Properties

Label 3808.2.a.h.1.6
Level $3808$
Weight $2$
Character 3808.1
Self dual yes
Analytic conductor $30.407$
Analytic rank $1$
Dimension $6$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [3808,2,Mod(1,3808)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(3808, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("3808.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 3808 = 2^{5} \cdot 7 \cdot 17 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 3808.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(30.4070330897\)
Analytic rank: \(1\)
Dimension: \(6\)
Coefficient field: 6.6.109859312.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{6} - 3x^{5} - 7x^{4} + 15x^{3} + 13x^{2} - 9x - 2 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 2 \)
Twist minimal: yes
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.6
Root \(0.635879\) of defining polynomial
Character \(\chi\) \(=\) 3808.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+1.84197 q^{3} +3.17127 q^{5} -1.00000 q^{7} +0.392864 q^{9} -4.90224 q^{11} -5.51984 q^{13} +5.84140 q^{15} -1.00000 q^{17} -2.99670 q^{19} -1.84197 q^{21} -4.99670 q^{23} +5.05696 q^{25} -4.80227 q^{27} -8.89564 q^{29} +3.56686 q^{31} -9.02979 q^{33} -3.17127 q^{35} +5.95240 q^{37} -10.1674 q^{39} +9.28773 q^{41} +1.21777 q^{43} +1.24588 q^{45} -11.8579 q^{47} +1.00000 q^{49} -1.84197 q^{51} -5.42595 q^{53} -15.5463 q^{55} -5.51984 q^{57} +0.469674 q^{59} +10.4856 q^{61} -0.392864 q^{63} -17.5049 q^{65} -14.6501 q^{67} -9.20379 q^{69} +11.0352 q^{71} -2.08016 q^{73} +9.31479 q^{75} +4.90224 q^{77} +12.3222 q^{79} -10.0243 q^{81} +2.17844 q^{83} -3.17127 q^{85} -16.3855 q^{87} -6.04687 q^{89} +5.51984 q^{91} +6.57006 q^{93} -9.50335 q^{95} -7.90496 q^{97} -1.92591 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 6 q - 4 q^{3} + 4 q^{5} - 6 q^{7} + 8 q^{9} - 8 q^{11} + 8 q^{13} - 6 q^{17} - 6 q^{19} + 4 q^{21} - 18 q^{23} + 12 q^{25} - 22 q^{27} - 8 q^{29} + 4 q^{31} - 6 q^{33} - 4 q^{35} - 8 q^{37} - 14 q^{39}+ \cdots - 28 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 1.84197 1.06346 0.531732 0.846913i \(-0.321541\pi\)
0.531732 + 0.846913i \(0.321541\pi\)
\(4\) 0 0
\(5\) 3.17127 1.41824 0.709118 0.705090i \(-0.249093\pi\)
0.709118 + 0.705090i \(0.249093\pi\)
\(6\) 0 0
\(7\) −1.00000 −0.377964
\(8\) 0 0
\(9\) 0.392864 0.130955
\(10\) 0 0
\(11\) −4.90224 −1.47808 −0.739040 0.673661i \(-0.764721\pi\)
−0.739040 + 0.673661i \(0.764721\pi\)
\(12\) 0 0
\(13\) −5.51984 −1.53093 −0.765464 0.643479i \(-0.777491\pi\)
−0.765464 + 0.643479i \(0.777491\pi\)
\(14\) 0 0
\(15\) 5.84140 1.50824
\(16\) 0 0
\(17\) −1.00000 −0.242536
\(18\) 0 0
\(19\) −2.99670 −0.687490 −0.343745 0.939063i \(-0.611696\pi\)
−0.343745 + 0.939063i \(0.611696\pi\)
\(20\) 0 0
\(21\) −1.84197 −0.401951
\(22\) 0 0
\(23\) −4.99670 −1.04188 −0.520942 0.853592i \(-0.674419\pi\)
−0.520942 + 0.853592i \(0.674419\pi\)
\(24\) 0 0
\(25\) 5.05696 1.01139
\(26\) 0 0
\(27\) −4.80227 −0.924198
\(28\) 0 0
\(29\) −8.89564 −1.65188 −0.825939 0.563759i \(-0.809355\pi\)
−0.825939 + 0.563759i \(0.809355\pi\)
\(30\) 0 0
\(31\) 3.56686 0.640627 0.320313 0.947312i \(-0.396212\pi\)
0.320313 + 0.947312i \(0.396212\pi\)
\(32\) 0 0
\(33\) −9.02979 −1.57188
\(34\) 0 0
\(35\) −3.17127 −0.536043
\(36\) 0 0
\(37\) 5.95240 0.978569 0.489285 0.872124i \(-0.337258\pi\)
0.489285 + 0.872124i \(0.337258\pi\)
\(38\) 0 0
\(39\) −10.1674 −1.62809
\(40\) 0 0
\(41\) 9.28773 1.45050 0.725250 0.688486i \(-0.241724\pi\)
0.725250 + 0.688486i \(0.241724\pi\)
\(42\) 0 0
\(43\) 1.21777 0.185708 0.0928541 0.995680i \(-0.470401\pi\)
0.0928541 + 0.995680i \(0.470401\pi\)
\(44\) 0 0
\(45\) 1.24588 0.185725
\(46\) 0 0
\(47\) −11.8579 −1.72966 −0.864829 0.502066i \(-0.832573\pi\)
−0.864829 + 0.502066i \(0.832573\pi\)
\(48\) 0 0
\(49\) 1.00000 0.142857
\(50\) 0 0
\(51\) −1.84197 −0.257928
\(52\) 0 0
\(53\) −5.42595 −0.745312 −0.372656 0.927970i \(-0.621553\pi\)
−0.372656 + 0.927970i \(0.621553\pi\)
\(54\) 0 0
\(55\) −15.5463 −2.09627
\(56\) 0 0
\(57\) −5.51984 −0.731121
\(58\) 0 0
\(59\) 0.469674 0.0611464 0.0305732 0.999533i \(-0.490267\pi\)
0.0305732 + 0.999533i \(0.490267\pi\)
\(60\) 0 0
