Properties

Label 3808.2.a.h.1.5
Level $3808$
Weight $2$
Character 3808.1
Self dual yes
Analytic conductor $30.407$
Analytic rank $1$
Dimension $6$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [3808,2,Mod(1,3808)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(3808, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0, 0])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("3808.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 3808 = 2^{5} \cdot 7 \cdot 17 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 3808.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [6,0,-4,0,4,0,-6] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(7)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(30.4070330897\)
Analytic rank: \(1\)
Dimension: \(6\)
Coefficient field: 6.6.109859312.1
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{6} - 3x^{5} - 7x^{4} + 15x^{3} + 13x^{2} - 9x - 2 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 2 \)
Twist minimal: yes
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.5
Root \(-2.04046\) of defining polynomial
Character \(\chi\) \(=\) 3808.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+1.73670 q^{3} -1.54368 q^{5} -1.00000 q^{7} +0.0161353 q^{9} -3.07643 q^{11} +5.13506 q^{13} -2.68091 q^{15} -1.00000 q^{17} +2.95679 q^{19} -1.73670 q^{21} +0.956789 q^{23} -2.61706 q^{25} -5.18209 q^{27} +4.83715 q^{29} -3.98836 q^{31} -5.34284 q^{33} +1.54368 q^{35} -5.56431 q^{37} +8.91807 q^{39} -3.34872 q^{41} -1.96538 q^{43} -0.0249077 q^{45} -4.46891 q^{47} +1.00000 q^{49} -1.73670 q^{51} -7.31576 q^{53} +4.74901 q^{55} +5.13506 q^{57} -0.494325 q^{59} +2.23788 q^{61} -0.0161353 q^{63} -7.92687 q^{65} +0.329470 q^{67} +1.66166 q^{69} +2.42120 q^{71} -14.2955 q^{73} -4.54506 q^{75} +3.07643 q^{77} +8.89622 q^{79} -9.04815 q^{81} -17.6958 q^{83} +1.54368 q^{85} +8.40069 q^{87} +9.59753 q^{89} -5.13506 q^{91} -6.92660 q^{93} -4.56433 q^{95} -3.61561 q^{97} -0.0496391 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 6 q - 4 q^{3} + 4 q^{5} - 6 q^{7} + 8 q^{9} - 8 q^{11} + 8 q^{13} - 6 q^{17} - 6 q^{19} + 4 q^{21} - 18 q^{23} + 12 q^{25} - 22 q^{27} - 8 q^{29} + 4 q^{31} - 6 q^{33} - 4 q^{35} - 8 q^{37} - 14 q^{39}+ \cdots - 28 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 1.73670 1.00269 0.501343 0.865249i \(-0.332840\pi\)
0.501343 + 0.865249i \(0.332840\pi\)
\(4\) 0 0
\(5\) −1.54368 −0.690353 −0.345177 0.938538i \(-0.612181\pi\)
−0.345177 + 0.938538i \(0.612181\pi\)
\(6\) 0 0
\(7\) −1.00000 −0.377964
\(8\) 0 0
\(9\) 0.0161353 0.00537844
\(10\) 0 0
\(11\) −3.07643 −0.927578 −0.463789 0.885946i \(-0.653510\pi\)
−0.463789 + 0.885946i \(0.653510\pi\)
\(12\) 0 0
\(13\) 5.13506 1.42421 0.712105 0.702073i \(-0.247742\pi\)
0.712105 + 0.702073i \(0.247742\pi\)
\(14\) 0 0
\(15\) −2.68091 −0.692207
\(16\) 0 0
\(17\) −1.00000 −0.242536
\(18\) 0 0
\(19\) 2.95679 0.678334 0.339167 0.940726i \(-0.389855\pi\)
0.339167 + 0.940726i \(0.389855\pi\)
\(20\) 0 0
\(21\) −1.73670 −0.378980
\(22\) 0 0
\(23\) 0.956789 0.199504 0.0997521 0.995012i \(-0.468195\pi\)
0.0997521 + 0.995012i \(0.468195\pi\)
\(24\) 0 0
\(25\) −2.61706 −0.523413
\(26\) 0 0
\(27\) −5.18209 −0.997293
\(28\) 0 0
\(29\) 4.83715 0.898236 0.449118 0.893472i \(-0.351738\pi\)
0.449118 + 0.893472i \(0.351738\pi\)
\(30\) 0 0
\(31\) −3.98836 −0.716331 −0.358165 0.933658i \(-0.616598\pi\)
−0.358165 + 0.933658i \(0.616598\pi\)
\(32\) 0 0
\(33\) −5.34284 −0.930069
\(34\) 0 0
\(35\) 1.54368 0.260929
\(36\) 0 0
\(37\) −5.56431 −0.914767 −0.457383 0.889270i \(-0.651213\pi\)
−0.457383 + 0.889270i \(0.651213\pi\)
\(38\) 0 0
\(39\) 8.91807 1.42803
\(40\) 0 0
\(41\) −3.34872 −0.522982 −0.261491 0.965206i \(-0.584214\pi\)
