
\(566\) 0 0
\(567\) −4.91475 −0.206400
\(568\) 0 0
\(569\) −10.0137 −0.419794 −0.209897 0.977723i \(-0.567313\pi\)
−0.209897 + 0.977723i \(0.567313\pi\)
\(570\) 0 0
\(571\) −27.2153 −1.13893 −0.569463 0.822017i \(-0.692849\pi\)
−0.569463 + 0.822017i \(0.692849\pi\)
\(572\) 0 0
\(573\) −44.2020 −1.84657
\(574\) 0 0
\(575\) 43.3929 1.80961
\(576\) 0 0
\(577\) −30.9186 −1.28716 −0.643580 0.765379i \(-0.722551\pi\)
−0.643580 + 0.765379i \(0.722551\pi\)
\(578\) 0 0
\(579\) 64.9673 2.69995
\(580\) 0 0
\(581\) −1.44402 −0.0599081
\(582\) 0 0
\(583\) 1.71433 0.0710003
\(584\) 0 0
\(585\) 21.5614 0.891453
\(586\) 0 0
\(587\) −36.5625 −1.50910 −0.754548 0.656245i \(-0.772144\pi\)
−0.754548 + 0.656245i \(0.772144\pi\)
\(588\) 0 0
\(589\) −0.0303212 −0.00124936
\(590\) 0 0
\(591\) 53.6166 2.20549
\(592\) 0 0
\(593\) −28.3634 −1.16474 −0.582372 0.812922i \(-0.697875\pi\)
−0.582372 + 0.812922i \(0.697875\pi\)
\(594\) 0 0
\(595\) 3.47027 0.142267
\(596\) 0 0
\(597\) 36.1723 1.48043
\(598\) 0 0
\(599\) −10.9449 −0.447196 −0.223598 0.974681i \(-0.571780\pi\)
−0.223598 + 0.974681i \(0.571780\pi\)
\(600\) 0 0
\(601\) 39.5183 1.61198 0.805992 0.591927i \(-0.201632\pi\)
0.805992 + 0.591927i \(0.201632\pi\)
\(602\) 0 0
\(603\) 37.3222 1.51988
\(604\) 0 0
\(605\) 2.62143 0.106576
\(606\) 0 0
\(607\) −27.1078 −1.10027 −0.550137 0.835075i \(-0.685424\pi\)
−0.550137 + 0.835075i \(0.685424\pi\)
\(608\) 0 0
\(609\) 13.7765 0.558252
\(610\) 0 0
\(611\) −7.65014 −0.309492
\(612\) 0 0
\(613\) 9.09919 0.367513 0.183756 0.982972i \(-0.441174\pi\)
0.183756 + 0.982972i \(0.441174\pi\)
\(614\) 0 0
\(615\) −27.3471 −1.10274
\(616\) 0 0
\(617\) −24.1649 −0.972844 −0.486422 0.873724i \(-0.661698\pi\)
−0.486422 + 0.873724i \(0.661698\pi\)
\(618\) 0 0
\(619\) −12.9334 −0.519838 −0.259919 0.965630i \(-0.583696\pi\)
−0.259919 + 0.965630i \(0.583696\pi\)
\(620\) 0 0
\(621\) −16.5984 −0.666072
\(622\) 0 0
\(623\) −6.23128 −0.249651
\(624\) 0 0
\(625\) −10.6131 −0.424525
\(626\) 0 0
\(627\) 0.0964616 0.00385230
\(628\) 0 0
\(629\) −3.06788 −0.122324
\(630\) 0 0
\(631\) −23.0233 −0.916542 −0.458271 0.888812i \(-0.651531\pi\)
−0.458271 + 0.888812i \(0.651531\pi\)
\(632\) 0 0
\(633\) −6.31390 −0.250955
\(634\) 0 0
\(635\) 25.8588 1.02617
\(636\) 0 0
\(637\) −1.54672 −0.0612833
\(638\) 0 0
\(639\) −6.17828 −0.244409
\(640\) 0 0
\(641\) −3.82902 −0.151237 −0.0756187 0.997137i \(-0.524093\pi\)
−0.0756187 + 0.997137i \(0.524093\pi\)
\(642\) 0 0
\(643\) 46.9509 1.85156 0.925782 0.378058i \(-0.123408\pi\)
0.925782 + 0.378058i \(0.123408\pi\)
\(644\) 0 0
\(645\) 69.8719 2.75120
\(646\) 0 0
\(647\) 0.107512 0.00422672 0.00211336 0.999998i \(-0.499327\pi\)
0.00211336 + 0.999998i \(0.499327\pi\)