\(61\) 10.4856 1.34255 0.671275 0.741209i \(-0.265747\pi\)
0.671275 + 0.741209i \(0.265747\pi\)
\(62\) 0 0
\(63\) −0.392864 −0.0494962
\(64\) 0 0
\(65\) −17.5049 −2.17122
\(66\) 0 0
\(67\) −14.6501 −1.78980 −0.894898 0.446270i \(-0.852752\pi\)
−0.894898 + 0.446270i \(0.852752\pi\)
\(68\) 0 0
\(69\) −9.20379 −1.10801
\(70\) 0 0
\(71\) 11.0352 1.30964 0.654821 0.755784i \(-0.272744\pi\)
0.654821 + 0.755784i \(0.272744\pi\)
\(72\) 0 0
\(73\) −2.08016 −0.243465 −0.121732 0.992563i \(-0.538845\pi\)
−0.121732 + 0.992563i \(0.538845\pi\)
\(74\) 0 0
\(75\) 9.31479 1.07558
\(76\) 0 0
\(77\) 4.90224 0.558662
\(78\) 0 0
\(79\) 12.3222 1.38635 0.693176 0.720768i \(-0.256211\pi\)
0.693176 + 0.720768i \(0.256211\pi\)
\(80\) 0 0
\(81\) −10.0243 −1.11381
\(82\) 0 0
\(83\) 2.17844 0.239115 0.119557 0.992827i \(-0.461852\pi\)
0.119557 + 0.992827i \(0.461852\pi\)
\(84\) 0 0
\(85\) −3.17127 −0.343973
\(86\) 0 0
\(87\) −16.3855 −1.75671
\(88\) 0 0
\(89\) −6.04687 −0.640966 −0.320483 0.947254i \(-0.603845\pi\)
−0.320483 + 0.947254i \(0.603845\pi\)
\(90\) 0 0
\(91\) 5.51984 0.578636
\(92\) 0 0
\(93\) 6.57006 0.681283
\(94\) 0 0
\(95\) −9.50335 −0.975023
\(96\) 0 0
\(97\) −7.90496 −0.802627 −0.401314 0.915941i \(-0.631446\pi\)
−0.401314 + 0.915941i \(0.631446\pi\)
\(98\) 0 0
\(99\) −1.92591 −0.193562
\(100\) 0 0
\(101\) 19.6872 1.95895 0.979477 0.201558i \(-0.0646005\pi\)
0.979477 + 0.201558i \(0.0646005\pi\)
\(102\) 0 0
\(103\) −6.97632 −0.687398 −0.343699 0.939080i \(-0.611680\pi\)
−0.343699 + 0.939080i \(0.611680\pi\)
\(104\) 0 0
\(105\) −5.84140 −0.570062
\(106\) 0 0
\(107\) −2.54320 −0.245861 −0.122930 0.992415i \(-0.539229\pi\)
−0.122930 + 0.992415i \(0.539229\pi\)
\(108\) 0 0
\(109\) 5.74699 0.550462 0.275231 0.961378i \(-0.411246\pi\)
0.275231 + 0.961378i \(0.411246\pi\)
\(110\) 0 0
\(111\) 10.9642 1.04067
\(112\) 0 0
\(113\) −12.6768 −1.19253 −0.596265 0.802788i \(-0.703349\pi\)
−0.596265 + 0.802788i \(0.703349\pi\)
\(114\) 0 0
\(115\) −15.8459 −1.47764
\(116\) 0 0
\(117\) −2.16855 −0.200482
\(118\) 0 0
\(119\) 1.00000 0.0916698
\(120\) 0 0
\(121\) 13.0319 1.18472
\(122\) 0 0
\(123\) 17.1077 1.54255
\(124\) 0 0
\(125\) 0.180651 0.0161579
\(126\) 0 0
\(127\) −4.84564 −0.429981 −0.214990 0.976616i \(-0.568972\pi\)
−0.214990 + 0.976616i \(0.568972\pi\)
\(128\) 0 0
\(129\) 2.24310 0.197494
\(130\) 0 0
\(131\) −8.29155 −0.724436 −0.362218 0.932093i \(-0.617980\pi\)
−0.362218 + 0.932093i \(0.617980\pi\)
\(132\) 0 0
\(133\) 2.99670 0.259847
\(134\) 0 0
\(135\) −15.2293 −1.31073
\(136\) 0 0
\(137\) −1.47221 −0.125779 −0.0628896 0.998020i \(-0.520032\pi\)
−0.0628896 + 0.998020i \(0.520032\pi\)
\(138\) 0 0
\(139\) −9.31500 −0.790088 −0.395044 0.918662i \(-0.629271\pi\)
−0.395044 + 0.918662i \(0.629271\pi\)
\(140\) 0 0
\(141\) −21.8420 −1.83943
\(142\) 0 0
\(143\) 27.0596 2.26283
\(144\) 0 0
\(145\) −28.2105 −2.34275
\(146\) 0 0
\(147\) 1.84197 0.151923
\(148\) 0 0
\(149\) 8.51304 0.697415 0.348708 0.937232i \(-0.386621\pi\)
0.348708 + 0.937232i \(0.386621\pi\)
\(150\) 0 0
\(151\) 8.22551 0.669383 0.334691 0.942328i \(-0.391368\pi\)
0.334691 + 0.942328i \(0.391368\pi\)
\(152\) 0 0
\(153\) −0.392864 −0.0317612
\(154\) 0 0
\(155\) 11.3115 0.908560
\(156\) 0 0
\(157\) 21.4614 1.71281 0.856405 0.516305i \(-0.172693\pi\)
0.856405 + 0.516305i \(0.172693\pi\)
\(158\) 0 0
\(159\) −9.99446 −0.792612
\(160\) 0 0
\(161\) 4.99670 0.393795
\(162\) 0 0
\(163\) −6.88019 −0.538898 −0.269449 0.963015i \(-0.586842\pi\)
−0.269449 + 0.963015i \(0.586842\pi\)
\(164\) 0 0
\(165\) −28.6359 −2.22930
\(166\) 0 0
\(167\) 10.5845 0.819057 0.409528 0.912297i \(-0.365693\pi\)
0.409528 + 0.912297i \(0.365693\pi\)
\(168\) 0 0
\(169\) 17.4686 1.34374
\(170\) 0 0
\(171\) −1.17730 −0.0900301
\(172\) 0 0
\(173\) −9.03031 −0.686562 −0.343281 0.939233i \(-0.611538\pi\)
−0.343281 + 0.939233i \(0.611538\pi\)
\(174\) 0 0
\(175\) −5.05696 −0.382271
\(176\) 0 0
\(177\) 0.865127 0.0650270
\(178\) 0 0
\(179\) 12.3724 0.924758 0.462379 0.886682i \(-0.346996\pi\)
0.462379 + 0.886682i \(0.346996\pi\)
\(180\) 0 0
\(181\) 1.52057 0.113023 0.0565116 0.998402i \(-0.482002\pi\)
0.0565116 + 0.998402i \(0.482002\pi\)
\(182\) 0 0
\(183\) 19.3143 1.42775
\(184\) 0 0
\(185\) 18.8767 1.38784
\(186\) 0 0