−0.261491 + 0.965206i \(0.584214\pi\)
\(42\) 0 0
\(43\) −1.96538 −0.299718 −0.149859 0.988707i \(-0.547882\pi\)
−0.149859 + 0.988707i \(0.547882\pi\)
\(44\) 0 0
\(45\) −0.0249077 −0.00371302
\(46\) 0 0
\(47\) −4.46891 −0.651857 −0.325929 0.945394i \(-0.605677\pi\)
−0.325929 + 0.945394i \(0.605677\pi\)
\(48\) 0 0
\(49\) 1.00000 0.142857
\(50\) 0 0
\(51\) −1.73670 −0.243187
\(52\) 0 0
\(53\) −7.31576 −1.00490 −0.502449 0.864607i \(-0.667567\pi\)
−0.502449 + 0.864607i \(0.667567\pi\)
\(54\) 0 0
\(55\) 4.74901 0.640356
\(56\) 0 0
\(57\) 5.13506 0.680156
\(58\) 0 0
\(59\) −0.494325 −0.0643556 −0.0321778 0.999482i \(-0.510244\pi\)
−0.0321778 + 0.999482i \(0.510244\pi\)
\(60\) 0 0
\(61\) 2.23788 0.286531 0.143266 0.989684i \(-0.454240\pi\)
0.143266 + 0.989684i \(0.454240\pi\)
\(62\) 0 0
\(63\) −0.0161353 −0.00203286
\(64\) 0 0
\(65\) −7.92687 −0.983208
\(66\) 0 0
\(67\) 0.329470 0.0402512 0.0201256 0.999797i \(-0.493593\pi\)
0.0201256 + 0.999797i \(0.493593\pi\)
\(68\) 0 0
\(69\) 1.66166 0.200040
\(70\) 0 0
\(71\) 2.42120 0.287343 0.143672 0.989625i \(-0.454109\pi\)
0.143672 + 0.989625i \(0.454109\pi\)
\(72\) 0 0
\(73\) −14.2955 −1.67317 −0.836583 0.547841i \(-0.815450\pi\)
−0.836583 + 0.547841i \(0.815450\pi\)
\(74\) 0 0
\(75\) −4.54506 −0.524818
\(76\) 0 0
\(77\) 3.07643 0.350592
\(78\) 0 0
\(79\) 8.89622 1.00090 0.500452 0.865764i \(-0.333167\pi\)
0.500452 + 0.865764i \(0.333167\pi\)
\(80\) 0 0
\(81\) −9.04815 −1.00535
\(82\) 0 0
\(83\) −17.6958 −1.94237 −0.971184 0.238330i \(-0.923400\pi\)
−0.971184 + 0.238330i \(0.923400\pi\)
\(84\) 0 0
\(85\) 1.54368 0.167435
\(86\) 0 0
\(87\) 8.40069 0.900648
\(88\) 0 0
\(89\) 9.59753 1.01734 0.508668 0.860963i \(-0.330138\pi\)
0.508668 + 0.860963i \(0.330138\pi\)
\(90\) 0 0
\(91\) −5.13506 −0.538301
\(92\) 0 0
\(93\) −6.92660 −0.718255
\(94\) 0 0
\(95\) −4.56433 −0.468290
\(96\) 0 0
\(97\) −3.61561 −0.367109 −0.183555 0.983010i \(-0.558760\pi\)
−0.183555 + 0.983010i \(0.558760\pi\)
\(98\) 0 0
\(99\) −0.0496391 −0.00498892
\(100\) 0 0
\(101\) −10.0531 −1.00032 −0.500162 0.865932i \(-0.666726\pi\)
−0.500162 + 0.865932i \(0.666726\pi\)
\(102\) 0 0
\(103\) −7.02679 −0.692370 −0.346185 0.938166i \(-0.612523\pi\)
−0.346185 + 0.938166i \(0.612523\pi\)
\(104\) 0 0
\(105\) 2.68091 0.261630
\(106\) 0 0
\(107\) −15.8632 −1.53355 −0.766775 0.641916i \(-0.778140\pi\)
−0.766775 + 0.641916i \(0.778140\pi\)
\(108\) 0 0
\(109\) 8.20151 0.785562 0.392781 0.919632i \(-0.371513\pi\)
0.392781 + 0.919632i \(0.371513\pi\)
\(110\) 0 0
\(111\) −9.66355 −0.917223
\(112\) 0 0
\(113\) −6.80081 −0.639766 −0.319883 0.947457i \(-0.603644\pi\)
−0.319883 + 0.947457i \(0.603644\pi\)
\(114\) 0 0
\(115\) −1.47697 −0.137728
\(116\) 0 0
\(117\) 0.0828558 0.00766003
\(118\) 0 0
\(119\) 1.00000 0.0916698
\(120\) 0 0
\(121\) −1.53559 −0.139599
\(122\) 0 0
\(123\) −5.81573 −0.524387
\(124\) 0 0
\(125\) 11.7583 1.05169
\(126\) 0 0
\(127\) 6.48233 0.575213 0.287607 0.957749i \(-0.407140\pi\)
0.287607 + 0.957749i \(0.407140\pi\)
\(128\) 0 0
\(129\) −3.41329 −0.300523
\(130\) 0 0
\(131\) −3.17648 −0.277530 −0.138765 0.990325i \(-0.544313\pi\)
−0.138765 + 0.990325i \(0.544313\pi\)
\(132\) 0 0
\(133\) −2.95679 −0.256386
\(134\) 0 0
\(135\) 7.99946 0.688484
\(136\) 0 0
\(137\) 6.72383 0.574456 0.287228 0.957862i \(-0.407266\pi\)
0.287228 + 0.957862i \(0.407266\pi\)
\(138\) 0 0
\(139\) −21.0484 −1.78530 −0.892650 0.450751i \(-0.851156\pi\)
−0.892650 + 0.450751i \(0.851156\pi\)
\(140\) 0 0
\(141\) −7.76116 −0.653608
\(142\) 0 0
\(143\) −15.7976 −1.32107
\(144\) 0 0
\(145\) −7.46699 −0.620100
\(146\) 0 0
\(147\) 1.73670 0.143241
\(148\) 0 0
\(149\) −4.15874 −0.340697 −0.170348 0.985384i \(-0.554489\pi\)
−0.170348 + 0.985384i \(0.554489\pi\)