\(648\) 0 0
\(649\) −26.2860 −1.03181
\(650\) 0 0
\(651\) 7.05977 0.276694
\(652\) 0 0
\(653\) −4.79227 −0.187536 −0.0937680 0.995594i \(-0.529891\pi\)
−0.0937680 + 0.995594i \(0.529891\pi\)
\(654\) 0 0
\(655\) 79.1862 3.09406
\(656\) 0 0
\(657\) −37.6647 −1.46944
\(658\) 0 0
\(659\) 16.6176 0.647330 0.323665 0.946172i \(-0.395085\pi\)
0.323665 + 0.946172i \(0.395085\pi\)
\(660\) 0 0
\(661\) −29.8500 −1.16103 −0.580514 0.814250i \(-0.697148\pi\)
−0.580514 + 0.814250i \(0.697148\pi\)
\(662\) 0 0
\(663\) −4.09720 −0.159122
\(664\) 0 0
\(665\) −0.0394816 −0.00153103
\(666\) 0 0
\(667\) −32.0433 −1.24072
\(668\) 0 0
\(669\) −33.0553 −1.27799
\(670\) 0 0
\(671\) −47.8091 −1.84565
\(672\) 0 0
\(673\) 13.9438 0.537496 0.268748 0.963211i \(-0.413390\pi\)
0.268748 + 0.963211i \(0.413390\pi\)
\(674\) 0 0
\(675\) −18.9731 −0.730273
\(676\) 0 0
\(677\) −34.2451 −1.31614 −0.658072 0.752955i \(-0.728628\pi\)
−0.658072 + 0.752955i \(0.728628\pi\)
\(678\) 0 0
\(679\) −3.03705 −0.116551
\(680\) 0 0
\(681\) 74.9391 2.87167
\(682\) 0 0
\(683\) −1.75015 −0.0669676 −0.0334838 0.999439i \(-0.510660\pi\)
−0.0334838 + 0.999439i \(0.510660\pi\)
\(684\) 0 0
\(685\) −23.0320 −0.880007
\(686\) 0 0
\(687\) −51.9808 −1.98319
\(688\) 0 0
\(689\) 0.828436 0.0315609
\(690\) 0 0
\(691\) 22.4798 0.855174 0.427587 0.903974i \(-0.359364\pi\)
0.427587 + 0.903974i \(0.359364\pi\)
\(692\) 0 0
\(693\) −12.8573 −0.488407
\(694\) 0 0
\(695\) −5.34384 −0.202703
\(696\) 0 0
\(697\) 2.97490 0.112682
\(698\) 0 0
\(699\) 31.4800 1.19068
\(700\) 0 0
\(701\) 24.7339 0.934188 0.467094 0.884208i \(-0.345301\pi\)
0.467094 + 0.884208i \(0.345301\pi\)
\(702\) 0 0
\(703\) 0.0349036 0.00131641
\(704\) 0 0
\(705\) 45.4670 1.71239
\(706\) 0 0
\(707\) −5.64392 −0.212262
\(708\) 0 0
\(709\) −26.3461 −0.989449 −0.494724 0.869050i \(-0.664731\pi\)
−0.494724 + 0.869050i \(0.664731\pi\)
\(710\) 0 0
\(711\) 35.1450 1.31804
\(712\) 0 0
\(713\) −16.4206 −0.614957
\(714\) 0 0
\(715\) −17.1800 −0.642495
\(716\) 0 0
\(717\) 59.3696 2.21720
\(718\) 0 0
\(719\) 29.7454 1.10932 0.554658 0.832079i \(-0.312849\pi\)
0.554658 + 0.832079i \(0.312849\pi\)
\(720\) 0 0
\(721\) −9.19907 −0.342591
\(722\) 0 0
\(723\) −24.4597 −0.909667
\(724\) 0 0
\(725\) −36.6275 −1.36031
\(726\) 0 0
\(727\) −42.6322 −1.58114 −0.790571 0.612371i \(-0.790216\pi\)
−0.790571 + 0.612371i \(0.790216\pi\)
\(728\) 0 0
\(729\) −41.1512 −1.52412
\(730\) 0 0
\(731\) −7.60088 −0.281129
\(732\) 0 0
\(733\) 50.0667 1.84926 0.924629 0.380870i \(-0.124375\pi\)
0.924629 + 0.380870i \(0.124375\pi\)
\(734\) 0 0
\(735\) 9.19261 0.339075
\(736\) 0 0
\(737\) −29.7382 −1.09542
\(738\) 0 0
\(739\) −7.71366 −0.283751 −0.141876 0.989884i \(-0.545313\pi\)