\(187\) 4.90224 0.358487
\(188\) 0 0
\(189\) 4.80227 0.349314
\(190\) 0 0
\(191\) 5.28778 0.382610 0.191305 0.981531i \(-0.438728\pi\)
0.191305 + 0.981531i \(0.438728\pi\)
\(192\) 0 0
\(193\) 20.0160 1.44078 0.720392 0.693567i \(-0.243962\pi\)
0.720392 + 0.693567i \(0.243962\pi\)
\(194\) 0 0
\(195\) −32.2436 −2.30901
\(196\) 0 0
\(197\) 14.8559 1.05844 0.529219 0.848485i \(-0.322485\pi\)
0.529219 + 0.848485i \(0.322485\pi\)
\(198\) 0 0
\(199\) 20.5820 1.45902 0.729508 0.683972i \(-0.239749\pi\)
0.729508 + 0.683972i \(0.239749\pi\)
\(200\) 0 0
\(201\) −26.9851 −1.90338
\(202\) 0 0
\(203\) 8.89564 0.624351
\(204\) 0 0
\(205\) 29.4539 2.05715
\(206\) 0 0
\(207\) −1.96302 −0.136440
\(208\) 0 0
\(209\) 14.6905 1.01617
\(210\) 0 0
\(211\) −6.68855 −0.460459 −0.230229 0.973136i \(-0.573948\pi\)
−0.230229 + 0.973136i \(0.573948\pi\)
\(212\) 0 0
\(213\) 20.3266 1.39276
\(214\) 0 0
\(215\) 3.86188 0.263378
\(216\) 0 0
\(217\) −3.56686 −0.242134
\(218\) 0 0
\(219\) −3.83161 −0.258916
\(220\) 0 0
\(221\) 5.51984 0.371305
\(222\) 0 0
\(223\) −20.8277 −1.39472 −0.697362 0.716719i \(-0.745643\pi\)
−0.697362 + 0.716719i \(0.745643\pi\)
\(224\) 0 0
\(225\) 1.98670 0.132447
\(226\) 0 0
\(227\) −3.52257 −0.233802 −0.116901 0.993144i \(-0.537296\pi\)
−0.116901 + 0.993144i \(0.537296\pi\)
\(228\) 0 0
\(229\) −25.4372 −1.68094 −0.840470 0.541858i \(-0.817721\pi\)
−0.840470 + 0.541858i \(0.817721\pi\)
\(230\) 0 0
\(231\) 9.02979 0.594117
\(232\) 0 0
\(233\) 12.7192 0.833261 0.416631 0.909076i \(-0.363211\pi\)
0.416631 + 0.909076i \(0.363211\pi\)
\(234\) 0 0
\(235\) −37.6048 −2.45306
\(236\) 0 0
\(237\) 22.6971 1.47434
\(238\) 0 0
\(239\) −11.1182 −0.719175 −0.359587 0.933111i \(-0.617083\pi\)
−0.359587 + 0.933111i \(0.617083\pi\)
\(240\) 0 0
\(241\) −2.47056 −0.159143 −0.0795715 0.996829i \(-0.525355\pi\)
−0.0795715 + 0.996829i \(0.525355\pi\)
\(242\) 0 0
\(243\) −4.05758 −0.260294
\(244\) 0 0
\(245\) 3.17127 0.202605
\(246\) 0 0
\(247\) 16.5413 1.05250
\(248\) 0 0
\(249\) 4.01262 0.254290
\(250\) 0 0
\(251\) −8.48616 −0.535642 −0.267821 0.963469i \(-0.586304\pi\)
−0.267821 + 0.963469i \(0.586304\pi\)
\(252\) 0 0
\(253\) 24.4950 1.53999
\(254\) 0 0
\(255\) −5.84140 −0.365802
\(256\) 0 0
\(257\) 0.592363 0.0369506 0.0184753 0.999829i \(-0.494119\pi\)
0.0184753 + 0.999829i \(0.494119\pi\)
\(258\) 0 0
\(259\) −5.95240 −0.369864
\(260\) 0 0
\(261\) −3.49478 −0.216321
\(262\) 0 0
\(263\) −14.0265 −0.864910 −0.432455 0.901655i \(-0.642353\pi\)
−0.432455 + 0.901655i \(0.642353\pi\)
\(264\) 0 0
\(265\) −17.2072 −1.05703
\(266\) 0 0
\(267\) −11.1382 −0.681644
\(268\) 0 0
\(269\) −5.43754 −0.331532 −0.165766 0.986165i \(-0.553010\pi\)
−0.165766 + 0.986165i \(0.553010\pi\)
\(270\) 0 0
\(271\) −7.58030 −0.460471 −0.230235 0.973135i \(-0.573950\pi\)
−0.230235 + 0.973135i \(0.573950\pi\)
\(272\) 0 0
\(273\) 10.1674 0.615359
\(274\) 0 0
\(275\) −24.7904 −1.49492
\(276\) 0 0
\(277\) −5.03325 −0.302419 −0.151209 0.988502i \(-0.548317\pi\)
−0.151209 + 0.988502i \(0.548317\pi\)
\(278\) 0 0
\(279\) 1.40129 0.0838931
\(280\) 0 0
\(281\) 14.5131 0.865779 0.432889 0.901447i \(-0.357494\pi\)
0.432889 + 0.901447i \(0.357494\pi\)
\(282\) 0 0
\(283\) −27.9114 −1.65916 −0.829580 0.558388i \(-0.811420\pi\)
−0.829580 + 0.558388i \(0.811420\pi\)
\(284\) 0 0
\(285\) −17.5049 −1.03690
\(286\) 0 0
\(287\) −9.28773 −0.548237
\(288\) 0 0
\(289\) 1.00000 0.0588235
\(290\) 0 0
\(291\) −14.5607 −0.853565
\(292\) 0 0
\(293\) 17.4516 1.01953 0.509767 0.860312i \(-0.329731\pi\)
0.509767 + 0.860312i \(0.329731\pi\)
\(294\) 0 0
\(295\) 1.48946 0.0867200
\(296\) 0 0
\(297\) 23.5419 1.36604
\(298\) 0 0
\(299\) 27.5810 1.59505
\(300\) 0 0
\(301\) −1.21777 −0.0701911
\(302\) 0 0
\(303\) 36.2634 2.08328
\(304\) 0 0
\(305\) 33.2528 1.90405
\(306\) 0 0
\(307\) −31.5184 −1.79885 −0.899424 0.437076i \(-0.856014\pi\)
−0.899424 + 0.437076i \(0.856014\pi\)
\(308\) 0 0
\(309\) −12.8502 −0.731022
\(310\) 0 0
\(311\) −28.1292 −1.59506 −0.797530 0.603279i \(-0.793861\pi\)
−0.797530 + 0.603279i \(0.793861\pi\)
\(312\) 0 0
\(313\) 23.3258 1.31845 0.659227 0.751944i \(-0.270884\pi\)
0.659227 + 0.751944i \(0.270884\pi\)
\(314\) 0 0
\(315\) −1.24588 −0.0701973
\(316\) 0 0