\(150\) 0 0
\(151\) −1.69992 −0.138337 −0.0691687 0.997605i \(-0.522035\pi\)
−0.0691687 + 0.997605i \(0.522035\pi\)
\(152\) 0 0
\(153\) −0.0161353 −0.00130446
\(154\) 0 0
\(155\) 6.15674 0.494521
\(156\) 0 0
\(157\) 11.6963 0.933463 0.466732 0.884399i \(-0.345431\pi\)
0.466732 + 0.884399i \(0.345431\pi\)
\(158\) 0 0
\(159\) −12.7053 −1.00760
\(160\) 0 0
\(161\) −0.956789 −0.0754055
\(162\) 0 0
\(163\) −1.99905 −0.156578 −0.0782890 0.996931i \(-0.524946\pi\)
−0.0782890 + 0.996931i \(0.524946\pi\)
\(164\) 0 0
\(165\) 8.24762 0.642076
\(166\) 0 0
\(167\) −14.4867 −1.12101 −0.560506 0.828151i \(-0.689393\pi\)
−0.560506 + 0.828151i \(0.689393\pi\)
\(168\) 0 0
\(169\) 13.3689 1.02837
\(170\) 0 0
\(171\) 0.0477087 0.00364838
\(172\) 0 0
\(173\) −6.91125 −0.525452 −0.262726 0.964870i \(-0.584622\pi\)
−0.262726 + 0.964870i \(0.584622\pi\)
\(174\) 0 0
\(175\) 2.61706 0.197831
\(176\) 0 0
\(177\) −0.858495 −0.0645284
\(178\) 0 0
\(179\) −24.3328 −1.81872 −0.909360 0.416010i \(-0.863428\pi\)
−0.909360 + 0.416010i \(0.863428\pi\)
\(180\) 0 0
\(181\) 18.0268 1.33992 0.669960 0.742397i \(-0.266311\pi\)
0.669960 + 0.742397i \(0.266311\pi\)
\(182\) 0 0
\(183\) 3.88653 0.287301
\(184\) 0 0
\(185\) 8.58949 0.631512
\(186\) 0 0
\(187\) 3.07643 0.224971
\(188\) 0 0
\(189\) 5.18209 0.376941
\(190\) 0 0
\(191\) −0.499519 −0.0361439 −0.0180720 0.999837i \(-0.505753\pi\)
−0.0180720 + 0.999837i \(0.505753\pi\)
\(192\) 0 0
\(193\) −1.24333 −0.0894972 −0.0447486 0.998998i \(-0.514249\pi\)
−0.0447486 + 0.998998i \(0.514249\pi\)
\(194\) 0 0
\(195\) −13.7666 −0.985848
\(196\) 0 0
\(197\) 20.8997 1.48904 0.744521 0.667600i \(-0.232678\pi\)
0.744521 + 0.667600i \(0.232678\pi\)
\(198\) 0 0
\(199\) −4.67889 −0.331678 −0.165839 0.986153i \(-0.553033\pi\)
−0.165839 + 0.986153i \(0.553033\pi\)
\(200\) 0 0
\(201\) 0.572192 0.0403593
\(202\) 0 0
\(203\) −4.83715 −0.339501
\(204\) 0 0
\(205\) 5.16934 0.361042
\(206\) 0 0
\(207\) 0.0154381 0.00107302
\(208\) 0 0
\(209\) −9.09635 −0.629208
\(210\) 0 0
\(211\) 2.13228 0.146792 0.0733961 0.997303i \(-0.476616\pi\)
0.0733961 + 0.997303i \(0.476616\pi\)
\(212\) 0 0
\(213\) 4.20490 0.288115
\(214\) 0 0
\(215\) 3.03392 0.206911
\(216\) 0 0
\(217\) 3.98836 0.270748
\(218\) 0 0
\(219\) −24.8271 −1.67766
\(220\) 0 0
\(221\) −5.13506 −0.345422
\(222\) 0 0
\(223\) −1.58212 −0.105947 −0.0529733 0.998596i \(-0.516870\pi\)
−0.0529733 + 0.998596i \(0.516870\pi\)
\(224\) 0 0
\(225\) −0.0422271 −0.00281514
\(226\) 0 0
\(227\) −25.8874 −1.71821 −0.859105 0.511799i \(-0.828979\pi\)
−0.859105 + 0.511799i \(0.828979\pi\)
\(228\) 0 0
\(229\) 11.9860 0.792058 0.396029 0.918238i \(-0.370388\pi\)
0.396029 + 0.918238i \(0.370388\pi\)
\(230\) 0 0
\(231\) 5.34284 0.351533
\(232\) 0 0
\(233\) 3.89460 0.255144 0.127572 0.991829i \(-0.459282\pi\)
0.127572 + 0.991829i \(0.459282\pi\)
\(234\) 0 0
\(235\) 6.89855 0.450012
\(236\) 0 0
\(237\) 15.4501 1.00359
\(238\) 0 0
\(239\) 7.03555 0.455092 0.227546 0.973767i \(-0.426930\pi\)
0.227546 + 0.973767i \(0.426930\pi\)
\(240\) 0 0
\(241\) 14.1017 0.908373 0.454186 0.890907i \(-0.349930\pi\)
0.454186 + 0.890907i \(0.349930\pi\)
\(242\) 0 0
\(243\) −0.167681 −0.0107568
\(244\) 0 0
\(245\) −1.54368 −0.0986219
\(246\) 0 0
\(247\) 15.1833 0.966090
\(248\) 0 0
\(249\) −30.7324 −1.94759
\(250\) 0 0
\(251\) −1.80629 −0.114012 −0.0570060 0.998374i \(-0.518155\pi\)
−0.0570060 + 0.998374i \(0.518155\pi\)
\(252\) 0 0
\(253\) −2.94349 −0.185056
\(254\) 0 0
\(255\) 2.68091 0.167885
\(256\) 0 0
\(257\) 20.7900 1.29685 0.648423 0.761280i \(-0.275429\pi\)
0.648423 + 0.761280i \(0.275429\pi\)
\(258\) 0 0
\(259\) 5.56431 0.345749
\(260\) 0 0
\(261\) 0.0780489 0.00483111
\(262\) 0 0