−0.141876 + 0.989884i \(0.545313\pi\)
\(740\) 0 0
\(741\) 0.0466143 0.00171242
\(742\) 0 0
\(743\) 3.79522 0.139233 0.0696166 0.997574i \(-0.477822\pi\)
0.0696166 + 0.997574i \(0.477822\pi\)
\(744\) 0 0
\(745\) −31.2127 −1.14355
\(746\) 0 0
\(747\) −5.80062 −0.212234
\(748\) 0 0
\(749\) 10.6372 0.388675
\(750\) 0 0
\(751\) 38.0086 1.38695 0.693477 0.720479i \(-0.256078\pi\)
0.693477 + 0.720479i \(0.256078\pi\)
\(752\) 0 0
\(753\) 20.1385 0.733888
\(754\) 0 0
\(755\) −70.9661 −2.58272
\(756\) 0 0
\(757\) −30.9647 −1.12543 −0.562715 0.826651i \(-0.690243\pi\)
−0.562715 + 0.826651i \(0.690243\pi\)
\(758\) 0 0
\(759\) 52.2393 1.89617
\(760\) 0 0
\(761\) 39.0647 1.41609 0.708047 0.706165i \(-0.249576\pi\)
0.708047 + 0.706165i \(0.249576\pi\)
\(762\) 0 0
\(763\) 3.82950 0.138637
\(764\) 0 0
\(765\) 13.9401 0.504004
\(766\) 0 0
\(767\) −12.7025 −0.458660
\(768\) 0 0
\(769\) 40.9950 1.47832 0.739158 0.673532i \(-0.235224\pi\)
0.739158 + 0.673532i \(0.235224\pi\)
\(770\) 0 0
\(771\) −43.3361 −1.56071
\(772\) 0 0
\(773\) −43.5267 −1.56555 −0.782774 0.622307i \(-0.786196\pi\)
−0.782774 + 0.622307i \(0.786196\pi\)
\(774\) 0 0
\(775\) −18.7698 −0.674231
\(776\) 0 0
\(777\) −8.12670 −0.291544
\(778\) 0 0
\(779\) −0.0338457 −0.00121265
\(780\) 0 0
\(781\) 4.92282 0.176152
\(782\) 0 0
\(783\) 14.0106 0.500698
\(784\) 0 0
\(785\) −31.9569 −1.14059
\(786\) 0 0
\(787\) −42.5862 −1.51803 −0.759017 0.651070i \(-0.774320\pi\)
−0.759017 + 0.651070i \(0.774320\pi\)
\(788\) 0 0
\(789\) 45.2481 1.61088
\(790\) 0 0
\(791\) −6.55468 −0.233058
\(792\) 0 0
\(793\) −23.1033 −0.820424
\(794\) 0 0
\(795\) −4.92364 −0.174623
\(796\) 0 0
\(797\) −34.9978 −1.23968 −0.619842 0.784726i \(-0.712803\pi\)
−0.619842 + 0.784726i \(0.712803\pi\)
\(798\) 0 0
\(799\) −4.94604 −0.174978
\(800\) 0 0
\(801\) −25.0310 −0.884427
\(802\) 0 0
\(803\) 30.0110 1.05907
\(804\) 0 0
\(805\) −21.3815 −0.753598
\(806\) 0 0
\(807\) −42.7712 −1.50562
\(808\) 0 0
\(809\) 2.14216 0.0753145 0.0376572 0.999291i \(-0.488010\pi\)
0.0376572 + 0.999291i \(0.488010\pi\)
\(810\) 0 0
\(811\) −18.4844 −0.649074 −0.324537 0.945873i \(-0.605208\pi\)
−0.324537 + 0.945873i \(0.605208\pi\)
\(812\) 0 0
\(813\) 0.177651 0.00623050
\(814\) 0 0
\(815\) −6.84482 −0.239764
\(816\) 0 0
\(817\) 0.0864759 0.00302541
\(818\) 0 0
\(819\) −6.21316 −0.217106
\(820\) 0 0
\(821\) −27.9732 −0.976270 −0.488135 0.872768i \(-0.662323\pi\)
−0.488135 + 0.872768i \(0.662323\pi\)
\(822\) 0 0
\(823\) −15.8037 −0.550881 −0.275441 0.961318i \(-0.588824\pi\)
−0.275441 + 0.961318i \(0.588824\pi\)
\(824\) 0 0
\(825\) 59.7128 2.07893
\(826\) 0 0
\(827\) 21.9192 0.762206 0.381103 0.924533i \(-0.375544\pi\)
0.381103 + 0.924533i \(0.375544\pi\)