\(317\) −20.8972 −1.17370 −0.586852 0.809694i \(-0.699633\pi\)
−0.586852 + 0.809694i \(0.699633\pi\)
\(318\) 0 0
\(319\) 43.6085 2.44161
\(320\) 0 0
\(321\) −4.68451 −0.261464
\(322\) 0 0
\(323\) 2.99670 0.166741
\(324\) 0 0
\(325\) −27.9136 −1.54837
\(326\) 0 0
\(327\) 10.5858 0.585396
\(328\) 0 0
\(329\) 11.8579 0.653749
\(330\) 0 0
\(331\) −25.2015 −1.38520 −0.692599 0.721323i \(-0.743534\pi\)
−0.692599 + 0.721323i \(0.743534\pi\)
\(332\) 0 0
\(333\) 2.33849 0.128148
\(334\) 0 0
\(335\) −46.4595 −2.53835
\(336\) 0 0
\(337\) 9.27489 0.505236 0.252618 0.967566i \(-0.418708\pi\)
0.252618 + 0.967566i \(0.418708\pi\)
\(338\) 0 0
\(339\) −23.3502 −1.26821
\(340\) 0 0
\(341\) −17.4856 −0.946898
\(342\) 0 0
\(343\) −1.00000 −0.0539949
\(344\) 0 0
\(345\) −29.1877 −1.57141
\(346\) 0 0
\(347\) 0.00975457 0.000523653 0 0.000261826 1.00000i \(-0.499917\pi\)
0.000261826 1.00000i \(0.499917\pi\)
\(348\) 0 0
\(349\) −29.3717 −1.57223 −0.786117 0.618078i \(-0.787911\pi\)
−0.786117 + 0.618078i \(0.787911\pi\)
\(350\) 0 0
\(351\) 26.5078 1.41488
\(352\) 0 0
\(353\) −30.8899 −1.64410 −0.822051 0.569414i \(-0.807170\pi\)
−0.822051 + 0.569414i \(0.807170\pi\)
\(354\) 0 0
\(355\) 34.9957 1.85738
\(356\) 0 0
\(357\) 1.84197 0.0974875
\(358\) 0 0
\(359\) 36.4947 1.92612 0.963058 0.269295i \(-0.0867906\pi\)
0.963058 + 0.269295i \(0.0867906\pi\)
\(360\) 0 0
\(361\) −10.0198 −0.527357
\(362\) 0 0
\(363\) 24.0045 1.25991
\(364\) 0 0
\(365\) −6.59677 −0.345291
\(366\) 0 0
\(367\) 2.45668 0.128238 0.0641189 0.997942i \(-0.479576\pi\)
0.0641189 + 0.997942i \(0.479576\pi\)
\(368\) 0 0
\(369\) 3.64882 0.189950
\(370\) 0 0
\(371\) 5.42595 0.281702
\(372\) 0 0
\(373\) −29.9063 −1.54849 −0.774244 0.632887i \(-0.781870\pi\)
−0.774244 + 0.632887i \(0.781870\pi\)
\(374\) 0 0
\(375\) 0.332754 0.0171834
\(376\) 0 0
\(377\) 49.1025 2.52891
\(378\) 0 0
\(379\) −13.9784 −0.718021 −0.359010 0.933334i \(-0.616886\pi\)
−0.359010 + 0.933334i \(0.616886\pi\)
\(380\) 0 0
\(381\) −8.92554 −0.457269
\(382\) 0 0
\(383\) −21.8393 −1.11594 −0.557968 0.829863i \(-0.688419\pi\)
−0.557968 + 0.829863i \(0.688419\pi\)
\(384\) 0 0
\(385\) 15.5463 0.792314
\(386\) 0 0
\(387\) 0.478419 0.0243194
\(388\) 0 0
\(389\) −9.40502 −0.476854 −0.238427 0.971160i \(-0.576632\pi\)
−0.238427 + 0.971160i \(0.576632\pi\)
\(390\) 0 0
\(391\) 4.99670 0.252694
\(392\) 0 0
\(393\) −15.2728 −0.770411
\(394\) 0 0
\(395\) 39.0769 1.96617
\(396\) 0 0
\(397\) 34.2892 1.72092 0.860462 0.509514i \(-0.170175\pi\)
0.860462 + 0.509514i \(0.170175\pi\)
\(398\) 0 0
\(399\) 5.51984 0.276338
\(400\) 0 0
\(401\) −24.4847 −1.22271 −0.611354 0.791357i \(-0.709375\pi\)
−0.611354 + 0.791357i \(0.709375\pi\)
\(402\) 0 0
\(403\) −19.6885 −0.980754
\(404\) 0 0
\(405\) −31.7896 −1.57964
\(406\) 0 0
\(407\) −29.1801 −1.44640
\(408\) 0 0
\(409\) −18.4377 −0.911686 −0.455843 0.890060i \(-0.650662\pi\)
−0.455843 + 0.890060i \(0.650662\pi\)
\(410\) 0 0
\(411\) −2.71177 −0.133762
\(412\) 0 0
\(413\) −0.469674 −0.0231112
\(414\) 0 0
\(415\) 6.90842 0.339121
\(416\) 0 0
\(417\) −17.1580 −0.840230
\(418\) 0 0
\(419\) −9.05186 −0.442212 −0.221106 0.975250i \(-0.570967\pi\)
−0.221106 + 0.975250i \(0.570967\pi\)
\(420\) 0 0
\(421\) 19.2513 0.938252 0.469126 0.883131i \(-0.344569\pi\)
0.469126 + 0.883131i \(0.344569\pi\)
\(422\) 0 0
\(423\) −4.65856 −0.226507
\(424\) 0 0
\(425\) −5.05696 −0.245299
\(426\) 0 0
\(427\) −10.4856 −0.507436
\(428\) 0 0
\(429\) 49.8430 2.40644
\(430\) 0 0
\(431\) 38.5919 1.85890 0.929452 0.368943i \(-0.120280\pi\)
0.929452 + 0.368943i \(0.120280\pi\)
\(432\) 0 0
\(433\) 13.7242 0.659543 0.329771 0.944061i \(-0.393028\pi\)
0.329771 + 0.944061i \(0.393028\pi\)
\(434\) 0 0
\(435\) −51.9629 −2.49143
\(436\) 0 0
\(437\) 14.9736 0.716285
\(438\) 0 0
\(439\) 13.4302 0.640988 0.320494 0.947251i \(-0.396151\pi\)
0.320494 + 0.947251i \(0.396151\pi\)
\(440\) 0 0
\(441\) 0.392864 0.0187078
\(442\) 0 0
\(443\) −37.2253 −1.76863 −0.884315 0.466891i \(-0.845374\pi\)
−0.884315 + 0.466891i \(0.845374\pi\)
\(444\) 0 0
\(445\) −19.1763 −0.909042
\(446\) 0 0
\(447\) 15.6808 0.741676
\(448\) 0 0
\(449\) 16.5573 0.781389 0.390695 0.920520i \(-0.372235\pi\)
0.390695 + 0.920520i \(0.372235\pi\)
\(450\) 0 0
\(451\) −45.5306 −2.14395