\(263\) −4.38605 −0.270456 −0.135228 0.990815i \(-0.543177\pi\)
−0.135228 + 0.990815i \(0.543177\pi\)
\(264\) 0 0
\(265\) 11.2932 0.693734
\(266\) 0 0
\(267\) 16.6680 1.02007
\(268\) 0 0
\(269\) −19.5885 −1.19433 −0.597166 0.802118i \(-0.703707\pi\)
−0.597166 + 0.802118i \(0.703707\pi\)
\(270\) 0 0
\(271\) 14.6852 0.892065 0.446032 0.895017i \(-0.352837\pi\)
0.446032 + 0.895017i \(0.352837\pi\)
\(272\) 0 0
\(273\) −8.91807 −0.539746
\(274\) 0 0
\(275\) 8.05121 0.485506
\(276\) 0 0
\(277\) −11.3853 −0.684074 −0.342037 0.939686i \(-0.611117\pi\)
−0.342037 + 0.939686i \(0.611117\pi\)
\(278\) 0 0
\(279\) −0.0643535 −0.00385274
\(280\) 0 0
\(281\) 8.69046 0.518430 0.259215 0.965820i \(-0.416536\pi\)
0.259215 + 0.965820i \(0.416536\pi\)
\(282\) 0 0
\(283\) 4.03978 0.240140 0.120070 0.992765i \(-0.461688\pi\)
0.120070 + 0.992765i \(0.461688\pi\)
\(284\) 0 0
\(285\) −7.92687 −0.469548
\(286\) 0 0
\(287\) 3.34872 0.197669
\(288\) 0 0
\(289\) 1.00000 0.0588235
\(290\) 0 0
\(291\) −6.27923 −0.368095
\(292\) 0 0
\(293\) −10.3337 −0.603700 −0.301850 0.953355i \(-0.597604\pi\)
−0.301850 + 0.953355i \(0.597604\pi\)
\(294\) 0 0
\(295\) 0.763077 0.0444281
\(296\) 0 0
\(297\) 15.9423 0.925067
\(298\) 0 0
\(299\) 4.91317 0.284136
\(300\) 0 0
\(301\) 1.96538 0.113283
\(302\) 0 0
\(303\) −17.4593 −1.00301
\(304\) 0 0
\(305\) −3.45456 −0.197808
\(306\) 0 0
\(307\) 33.4587 1.90959 0.954795 0.297264i \(-0.0960741\pi\)
0.954795 + 0.297264i \(0.0960741\pi\)
\(308\) 0 0
\(309\) −12.2034 −0.694230
\(310\) 0 0
\(311\) −14.5026 −0.822368 −0.411184 0.911552i \(-0.634885\pi\)
−0.411184 + 0.911552i \(0.634885\pi\)
\(312\) 0 0
\(313\) −0.665479 −0.0376151 −0.0188076 0.999823i \(-0.505987\pi\)
−0.0188076 + 0.999823i \(0.505987\pi\)
\(314\) 0 0
\(315\) 0.0249077 0.00140339
\(316\) 0 0
\(317\) −2.52540 −0.141841 −0.0709203 0.997482i \(-0.522594\pi\)
−0.0709203 + 0.997482i \(0.522594\pi\)
\(318\) 0 0
\(319\) −14.8811 −0.833184
\(320\) 0 0
\(321\) −27.5496 −1.53767
\(322\) 0 0
\(323\) −2.95679 −0.164520
\(324\) 0 0
\(325\) −13.4388 −0.745449
\(326\) 0 0
\(327\) 14.2436 0.787672
\(328\) 0 0
\(329\) 4.46891 0.246379
\(330\) 0 0
\(331\) 29.0108 1.59458 0.797288 0.603599i \(-0.206267\pi\)
0.797288 + 0.603599i \(0.206267\pi\)
\(332\) 0 0
\(333\) −0.0897819 −0.00492002
\(334\) 0 0
\(335\) −0.508596 −0.0277876
\(336\) 0 0
\(337\) 5.79023 0.315414 0.157707 0.987486i \(-0.449590\pi\)
0.157707 + 0.987486i \(0.449590\pi\)
\(338\) 0 0
\(339\) −11.8110 −0.641484
\(340\) 0 0
\(341\) 12.2699 0.664453
\(342\) 0 0
\(343\) −1.00000 −0.0539949
\(344\) 0 0
\(345\) −2.56506 −0.138098
\(346\) 0 0
\(347\) −15.5324 −0.833826 −0.416913 0.908947i \(-0.636888\pi\)
−0.416913 + 0.908947i \(0.636888\pi\)
\(348\) 0 0
\(349\) 12.9869 0.695171 0.347585 0.937648i \(-0.387002\pi\)
0.347585 + 0.937648i \(0.387002\pi\)
\(350\) 0 0
\(351\) −26.6103 −1.42035
\(352\) 0 0
\(353\) 26.5500 1.41311 0.706557 0.707656i \(-0.250247\pi\)
0.706557 + 0.707656i \(0.250247\pi\)
\(354\) 0 0
\(355\) −3.73755 −0.198368
\(356\) 0 0
\(357\) 1.73670 0.0919160
\(358\) 0 0
\(359\) 12.2568 0.646888 0.323444 0.946247i \(-0.395159\pi\)
0.323444 + 0.946247i \(0.395159\pi\)
\(360\) 0 0
\(361\) −10.2574 −0.539863
\(362\) 0 0
\(363\) −2.66686 −0.139974
\(364\) 0 0
\(365\) 22.0677 1.15507
\(366\) 0 0
\(367\) 3.27195 0.170794 0.0853972 0.996347i \(-0.472784\pi\)
0.0853972 + 0.996347i \(0.472784\pi\)
\(368\) 0 0
\(369\) −0.0540327 −0.00281283
\(370\) 0 0
\(371\) 7.31576 0.379816
\(372\) 0 0
\(373\) 9.66109 0.500232 0.250116 0.968216i \(-0.419531\pi\)
0.250116 + 0.968216i \(0.419531\pi\)
\(374\) 0 0
\(375\) 20.4206 1.05452
\(376\) 0 0
\(377\) 24.8391 1.27928
\(378\) 0 0
\(379\) −0.596009 −0.0306149 −0.0153075 0.999883i \(-0.504873\pi\)