\(828\) 0 0
\(829\) 12.7382 0.442417 0.221209 0.975227i \(-0.429000\pi\)
0.221209 + 0.975227i \(0.429000\pi\)
\(830\) 0 0
\(831\) −2.31827 −0.0804197
\(832\) 0 0
\(833\) −1.00000 −0.0346479
\(834\) 0 0
\(835\) −10.1043 −0.349675
\(836\) 0 0
\(837\) 7.17973 0.248168
\(838\) 0 0
\(839\) 19.5781 0.675912 0.337956 0.941162i \(-0.390265\pi\)
0.337956 + 0.941162i \(0.390265\pi\)
\(840\) 0 0
\(841\) −1.95252 −0.0673283
\(842\) 0 0
\(843\) −44.2742 −1.52488
\(844\) 0 0
\(845\) 36.8114 1.26635
\(846\) 0 0
\(847\) −0.755397 −0.0259558
\(848\) 0 0
\(849\) −9.55968 −0.328087
\(850\) 0 0
\(851\) 18.9022 0.647959
\(852\) 0 0
\(853\) 3.13675 0.107400 0.0537002 0.998557i \(-0.482898\pi\)
0.0537002 + 0.998557i \(0.482898\pi\)
\(854\) 0 0
\(855\) −0.158597 −0.00542391
\(856\) 0 0
\(857\) −32.1680 −1.09884 −0.549418 0.835547i \(-0.685151\pi\)
−0.549418 + 0.835547i \(0.685151\pi\)
\(858\) 0 0
\(859\) 10.7404 0.366456 0.183228 0.983070i \(-0.441345\pi\)
0.183228 + 0.983070i \(0.441345\pi\)
\(860\) 0 0
\(861\) 7.88039 0.268563
\(862\) 0 0
\(863\) 34.7776 1.18384 0.591921 0.805996i \(-0.298370\pi\)
0.591921 + 0.805996i \(0.298370\pi\)
\(864\) 0 0
\(865\) 85.0976 2.89340
\(866\) 0 0
\(867\) −2.64896 −0.0899634
\(868\) 0 0
\(869\) −28.0034 −0.949949
\(870\) 0 0
\(871\) −14.3707 −0.486933
\(872\) 0 0
\(873\) −12.1998 −0.412901
\(874\) 0 0
\(875\) −7.08901 −0.239652
\(876\) 0 0
\(877\) 39.4027 1.33054 0.665268 0.746605i \(-0.268317\pi\)
0.665268 + 0.746605i \(0.268317\pi\)
\(878\) 0 0
\(879\) 57.9041 1.95306
\(880\) 0 0
\(881\) −42.6074 −1.43548 −0.717739 0.696312i \(-0.754823\pi\)
−0.717739 + 0.696312i \(0.754823\pi\)
\(882\) 0 0
\(883\) −39.2162 −1.31973 −0.659866 0.751384i \(-0.729387\pi\)
−0.659866 + 0.751384i \(0.729387\pi\)
\(884\) 0 0
\(885\) 75.4945 2.53772
\(886\) 0 0
\(887\) 16.7917 0.563809 0.281905 0.959442i \(-0.409034\pi\)
0.281905 + 0.959442i \(0.409034\pi\)
\(888\) 0 0
\(889\) −7.45151 −0.249916
\(890\) 0 0
\(891\) 15.7307 0.527000
\(892\) 0 0
\(893\) 0.0562716 0.00188306
\(894\) 0 0
\(895\) −51.7378 −1.72941
\(896\) 0 0
\(897\) 25.2442 0.842879
\(898\) 0 0
\(899\) 13.8605 0.462273
\(900\) 0 0
\(901\) 0.535608 0.0178437
\(902\) 0 0
\(903\) −20.1344 −0.670032
\(904\) 0 0
\(905\) 87.5859 2.91145
\(906\) 0 0
\(907\) 20.3496 0.675696 0.337848 0.941201i \(-0.390301\pi\)
0.337848 + 0.941201i \(0.390301\pi\)
\(908\) 0 0
\(909\) −22.6716 −0.751969
\(910\) 0 0
\(911\) 7.65810 0.253724 0.126862 0.991920i \(-0.459509\pi\)
0.126862 + 0.991920i \(0.459509\pi\)
\(912\) 0 0
\(913\) 4.62191 0.152963
\(914\) 0 0
\(915\) 137.310 4.53932
\(916\) 0 0
\(917\) −22.8184 −0.753531
\(918\) 0 0
\(919\) 23.6786 0.781086 0.390543 0.920585i \(-0.372287\pi\)