\(452\) 0 0
\(453\) 15.1512 0.711864
\(454\) 0 0
\(455\) 17.5049 0.820643
\(456\) 0 0
\(457\) −15.3451 −0.717815 −0.358908 0.933373i \(-0.616851\pi\)
−0.358908 + 0.933373i \(0.616851\pi\)
\(458\) 0 0
\(459\) 4.80227 0.224151
\(460\) 0 0
\(461\) −1.73553 −0.0808315 −0.0404158 0.999183i \(-0.512868\pi\)
−0.0404158 + 0.999183i \(0.512868\pi\)
\(462\) 0 0
\(463\) 41.5997 1.93330 0.966651 0.256098i \(-0.0824369\pi\)
0.966651 + 0.256098i \(0.0824369\pi\)
\(464\) 0 0
\(465\) 20.8354 0.966221
\(466\) 0 0
\(467\) −10.0876 −0.466799 −0.233400 0.972381i \(-0.574985\pi\)
−0.233400 + 0.972381i \(0.574985\pi\)
\(468\) 0 0
\(469\) 14.6501 0.676479
\(470\) 0 0
\(471\) 39.5314 1.82151
\(472\) 0 0
\(473\) −5.96980 −0.274492
\(474\) 0 0
\(475\) −15.1542 −0.695323
\(476\) 0 0
\(477\) −2.13166 −0.0976022
\(478\) 0 0
\(479\) −37.4618 −1.71167 −0.855837 0.517246i \(-0.826957\pi\)
−0.855837 + 0.517246i \(0.826957\pi\)
\(480\) 0 0
\(481\) −32.8563 −1.49812
\(482\) 0 0
\(483\) 9.20379 0.418787
\(484\) 0 0
\(485\) −25.0688 −1.13831
\(486\) 0 0
\(487\) −5.47825 −0.248243 −0.124122 0.992267i \(-0.539611\pi\)
−0.124122 + 0.992267i \(0.539611\pi\)
\(488\) 0 0
\(489\) −12.6731 −0.573098
\(490\) 0 0
\(491\) 17.5417 0.791647 0.395824 0.918327i \(-0.370459\pi\)
0.395824 + 0.918327i \(0.370459\pi\)
\(492\) 0 0
\(493\) 8.89564 0.400639
\(494\) 0 0
\(495\) −6.10760 −0.274516
\(496\) 0 0
\(497\) −11.0352 −0.494998
\(498\) 0 0
\(499\) 8.99853 0.402829 0.201415 0.979506i \(-0.435446\pi\)
0.201415 + 0.979506i \(0.435446\pi\)
\(500\) 0 0
\(501\) 19.4964 0.871037
\(502\) 0 0
\(503\) −38.0025 −1.69445 −0.847223 0.531237i \(-0.821727\pi\)
−0.847223 + 0.531237i \(0.821727\pi\)
\(504\) 0 0
\(505\) 62.4336 2.77826
\(506\) 0 0
\(507\) 32.1767 1.42902
\(508\) 0 0
\(509\) 1.46181 0.0647936 0.0323968 0.999475i \(-0.489686\pi\)
0.0323968 + 0.999475i \(0.489686\pi\)
\(510\) 0 0
\(511\) 2.08016 0.0920211
\(512\) 0 0
\(513\) 14.3910 0.635377
\(514\) 0 0
\(515\) −22.1238 −0.974892
\(516\) 0 0
\(517\) 58.1305 2.55657
\(518\) 0 0
\(519\) −16.6336 −0.730134
\(520\) 0 0
\(521\) −18.0860 −0.792363 −0.396181 0.918172i \(-0.629665\pi\)
−0.396181 + 0.918172i \(0.629665\pi\)
\(522\) 0 0
\(523\) −16.4637 −0.719906 −0.359953 0.932971i \(-0.617207\pi\)
−0.359953 + 0.932971i \(0.617207\pi\)
\(524\) 0 0
\(525\) −9.31479 −0.406531
\(526\) 0 0
\(527\) −3.56686 −0.155375
\(528\) 0 0
\(529\) 1.96701 0.0855221
\(530\) 0 0
\(531\) 0.184518 0.00800741
\(532\) 0 0
\(533\) −51.2668 −2.22061
\(534\) 0 0
\(535\) −8.06519 −0.348689
\(536\) 0 0
\(537\) 22.7897 0.983447
\(538\) 0 0
\(539\) −4.90224 −0.211154
\(540\) 0 0
\(541\) 6.00015 0.257967 0.128983 0.991647i \(-0.458829\pi\)
0.128983 + 0.991647i \(0.458829\pi\)
\(542\) 0 0
\(543\) 2.80085 0.120196
\(544\) 0 0
\(545\) 18.2253 0.780685
\(546\) 0 0
\(547\) 39.0995 1.67178 0.835888 0.548901i \(-0.184953\pi\)
0.835888 + 0.548901i \(0.184953\pi\)
\(548\) 0 0
\(549\) 4.11943 0.175813
\(550\) 0 0
\(551\) 26.6576 1.13565
\(552\) 0 0
\(553\) −12.3222 −0.523992
\(554\) 0 0
\(555\) 34.7704 1.47592
\(556\) 0 0
\(557\) −23.1412 −0.980523 −0.490261 0.871576i \(-0.663099\pi\)
−0.490261 + 0.871576i \(0.663099\pi\)
\(558\) 0 0
\(559\) −6.72190 −0.284306
\(560\) 0 0
\(561\) 9.02979 0.381238
\(562\) 0 0
\(563\) 19.2670 0.812007 0.406003 0.913872i \(-0.366922\pi\)
0.406003 + 0.913872i \(0.366922\pi\)
\(564\) 0 0
\(565\) −40.2015 −1.69129
\(566\) 0 0
\(567\) 10.0243 0.420979
\(568\) 0 0
\(569\) 11.3499 0.475811 0.237906 0.971288i \(-0.423539\pi\)
0.237906 + 0.971288i \(0.423539\pi\)
\(570\) 0 0
\(571\) 7.69413 0.321990 0.160995 0.986955i \(-0.448530\pi\)
0.160995 + 0.986955i \(0.448530\pi\)
\(572\) 0 0
\(573\) 9.73995 0.406892
\(574\) 0 0
\(575\) −25.2681 −1.05375
\(576\) 0 0
\(577\) −38.2373 −1.59184 −0.795919 0.605403i \(-0.793012\pi\)
−0.795919 + 0.605403i \(0.793012\pi\)
\(578\) 0 0
\(579\) 36.8689 1.53222
\(580\) 0 0
\(581\) −2.17844 −0.0903768
\(582\) 0 0
\(583\) 26.5993 1.10163
\(584\) 0 0
\(585\) −6.87705 −0.284331
\(586\) 0 0
\(587\) 12.3596 0.510135 0.255068 0.966923i \(-0.417902\pi\)
0.255068 + 0.966923i \(0.417902\pi\)
\(588\) 0 0
\(589\) −10.6888 −0.440425
\(590\) 0 0
\(591\) 27.3642 1.12561
\(592\) 0 0