−0.0153075 + 0.999883i \(0.504873\pi\)
\(380\) 0 0
\(381\) 11.2579 0.576758
\(382\) 0 0
\(383\) 4.43661 0.226700 0.113350 0.993555i \(-0.463842\pi\)
0.113350 + 0.993555i \(0.463842\pi\)
\(384\) 0 0
\(385\) −4.74901 −0.242032
\(386\) 0 0
\(387\) −0.0317121 −0.00161202
\(388\) 0 0
\(389\) −29.7065 −1.50618 −0.753089 0.657919i \(-0.771437\pi\)
−0.753089 + 0.657919i \(0.771437\pi\)
\(390\) 0 0
\(391\) −0.956789 −0.0483869
\(392\) 0 0
\(393\) −5.51659 −0.278275
\(394\) 0 0
\(395\) −13.7329 −0.690977
\(396\) 0 0
\(397\) 19.7774 0.992599 0.496299 0.868151i \(-0.334692\pi\)
0.496299 + 0.868151i \(0.334692\pi\)
\(398\) 0 0
\(399\) −5.13506 −0.257075
\(400\) 0 0
\(401\) 36.5174 1.82359 0.911795 0.410645i \(-0.134696\pi\)
0.911795 + 0.410645i \(0.134696\pi\)
\(402\) 0 0
\(403\) −20.4805 −1.02021
\(404\) 0 0
\(405\) 13.9674 0.694046
\(406\) 0 0
\(407\) 17.1182 0.848518
\(408\) 0 0
\(409\) 38.9254 1.92474 0.962368 0.271748i \(-0.0876017\pi\)
0.962368 + 0.271748i \(0.0876017\pi\)
\(410\) 0 0
\(411\) 11.6773 0.575998
\(412\) 0 0
\(413\) 0.494325 0.0243241
\(414\) 0 0
\(415\) 27.3166 1.34092
\(416\) 0 0
\(417\) −36.5548 −1.79009
\(418\) 0 0
\(419\) −29.2450 −1.42871 −0.714355 0.699784i \(-0.753280\pi\)
−0.714355 + 0.699784i \(0.753280\pi\)
\(420\) 0 0
\(421\) −37.0885 −1.80758 −0.903791 0.427975i \(-0.859227\pi\)
−0.903791 + 0.427975i \(0.859227\pi\)
\(422\) 0 0
\(423\) −0.0721072 −0.00350597
\(424\) 0 0
\(425\) 2.61706 0.126946
\(426\) 0 0
\(427\) −2.23788 −0.108299
\(428\) 0 0
\(429\) −27.4358 −1.32461
\(430\) 0 0
\(431\) −27.7206 −1.33525 −0.667627 0.744496i \(-0.732690\pi\)
−0.667627 + 0.744496i \(0.732690\pi\)
\(432\) 0 0
\(433\) 15.2795 0.734285 0.367142 0.930165i \(-0.380336\pi\)
0.367142 + 0.930165i \(0.380336\pi\)
\(434\) 0 0
\(435\) −12.9679 −0.621765
\(436\) 0 0
\(437\) 2.82902 0.135330
\(438\) 0 0
\(439\) −11.5974 −0.553515 −0.276758 0.960940i \(-0.589260\pi\)
−0.276758 + 0.960940i \(0.589260\pi\)
\(440\) 0 0
\(441\) 0.0161353 0.000768348 0
\(442\) 0 0
\(443\) −13.8718 −0.659068 −0.329534 0.944144i \(-0.606892\pi\)
−0.329534 + 0.944144i \(0.606892\pi\)
\(444\) 0 0
\(445\) −14.8155 −0.702321
\(446\) 0 0
\(447\) −7.22249 −0.341612
\(448\) 0 0
\(449\) 35.5894 1.67957 0.839785 0.542920i \(-0.182681\pi\)
0.839785 + 0.542920i \(0.182681\pi\)
\(450\) 0 0
\(451\) 10.3021 0.485107
\(452\) 0 0
\(453\) −2.95225 −0.138709
\(454\) 0 0
\(455\) 7.92687 0.371618
\(456\) 0 0
\(457\) −5.53234 −0.258792 −0.129396 0.991593i \(-0.541304\pi\)
−0.129396 + 0.991593i \(0.541304\pi\)
\(458\) 0 0
\(459\) 5.18209 0.241879
\(460\) 0 0
\(461\) −15.3059 −0.712866 −0.356433 0.934321i \(-0.616007\pi\)
−0.356433 + 0.934321i \(0.616007\pi\)
\(462\) 0 0
\(463\) 5.67202 0.263601 0.131800 0.991276i \(-0.457924\pi\)
0.131800 + 0.991276i \(0.457924\pi\)
\(464\) 0 0
\(465\) 10.6924 0.495849
\(466\) 0 0
\(467\) 17.5647 0.812796 0.406398 0.913696i \(-0.366785\pi\)
0.406398 + 0.913696i \(0.366785\pi\)
\(468\) 0 0
\(469\) −0.329470 −0.0152135
\(470\) 0 0
\(471\) 20.3129 0.935970
\(472\) 0 0
\(473\) 6.04636 0.278012
\(474\) 0 0
\(475\) −7.73810 −0.355048
\(476\) 0 0
\(477\) −0.118042 −0.00540478
\(478\) 0 0
\(479\) 39.6215 1.81035 0.905176 0.425038i \(-0.139739\pi\)
0.905176 + 0.425038i \(0.139739\pi\)
\(480\) 0 0
\(481\) −28.5731 −1.30282
\(482\) 0 0
\(483\) −1.66166 −0.0756080
\(484\) 0 0
\(485\) 5.58133 0.253435
\(486\) 0 0
\(487\) −27.4853 −1.24548 −0.622740 0.782429i \(-0.713980\pi\)
−0.622740 + 0.782429i \(0.713980\pi\)
\(488\) 0 0
\(489\) −3.47176 −0.156998
\(490\) 0 0
\(491\) −8.80191 −0.397225 −0.198612 0.980078i \(-0.563643\pi\)
−0.198612 + 0.980078i \(0.563643\pi\)
\(492\) 0 0
\(493\) −4.83715 −0.217854
\(494\) 0 0
\(495\) 0.0766268 0.00344412
\(496\) 0 0