0.390543 + 0.920585i \(0.372287\pi\)
\(920\) 0 0
\(921\) 79.9493 2.63442
\(922\) 0 0
\(923\) 2.37891 0.0783029
\(924\) 0 0
\(925\) 21.6064 0.710415
\(926\) 0 0
\(927\) −36.9526 −1.21368
\(928\) 0 0
\(929\) 51.3901 1.68605 0.843027 0.537871i \(-0.180771\pi\)
0.843027 + 0.537871i \(0.180771\pi\)
\(930\) 0 0
\(931\) 0.0113771 0.000372869 0
\(932\) 0 0
\(933\) 8.67865 0.284126
\(934\) 0 0
\(935\) −11.1074 −0.363250
\(936\) 0 0
\(937\) −45.0616 −1.47210 −0.736050 0.676927i \(-0.763311\pi\)
−0.736050 + 0.676927i \(0.763311\pi\)
\(938\) 0 0
\(939\) −46.6317 −1.52177
\(940\) 0 0
\(941\) 31.8818 1.03932 0.519658 0.854374i \(-0.326059\pi\)
0.519658 + 0.854374i \(0.326059\pi\)
\(942\) 0 0
\(943\) −18.3293 −0.596885
\(944\) 0 0
\(945\) 9.34881 0.304117
\(946\) 0 0
\(947\) 0.924158 0.0300311 0.0150156 0.999887i \(-0.495220\pi\)
0.0150156 + 0.999887i \(0.495220\pi\)
\(948\) 0 0
\(949\) 14.5026 0.470774
\(950\) 0 0
\(951\) −3.65371 −0.118480
\(952\) 0 0
\(953\) −4.18494 −0.135564 −0.0677818 0.997700i \(-0.521592\pi\)
−0.0677818 + 0.997700i \(0.521592\pi\)
\(954\) 0 0
\(955\) −57.9069 −1.87382
\(956\) 0 0
\(957\) −44.0947 −1.42538
\(958\) 0 0
\(959\) 6.63694 0.214318
\(960\) 0 0
\(961\) −23.8972 −0.770877
\(962\) 0 0
\(963\) 42.7296 1.37694
\(964\) 0 0
\(965\) 85.1104 2.73980
\(966\) 0 0
\(967\) 28.7146 0.923399 0.461699 0.887037i \(-0.347240\pi\)
0.461699 + 0.887037i \(0.347240\pi\)
\(968\) 0 0
\(969\) 0.0301375 0.000968155 0
\(970\) 0 0
\(971\) 27.4138 0.879750 0.439875 0.898059i \(-0.355023\pi\)
0.439875 + 0.898059i \(0.355023\pi\)
\(972\) 0 0
\(973\) 1.53989 0.0493666
\(974\) 0 0
\(975\) 28.8557 0.924122
\(976\) 0 0
\(977\) 42.2346 1.35121 0.675603 0.737266i \(-0.263884\pi\)
0.675603 + 0.737266i \(0.263884\pi\)
\(978\) 0 0
\(979\) 19.9446 0.637432
\(980\) 0 0
\(981\) 15.3831 0.491144
\(982\) 0 0
\(983\) −11.0260 −0.351676 −0.175838 0.984419i \(-0.556263\pi\)
−0.175838 + 0.984419i \(0.556263\pi\)
\(984\) 0 0
\(985\) 70.2405 2.23805
\(986\) 0 0
\(987\) −13.1019 −0.417037
\(988\) 0 0
\(989\) 46.8315 1.48915
\(990\) 0 0
\(991\) −30.5359 −0.970006 −0.485003 0.874513i \(-0.661181\pi\)
−0.485003 + 0.874513i \(0.661181\pi\)
\(992\) 0 0
\(993\) 89.9912 2.85578
\(994\) 0 0
\(995\) 47.3875 1.50228
\(996\) 0 0
\(997\) −32.1217 −1.01731 −0.508653 0.860972i \(-0.669856\pi\)
−0.508653 + 0.860972i \(0.669856\pi\)
\(998\) 0 0
\(999\) −8.26479 −0.261486
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 3808.2.a.i.1.1 6
4.3 odd 2 3808.2.a.m.1.6 yes 6
8.3 odd 2 7616.2.a.bx.1.1 6
8.5 even 2 7616.2.a.cb.1.6 6
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
3808.2.a.i.1.1 6 1.1 even 1 trivial
3808.2.a.m.1.6 yes 6 4.3 odd 2
7616.2.a.bx.1.1 6 8.3 odd 2
7616.2.a.cb.1.6 6 8.5 even 2