\(593\) −17.2903 −0.710029 −0.355015 0.934861i \(-0.615524\pi\)
−0.355015 + 0.934861i \(0.615524\pi\)
\(594\) 0 0
\(595\) 3.17127 0.130009
\(596\) 0 0
\(597\) 37.9114 1.55161
\(598\) 0 0
\(599\) −28.4052 −1.16061 −0.580303 0.814401i \(-0.697066\pi\)
−0.580303 + 0.814401i \(0.697066\pi\)
\(600\) 0 0
\(601\) 8.11364 0.330962 0.165481 0.986213i \(-0.447082\pi\)
0.165481 + 0.986213i \(0.447082\pi\)
\(602\) 0 0
\(603\) −5.75551 −0.234382
\(604\) 0 0
\(605\) 41.3278 1.68021
\(606\) 0 0
\(607\) 18.6683 0.757724 0.378862 0.925453i \(-0.376315\pi\)
0.378862 + 0.925453i \(0.376315\pi\)
\(608\) 0 0
\(609\) 16.3855 0.663975
\(610\) 0 0
\(611\) 65.4539 2.64798
\(612\) 0 0
\(613\) −8.90771 −0.359779 −0.179889 0.983687i \(-0.557574\pi\)
−0.179889 + 0.983687i \(0.557574\pi\)
\(614\) 0 0
\(615\) 54.2533 2.18770
\(616\) 0 0
\(617\) −46.7962 −1.88394 −0.941972 0.335691i \(-0.891030\pi\)
−0.941972 + 0.335691i \(0.891030\pi\)
\(618\) 0 0
\(619\) 19.8021 0.795913 0.397956 0.917404i \(-0.369720\pi\)
0.397956 + 0.917404i \(0.369720\pi\)
\(620\) 0 0
\(621\) 23.9955 0.962907
\(622\) 0 0
\(623\) 6.04687 0.242263
\(624\) 0 0
\(625\) −24.7119 −0.988477
\(626\) 0 0
\(627\) 27.0596 1.08066
\(628\) 0 0
\(629\) −5.95240 −0.237338
\(630\) 0 0
\(631\) −29.5498 −1.17636 −0.588180 0.808730i \(-0.700155\pi\)
−0.588180 + 0.808730i \(0.700155\pi\)
\(632\) 0 0
\(633\) −12.3201 −0.489681
\(634\) 0 0
\(635\) −15.3668 −0.609814
\(636\) 0 0
\(637\) −5.51984 −0.218704
\(638\) 0 0
\(639\) 4.33535 0.171504
\(640\) 0 0
\(641\) 0.304018 0.0120080 0.00600400 0.999982i \(-0.498089\pi\)
0.00600400 + 0.999982i \(0.498089\pi\)
\(642\) 0 0
\(643\) 10.3117 0.406652 0.203326 0.979111i \(-0.434825\pi\)
0.203326 + 0.979111i \(0.434825\pi\)
\(644\) 0 0
\(645\) 7.11348 0.280093
\(646\) 0 0
\(647\) −8.43641 −0.331669 −0.165835 0.986154i \(-0.553032\pi\)
−0.165835 + 0.986154i \(0.553032\pi\)
\(648\) 0 0
\(649\) −2.30246 −0.0903793
\(650\) 0 0
\(651\) −6.57006 −0.257501
\(652\) 0 0
\(653\) −6.46767 −0.253099 −0.126550 0.991960i \(-0.540390\pi\)
−0.126550 + 0.991960i \(0.540390\pi\)
\(654\) 0 0
\(655\) −26.2948 −1.02742
\(656\) 0 0
\(657\) −0.817222 −0.0318829
\(658\) 0 0
\(659\) −17.7519 −0.691516 −0.345758 0.938324i \(-0.612378\pi\)
−0.345758 + 0.938324i \(0.612378\pi\)
\(660\) 0 0
\(661\) −36.8875 −1.43476 −0.717379 0.696683i \(-0.754659\pi\)
−0.717379 + 0.696683i \(0.754659\pi\)
\(662\) 0 0
\(663\) 10.1674 0.394869
\(664\) 0 0
\(665\) 9.50335 0.368524
\(666\) 0 0
\(667\) 44.4488 1.72107
\(668\) 0 0
\(669\) −38.3640 −1.48324
\(670\) 0 0
\(671\) −51.4031 −1.98440
\(672\) 0 0
\(673\) −15.7077 −0.605486 −0.302743 0.953072i \(-0.597902\pi\)
−0.302743 + 0.953072i \(0.597902\pi\)
\(674\) 0 0
\(675\) −24.2849 −0.934727
\(676\) 0 0
\(677\) −16.1705 −0.621481 −0.310741 0.950495i \(-0.600577\pi\)
−0.310741 + 0.950495i \(0.600577\pi\)
\(678\) 0 0
\(679\) 7.90496 0.303365
\(680\) 0 0
\(681\) −6.48849 −0.248639
\(682\) 0 0
\(683\) −40.4512 −1.54782 −0.773912 0.633294i \(-0.781703\pi\)
−0.773912 + 0.633294i \(0.781703\pi\)
\(684\) 0 0
\(685\) −4.66877 −0.178385
\(686\) 0 0
\(687\) −46.8547 −1.78762
\(688\) 0 0
\(689\) 29.9504 1.14102
\(690\) 0 0
\(691\) 26.2429 0.998329 0.499164 0.866507i \(-0.333640\pi\)
0.499164 + 0.866507i \(0.333640\pi\)
\(692\) 0 0
\(693\) 1.92591 0.0731594
\(694\) 0 0
\(695\) −29.5404 −1.12053
\(696\) 0 0
\(697\) −9.28773 −0.351798
\(698\) 0 0
\(699\) 23.4284 0.886143
\(700\) 0 0
\(701\) −52.1592 −1.97002 −0.985012 0.172485i \(-0.944820\pi\)
−0.985012 + 0.172485i \(0.944820\pi\)
\(702\) 0 0
\(703\) −17.8376 −0.672757
\(704\) 0 0
\(705\) −69.2669 −2.60874
\(706\) 0 0
\(707\) −19.6872 −0.740415
\(708\) 0 0
\(709\) −2.56196 −0.0962165 −0.0481083 0.998842i \(-0.515319\pi\)
−0.0481083 + 0.998842i \(0.515319\pi\)
\(710\) 0 0
\(711\) 4.84094 0.181549
\(712\) 0 0
\(713\) −17.8225 −0.667459
\(714\) 0 0
\(715\) 85.8132 3.20923
\(716\) 0 0
\(717\) −20.4794 −0.764816
\(718\) 0 0
\(719\) 28.3880 1.05869 0.529346 0.848406i \(-0.322437\pi\)
0.529346 + 0.848406i \(0.322437\pi\)
\(720\) 0 0
\(721\) 6.97632 0.259812
\(722\) 0 0
\(723\) −4.55071 −0.169243
\(724\) 0 0
\(725\) −44.9849 −1.67070
\(726\) 0 0
\(727\) 38.5198 1.42862 0.714311 0.699829i \(-0.246740\pi\)
0.714311 + 0.699829i \(0.246740\pi\)