\(497\) −2.42120 −0.108606
\(498\) 0 0
\(499\) −19.2935 −0.863697 −0.431848 0.901946i \(-0.642138\pi\)
−0.431848 + 0.901946i \(0.642138\pi\)
\(500\) 0 0
\(501\) −25.1590 −1.12402
\(502\) 0 0
\(503\) 3.87021 0.172564 0.0862821 0.996271i \(-0.472501\pi\)
0.0862821 + 0.996271i \(0.472501\pi\)
\(504\) 0 0
\(505\) 15.5188 0.690577
\(506\) 0 0
\(507\) 23.2177 1.03114
\(508\) 0 0
\(509\) −4.76533 −0.211219 −0.105610 0.994408i \(-0.533679\pi\)
−0.105610 + 0.994408i \(0.533679\pi\)
\(510\) 0 0
\(511\) 14.2955 0.632397
\(512\) 0 0
\(513\) −15.3223 −0.676497
\(514\) 0 0
\(515\) 10.8471 0.477980
\(516\) 0 0
\(517\) 13.7483 0.604648
\(518\) 0 0
\(519\) −12.0028 −0.526864
\(520\) 0 0
\(521\) −5.59408 −0.245081 −0.122541 0.992463i \(-0.539104\pi\)
−0.122541 + 0.992463i \(0.539104\pi\)
\(522\) 0 0
\(523\) 39.8251 1.74143 0.870714 0.491789i \(-0.163657\pi\)
0.870714 + 0.491789i \(0.163657\pi\)
\(524\) 0 0
\(525\) 4.54506 0.198363
\(526\) 0 0
\(527\) 3.98836 0.173736
\(528\) 0 0
\(529\) −22.0846 −0.960198
\(530\) 0 0
\(531\) −0.00797608 −0.000346132 0
\(532\) 0 0
\(533\) −17.1959 −0.744836
\(534\) 0 0
\(535\) 24.4876 1.05869
\(536\) 0 0
\(537\) −42.2589 −1.82360
\(538\) 0 0
\(539\) −3.07643 −0.132511
\(540\) 0 0
\(541\) −25.3977 −1.09193 −0.545966 0.837807i \(-0.683837\pi\)
−0.545966 + 0.837807i \(0.683837\pi\)
\(542\) 0 0
\(543\) 31.3071 1.34352
\(544\) 0 0
\(545\) −12.6605 −0.542315
\(546\) 0 0
\(547\) −8.97660 −0.383812 −0.191906 0.981413i \(-0.561467\pi\)
−0.191906 + 0.981413i \(0.561467\pi\)
\(548\) 0 0
\(549\) 0.0361089 0.00154109
\(550\) 0 0
\(551\) 14.3024 0.609304
\(552\) 0 0
\(553\) −8.89622 −0.378306
\(554\) 0 0
\(555\) 14.9174 0.633208
\(556\) 0 0
\(557\) 0.716380 0.0303540 0.0151770 0.999885i \(-0.495169\pi\)
0.0151770 + 0.999885i \(0.495169\pi\)
\(558\) 0 0
\(559\) −10.0924 −0.426862
\(560\) 0 0
\(561\) 5.34284 0.225575
\(562\) 0 0
\(563\) −20.3312 −0.856860 −0.428430 0.903575i \(-0.640933\pi\)
−0.428430 + 0.903575i \(0.640933\pi\)
\(564\) 0 0
\(565\) 10.4982 0.441665
\(566\) 0 0
\(567\) 9.04815 0.379986
\(568\) 0 0
\(569\) −3.83795 −0.160895 −0.0804475 0.996759i \(-0.525635\pi\)
−0.0804475 + 0.996759i \(0.525635\pi\)
\(570\) 0 0
\(571\) −32.4717 −1.35890 −0.679449 0.733722i \(-0.737781\pi\)
−0.679449 + 0.733722i \(0.737781\pi\)
\(572\) 0 0
\(573\) −0.867516 −0.0362410
\(574\) 0 0
\(575\) −2.50398 −0.104423
\(576\) 0 0
\(577\) 25.6252 1.06679 0.533395 0.845866i \(-0.320916\pi\)
0.533395 + 0.845866i \(0.320916\pi\)
\(578\) 0 0
\(579\) −2.15930 −0.0897375
\(580\) 0 0
\(581\) 17.6958 0.734146
\(582\) 0 0
\(583\) 22.5064 0.932121
\(584\) 0 0
\(585\) −0.127903 −0.00528812
\(586\) 0 0
\(587\) 31.0885 1.28316 0.641579 0.767057i \(-0.278280\pi\)
0.641579 + 0.767057i \(0.278280\pi\)
\(588\) 0 0
\(589\) −11.7927 −0.485911
\(590\) 0 0
\(591\) 36.2965 1.49304
\(592\) 0 0
\(593\) −4.95402 −0.203437 −0.101719 0.994813i \(-0.532434\pi\)
−0.101719 + 0.994813i \(0.532434\pi\)
\(594\) 0 0
\(595\) −1.54368 −0.0632846
\(596\) 0 0
\(597\) −8.12584 −0.332568
\(598\) 0 0
\(599\) 43.5216 1.77825 0.889123 0.457668i \(-0.151315\pi\)
0.889123 + 0.457668i \(0.151315\pi\)
\(600\) 0 0
\(601\) 26.2441 1.07052 0.535259 0.844688i \(-0.320214\pi\)
0.535259 + 0.844688i \(0.320214\pi\)
\(602\) 0 0
\(603\) 0.00531611 0.000216489 0
\(604\) 0 0
\(605\) 2.37045 0.0963726
\(606\) 0 0
\(607\) −26.9179 −1.09257 −0.546283 0.837601i \(-0.683958\pi\)
−0.546283 + 0.837601i \(0.683958\pi\)
\(608\) 0 0
\(609\) −8.40069 −0.340413
\(610\) 0 0
\(611\) −22.9481 −0.928381
\(612\) 0 0
\(613\) −22.9795 −0.928134 −0.464067 0.885800i \(-0.653610\pi\)
−0.464067 + 0.885800i \(0.653610\pi\)
\(614\) 0 0
\(615\) 8.97761 0.362012
\(616\) 0 0
\(617\) 7.30604 0.294130 0.147065 0.989127i \(-0.453017\pi\)
0.147065 + 0.989127i \(0.453017\pi\)
\(618\) 0 0
\(619\) −20.0699 −0.806679 −0.403339 0.915050i \(-0.632151\pi\)
−0.403339 + 0.915050i \(0.632151\pi\)
\(620\) 0 0
\(621\) −4.95816 −0.198964
\(622\) 0 0
\(623\) −9.59753 −0.384517
\(624\) 0 0
\(625\) −5.06567 −0.202627
\(626\) 0 0
\(627\) −15.7976 −0.630897
\(628\) 0 0
\(629\) 5.56431 0.221864
\(630\) 0 0
\(631\) 29.4824 1.17368 0.586838 0.809704i \(-0.300373\pi\)
0.586838 + 0.809704i \(0.300373\pi\)
\(632\) 0 0
\(633\) 3.70314 0.147186
\(634\) 0 0
\(635\) −10.0066 −0.397100
\(636\) 0 0
\(637\) 5.13506 0.203459
\(638\) 0 0
\(639\) 0.0390668 0.00154546
\(640\) 0 0
\(641\) −8.15820 −0.322230 −0.161115 0.986936i \(-0.551509\pi\)
−0.161115 + 0.986936i \(0.551509\pi\)
\(642\) 0 0
\(643\) −20.0748 −0.791673 −0.395836 0.918321i \(-0.629545\pi\)
−0.395836 + 0.918321i \(0.629545\pi\)
\(644\) 0 0
\(645\) 5.26901 0.207467
\(646\) 0 0
\(647\) −27.1506 −1.06740 −0.533699 0.845674i \(-0.679199\pi\)
−0.533699 + 0.845674i \(0.679199\pi\)
\(648\) 0 0
\(649\) 1.52075 0.0596948
\(650\) 0 0
\(651\) 6.92660 0.271475
\(652\) 0 0
\(653\) 50.4969 1.97610 0.988049 0.154143i \(-0.0492617\pi\)
0.988049 + 0.154143i \(0.0492617\pi\)
\(654\) 0 0
\(655\) 4.90345 0.191594
\(656\) 0 0
\(657\) −0.230663 −0.00899902
\(658\) 0 0
\(659\) −2.22940 −0.0868449 −0.0434225 0.999057i \(-0.513826\pi\)
−0.0434225 + 0.999057i \(0.513826\pi\)
\(660\) 0 0
\(661\) 23.2104 0.902780 0.451390 0.892327i \(-0.350928\pi\)
0.451390 + 0.892327i \(0.350928\pi\)
\(662\) 0 0
\(663\) −8.91807 −0.346349
\(664\) 0 0
\(665\) 4.56433 0.176997
\(666\) 0 0
\(667\) 4.62813 0.179202
\(668\) 0 0
\(669\) −2.74767 −0.106231
\(670\) 0 0
\(671\) −6.88468 −0.265780
\(672\) 0 0
\(673\) −27.6117 −1.06435 −0.532177 0.846633i \(-0.678626\pi\)
−0.532177 + 0.846633i \(0.678626\pi\)
\(674\) 0 0
\(675\) 13.5618 0.521996
\(676\) 0 0
\(677\) −34.5960 −1.32963 −0.664816 0.747007i \(-0.731490\pi\)
−0.664816 + 0.747007i \(0.731490\pi\)
\(678\) 0 0
\(679\) 3.61561 0.138754
\(680\) 0 0
\(681\) −44.9588 −1.72282
\(682\) 0 0
\(683\) 35.8086 1.37018 0.685089 0.728459i \(-0.259763\pi\)
0.685089 + 0.728459i \(0.259763\pi\)
\(684\) 0 0
\(685\) −10.3794 −0.396577
\(686\) 0 0
\(687\) 20.8161 0.794185
\(688\) 0 0
\(689\) −37.5669 −1.43118
\(690\) 0 0
\(691\) −7.50019 −0.285321 −0.142660 0.989772i \(-0.545566\pi\)
−0.142660 + 0.989772i \(0.545566\pi\)
\(692\) 0 0
\(693\) 0.0496391 0.00188563
\(694\) 0 0
\(695\) 32.4919 1.23249
\(696\) 0 0
\(697\) 3.34872 0.126842
\(698\) 0 0
\(699\) 6.76377 0.255829
\(700\) 0 0
\(701\) 11.2108 0.423427 0.211713 0.977332i \(-0.432096\pi\)
0.211713 + 0.977332i \(0.432096\pi\)
\(702\) 0 0
\(703\) −16.4525 −0.620517
\(704\) 0 0
\(705\) 11.9807 0.451220
\(706\) 0 0
\(707\) 10.0531 0.378087
\(708\) 0 0
\(709\) −48.4671 −1.82022 −0.910110 0.414367i \(-0.864003\pi\)
−0.910110 + 0.414367i \(0.864003\pi\)
\(710\) 0 0
\(711\) 0.143543 0.00538330
\(712\) 0 0
\(713\) −3.81602 −0.142911
\(714\) 0 0
\(715\) 24.3865 0.912002
\(716\) 0 0
\(717\) 12.2186 0.456314
\(718\) 0 0
\(719\) −3.47062 −0.129432 −0.0647161 0.997904i \(-0.520614\pi\)
−0.0647161 + 0.997904i \(0.520614\pi\)
\(720\) 0 0
\(721\) 7.02679 0.261691
\(722\) 0 0
\(723\) 24.4905 0.910812
\(724\) 0 0
\(725\) −12.6591 −0.470148
\(726\) 0 0
\(727\) −7.61839 −0.282550 −0.141275 0.989970i \(-0.545120\pi\)
−0.141275 + 0.989970i \(0.545120\pi\)
\(728\) 0 0
\(729\) 26.8532 0.994564
\(730\) 0 0
\(731\) 1.96538 0.0726924
\(732\) 0 0
\(733\) −34.8340 −1.28662 −0.643311 0.765605i \(-0.722440\pi\)
−0.643311 + 0.765605i \(0.722440\pi\)
\(734\) 0 0
\(735\) −2.68091 −0.0988867
\(736\) 0 0
\(737\) −1.01359 −0.0373361
\(738\) 0 0
\(739\) −18.1732 −0.668512 −0.334256 0.942482i \(-0.608485\pi\)