\(728\) 0 0
\(729\) 22.5988 0.836993
\(730\) 0 0
\(731\) −1.21777 −0.0450409
\(732\) 0 0
\(733\) −45.8656 −1.69408 −0.847042 0.531526i \(-0.821619\pi\)
−0.847042 + 0.531526i \(0.821619\pi\)
\(734\) 0 0
\(735\) 5.84140 0.215463
\(736\) 0 0
\(737\) 71.8184 2.64546
\(738\) 0 0
\(739\) 4.45947 0.164044 0.0820220 0.996631i \(-0.473862\pi\)
0.0820220 + 0.996631i \(0.473862\pi\)
\(740\) 0 0
\(741\) 30.4686 1.11929
\(742\) 0 0
\(743\) 28.0409 1.02872 0.514361 0.857574i \(-0.328029\pi\)
0.514361 + 0.857574i \(0.328029\pi\)
\(744\) 0 0
\(745\) 26.9972 0.989100
\(746\) 0 0
\(747\) 0.855830 0.0313132
\(748\) 0 0
\(749\) 2.54320 0.0929267
\(750\) 0 0
\(751\) −12.4653 −0.454866 −0.227433 0.973794i \(-0.573033\pi\)
−0.227433 + 0.973794i \(0.573033\pi\)
\(752\) 0 0
\(753\) −15.6313 −0.569636
\(754\) 0 0
\(755\) 26.0853 0.949343
\(756\) 0 0
\(757\) 26.6426 0.968340 0.484170 0.874974i \(-0.339122\pi\)
0.484170 + 0.874974i \(0.339122\pi\)
\(758\) 0 0
\(759\) 45.1191 1.63772
\(760\) 0 0
\(761\) 23.9301 0.867467 0.433734 0.901041i \(-0.357196\pi\)
0.433734 + 0.901041i \(0.357196\pi\)
\(762\) 0 0
\(763\) −5.74699 −0.208055
\(764\) 0 0
\(765\) −1.24588 −0.0450449
\(766\) 0 0
\(767\) −2.59253 −0.0936107
\(768\) 0 0
\(769\) 13.6047 0.490599 0.245299 0.969447i \(-0.421114\pi\)
0.245299 + 0.969447i \(0.421114\pi\)
\(770\) 0 0
\(771\) 1.09112 0.0392956
\(772\) 0 0
\(773\) 49.2804 1.77249 0.886246 0.463215i \(-0.153304\pi\)
0.886246 + 0.463215i \(0.153304\pi\)
\(774\) 0 0
\(775\) 18.0375 0.647926
\(776\) 0 0
\(777\) −10.9642 −0.393337
\(778\) 0 0
\(779\) −27.8325 −0.997204
\(780\) 0 0
\(781\) −54.0974 −1.93576
\(782\) 0 0
\(783\) 42.7193 1.52666
\(784\) 0 0
\(785\) 68.0601 2.42917
\(786\) 0 0
\(787\) −24.5769 −0.876073 −0.438036 0.898957i \(-0.644326\pi\)
−0.438036 + 0.898957i \(0.644326\pi\)
\(788\) 0 0
\(789\) −25.8364 −0.919801
\(790\) 0 0
\(791\) 12.6768 0.450734
\(792\) 0 0
\(793\) −57.8791 −2.05535
\(794\) 0 0
\(795\) −31.6952 −1.12411
\(796\) 0 0
\(797\) 24.2244 0.858073 0.429036 0.903287i \(-0.358853\pi\)
0.429036 + 0.903287i \(0.358853\pi\)
\(798\) 0 0
\(799\) 11.8579 0.419504
\(800\) 0 0
\(801\) −2.37560 −0.0839376
\(802\) 0 0
\(803\) 10.1975 0.359861
\(804\) 0 0
\(805\) 15.8459 0.558494
\(806\) 0 0
\(807\) −10.0158 −0.352573
\(808\) 0 0
\(809\) −24.5413 −0.862826 −0.431413 0.902155i \(-0.641985\pi\)
−0.431413 + 0.902155i \(0.641985\pi\)
\(810\) 0 0
\(811\) 34.6372 1.21628 0.608139 0.793831i \(-0.291916\pi\)
0.608139 + 0.793831i \(0.291916\pi\)
\(812\) 0 0
\(813\) −13.9627 −0.489694
\(814\) 0 0
\(815\) −21.8190 −0.764285
\(816\) 0 0
\(817\) −3.64929 −0.127673
\(818\) 0 0
\(819\) 2.16855 0.0757752
\(820\) 0 0
\(821\) −24.5819 −0.857913 −0.428957 0.903325i \(-0.641119\pi\)
−0.428957 + 0.903325i \(0.641119\pi\)
\(822\) 0 0
\(823\) 56.4683 1.96836 0.984181 0.177168i \(-0.0566935\pi\)
0.984181 + 0.177168i \(0.0566935\pi\)
\(824\) 0 0
\(825\) −45.6633 −1.58979
\(826\) 0 0
\(827\) 28.7035 0.998119 0.499059 0.866568i \(-0.333679\pi\)
0.499059 + 0.866568i \(0.333679\pi\)
\(828\) 0 0
\(829\) 8.72844 0.303151 0.151576 0.988446i \(-0.451565\pi\)
0.151576 + 0.988446i \(0.451565\pi\)
\(830\) 0 0
\(831\) −9.27112 −0.321612
\(832\) 0 0
\(833\) −1.00000 −0.0346479
\(834\) 0 0
\(835\) 33.5665 1.16162
\(836\) 0 0
\(837\) −17.1290 −0.592066
\(838\) 0 0
\(839\) −1.48258 −0.0511842 −0.0255921 0.999672i \(-0.508147\pi\)
−0.0255921 + 0.999672i \(0.508147\pi\)
\(840\) 0 0
\(841\) 50.1324 1.72870
\(842\) 0 0
\(843\) 26.7327 0.920724
\(844\) 0 0
\(845\) 55.3978 1.90574
\(846\) 0 0
\(847\) −13.0319 −0.447783
\(848\) 0 0
\(849\) −51.4120 −1.76446
\(850\) 0 0
\(851\) −29.7424 −1.01956
\(852\) 0 0
\(853\) −14.5460 −0.498045 −0.249023 0.968498i \(-0.580109\pi\)
−0.249023 + 0.968498i \(0.580109\pi\)
\(854\) 0 0
\(855\) −3.73353 −0.127684
\(856\) 0 0
\(857\) 27.9212 0.953770 0.476885 0.878966i \(-0.341766\pi\)
0.476885 + 0.878966i \(0.341766\pi\)
\(858\) 0 0
\(859\) −1.71562 −0.0585361 −0.0292680 0.999572i \(-0.509318\pi\)
−0.0292680 + 0.999572i \(0.509318\pi\)
\(860\) 0 0
\(861\) −17.1077 −0.583030
\(862\) 0 0
\(863\) −40.3399 −1.37319 −0.686593 0.727042i \(-0.740894\pi\)
−0.686593 + 0.727042i \(0.740894\pi\)
\(864\) 0 0
\(865\) −28.6376 −0.973707
\(866\) 0 0
\(867\) 1.84197 0.0625567
\(868\) 0 0
\(869\) −60.4062 −2.04914
\(870\) 0 0
\(871\) 80.8663 2.74005
\(872\) 0 0
\(873\) −3.10558 −0.105108
\(874\) 0 0
\(875\) −0.180651 −0.00610712
\(876\) 0 0
\(877\) −15.2424 −0.514699 −0.257350 0.966318i \(-0.582849\pi\)
−0.257350 + 0.966318i \(0.582849\pi\)
\(878\) 0 0
\(879\) 32.1454 1.08424
\(880\) 0 0
\(881\) 0.652152 0.0219716 0.0109858 0.999940i \(-0.496503\pi\)
0.0109858 + 0.999940i \(0.496503\pi\)
\(882\) 0 0
\(883\) 31.8504 1.07185 0.535926 0.844265i \(-0.319963\pi\)
0.535926 + 0.844265i \(0.319963\pi\)
\(884\) 0 0
\(885\) 2.74355 0.0922236
\(886\) 0 0
\(887\) 27.7046 0.930229 0.465114 0.885251i \(-0.346013\pi\)
0.465114 + 0.885251i \(0.346013\pi\)
\(888\) 0 0
\(889\) 4.84564 0.162518
\(890\) 0 0
\(891\) 49.1413 1.64629
\(892\) 0 0
\(893\) 35.5347 1.18912
\(894\) 0 0
\(895\) 39.2363 1.31153
\(896\) 0 0
\(897\) 50.8034 1.69628
\(898\) 0 0
\(899\) −31.7295 −1.05824
\(900\) 0 0
\(901\) 5.42595 0.180765
\(902\) 0 0
\(903\) −2.24310 −0.0746457
\(904\) 0 0
\(905\) 4.82214 0.160293
\(906\) 0 0
\(907\) −22.2364 −0.738349 −0.369174 0.929360i \(-0.620360\pi\)
−0.369174 + 0.929360i \(0.620360\pi\)
\(908\) 0 0
\(909\) 7.73441 0.256534
\(910\) 0 0
\(911\) −5.55623 −0.184086 −0.0920430 0.995755i \(-0.529340\pi\)
−0.0920430 + 0.995755i \(0.529340\pi\)
\(912\) 0 0
\(913\) −10.6792 −0.353431
\(914\) 0 0
\(915\) 61.2508 2.02489
\(916\) 0 0
\(917\) 8.29155 0.273811
\(918\) 0 0
\(919\) 15.9238 0.525278 0.262639 0.964894i \(-0.415407\pi\)
0.262639 + 0.964894i \(0.415407\pi\)
\(920\) 0 0
\(921\) −58.0560 −1.91301
\(922\) 0 0
\(923\) −60.9127 −2.00497
\(924\) 0 0
\(925\) 30.1011 0.989718
\(926\) 0 0
\(927\) −2.74075 −0.0900180
\(928\) 0 0
\(929\) −25.3790 −0.832659 −0.416329 0.909214i \(-0.636684\pi\)
−0.416329 + 0.909214i \(0.636684\pi\)
\(930\) 0 0
\(931\) −2.99670 −0.0982129
\(932\) 0 0
\(933\) −51.8132 −1.69629
\(934\) 0 0
\(935\) 15.5463 0.508419
\(936\) 0 0
\(937\) 48.0849 1.57087 0.785433 0.618946i \(-0.212440\pi\)
0.785433 + 0.618946i \(0.212440\pi\)
\(938\) 0 0
\(939\) 42.9656 1.40213
\(940\) 0 0
\(941\) 6.41915 0.209258 0.104629 0.994511i \(-0.466634\pi\)
0.104629 + 0.994511i \(0.466634\pi\)
\(942\) 0 0
\(943\) −46.4080 −1.51125
\(944\) 0 0
\(945\) 15.2293 0.495410
\(946\) 0 0
\(947\) −45.6234 −1.48256 −0.741280 0.671196i \(-0.765781\pi\)
−0.741280 + 0.671196i \(0.765781\pi\)
\(948\) 0 0
\(949\) 11.4822 0.372727
\(950\) 0 0
\(951\) −38.4921 −1.24819
\(952\) 0 0
\(953\) 42.1500 1.36537 0.682686 0.730712i \(-0.260812\pi\)
0.682686 + 0.730712i \(0.260812\pi\)
\(954\) 0 0
\(955\) 16.7690 0.542632
\(956\) 0 0
\(957\) 80.3257 2.59656
\(958\) 0 0
\(959\) 1.47221 0.0475401
\(960\) 0 0
\(961\) −18.2775 −0.589597
\(962\) 0 0
\(963\) −0.999134 −0.0321966
\(964\) 0 0
\(965\) 63.4762 2.04337
\(966\) 0 0
\(967\) 27.3993 0.881103 0.440551 0.897727i \(-0.354783\pi\)
0.440551 + 0.897727i \(0.354783\pi\)
\(968\) 0 0
\(969\) 5.51984 0.177323
\(970\) 0 0
\(971\) 11.8114 0.379045 0.189522 0.981876i \(-0.439306\pi\)
0.189522 + 0.981876i \(0.439306\pi\)
\(972\) 0 0
\(973\) 9.31500 0.298625
\(974\) 0 0
\(975\) −51.4162 −1.64663
\(976\) 0 0
\(977\) 17.6992 0.566247 0.283123 0.959084i \(-0.408629\pi\)
0.283123 + 0.959084i \(0.408629\pi\)
\(978\) 0 0
\(979\) 29.6432 0.947400
\(980\) 0 0
\(981\) 2.25779 0.0720856
\(982\) 0 0
\(983\) 29.9484 0.955207 0.477604 0.878575i \(-0.341506\pi\)
0.477604 + 0.878575i \(0.341506\pi\)
\(984\) 0 0
\(985\) 47.1121 1.50112
\(986\) 0 0
\(987\) 21.8420 0.695239
\(988\) 0 0
\(989\) −6.08483 −0.193486
\(990\) 0 0
\(991\) 16.4355 0.522092 0.261046 0.965326i \(-0.415933\pi\)
0.261046 + 0.965326i \(0.415933\pi\)
\(992\) 0 0
\(993\) −46.4204 −1.47311
\(994\) 0 0
\(995\) 65.2710 2.06923
\(996\) 0 0
\(997\) 26.6437 0.843813 0.421907 0.906639i \(-0.361361\pi\)
0.421907 + 0.906639i \(0.361361\pi\)
\(998\) 0 0
\(999\) −28.5851 −0.904392
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 3808.2.a.h.1.6 6
4.3 odd 2 3808.2.a.p.1.1 yes 6
8.3 odd 2 7616.2.a.bu.1.6 6
8.5 even 2 7616.2.a.cc.1.1 6
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
3808.2.a.h.1.6 6 1.1 even 1 trivial
3808.2.a.p.1.1 yes 6 4.3 odd 2
7616.2.a.bu.1.6 6 8.3 odd 2
7616.2.a.cc.1.1 6 8.5 even 2