−0.334256 + 0.942482i \(0.608485\pi\)
\(740\) 0 0
\(741\) 26.3689 0.968684
\(742\) 0 0
\(743\) 1.78017 0.0653080 0.0326540 0.999467i \(-0.489604\pi\)
0.0326540 + 0.999467i \(0.489604\pi\)
\(744\) 0 0
\(745\) 6.41974 0.235201
\(746\) 0 0
\(747\) −0.285528 −0.0104469
\(748\) 0 0
\(749\) 15.8632 0.579628
\(750\) 0 0
\(751\) 33.0713 1.20679 0.603394 0.797443i \(-0.293815\pi\)
0.603394 + 0.797443i \(0.293815\pi\)
\(752\) 0 0
\(753\) −3.13699 −0.114318
\(754\) 0 0
\(755\) 2.62412 0.0955017
\(756\) 0 0
\(757\) −1.16353 −0.0422891 −0.0211446 0.999776i \(-0.506731\pi\)
−0.0211446 + 0.999776i \(0.506731\pi\)
\(758\) 0 0
\(759\) −5.11197 −0.185553
\(760\) 0 0
\(761\) −25.5778 −0.927194 −0.463597 0.886046i \(-0.653441\pi\)
−0.463597 + 0.886046i \(0.653441\pi\)
\(762\) 0 0
\(763\) −8.20151 −0.296915
\(764\) 0 0
\(765\) 0.0249077 0.000900540 0
\(766\) 0 0
\(767\) −2.53839 −0.0916558
\(768\) 0 0
\(769\) −7.58033 −0.273354 −0.136677 0.990616i \(-0.543642\pi\)
−0.136677 + 0.990616i \(0.543642\pi\)
\(770\) 0 0
\(771\) 36.1061 1.30033
\(772\) 0 0
\(773\) 19.2432 0.692131 0.346066 0.938210i \(-0.387517\pi\)
0.346066 + 0.938210i \(0.387517\pi\)
\(774\) 0 0
\(775\) 10.4378 0.374937
\(776\) 0 0
\(777\) 9.66355 0.346678
\(778\) 0 0
\(779\) −9.90146 −0.354757
\(780\) 0 0
\(781\) −7.44864 −0.266533
\(782\) 0 0
\(783\) −25.0665 −0.895804
\(784\) 0 0
\(785\) −18.0552 −0.644419
\(786\) 0 0
\(787\) −46.0869 −1.64282 −0.821411 0.570337i \(-0.806813\pi\)
−0.821411 + 0.570337i \(0.806813\pi\)
\(788\) 0 0
\(789\) −7.61727 −0.271182
\(790\) 0 0
\(791\) 6.80081 0.241809
\(792\) 0 0
\(793\) 11.4917 0.408081
\(794\) 0 0
\(795\) 19.6129 0.695597
\(796\) 0 0
\(797\) −7.05749 −0.249989 −0.124995 0.992157i \(-0.539891\pi\)
−0.124995 + 0.992157i \(0.539891\pi\)
\(798\) 0 0
\(799\) 4.46891 0.158099
\(800\) 0 0
\(801\) 0.154859 0.00547168
\(802\) 0 0
\(803\) 43.9792 1.55199
\(804\) 0 0
\(805\) 1.47697 0.0520564
\(806\) 0 0
\(807\) −34.0194 −1.19754
\(808\) 0 0
\(809\) −24.8762 −0.874599 −0.437300 0.899316i \(-0.644065\pi\)
−0.437300 + 0.899316i \(0.644065\pi\)
\(810\) 0 0
\(811\) 12.6176 0.443064 0.221532 0.975153i \(-0.428894\pi\)
0.221532 + 0.975153i \(0.428894\pi\)
\(812\) 0 0
\(813\) 25.5039 0.894460
\(814\) 0 0
\(815\) 3.08589 0.108094
\(816\) 0 0
\(817\) −5.81123 −0.203309
\(818\) 0 0
\(819\) −0.0828558 −0.00289522
\(820\) 0 0
\(821\) 28.3528 0.989521 0.494760 0.869029i \(-0.335256\pi\)
0.494760 + 0.869029i \(0.335256\pi\)
\(822\) 0 0
\(823\) 44.1976 1.54063 0.770315 0.637663i \(-0.220099\pi\)
0.770315 + 0.637663i \(0.220099\pi\)
\(824\) 0 0
\(825\) 13.9825 0.486810
\(826\) 0 0
\(827\) −4.51243 −0.156913 −0.0784563 0.996918i \(-0.524999\pi\)
−0.0784563 + 0.996918i \(0.524999\pi\)
\(828\) 0 0
\(829\) −23.6425 −0.821138 −0.410569 0.911830i \(-0.634670\pi\)
−0.410569 + 0.911830i \(0.634670\pi\)
\(830\) 0 0
\(831\) −19.7728 −0.685911
\(832\) 0 0
\(833\) −1.00000 −0.0346479
\(834\) 0 0
\(835\) 22.3627 0.773894
\(836\) 0 0
\(837\) 20.6680 0.714392
\(838\) 0 0
\(839\) −22.3277 −0.770838 −0.385419 0.922742i \(-0.625943\pi\)
−0.385419 + 0.922742i \(0.625943\pi\)
\(840\) 0 0
\(841\) −5.60199 −0.193172
\(842\) 0 0
\(843\) 15.0928 0.519822
\(844\) 0 0
\(845\) −20.6372 −0.709941
\(846\) 0 0
\(847\) 1.53559 0.0527635
\(848\) 0 0
\(849\) 7.01590 0.240785
\(850\) 0 0
\(851\) −5.32387 −0.182500
\(852\) 0 0
\(853\) −12.1099 −0.414634 −0.207317 0.978274i \(-0.566473\pi\)
−0.207317 + 0.978274i \(0.566473\pi\)
\(854\) 0 0
\(855\) −0.0736468 −0.00251867
\(856\) 0 0
\(857\) 28.0762 0.959065 0.479533 0.877524i \(-0.340806\pi\)
0.479533 + 0.877524i \(0.340806\pi\)
\(858\) 0 0
\(859\) 34.1333 1.16461 0.582306 0.812970i \(-0.302151\pi\)
0.582306 + 0.812970i \(0.302151\pi\)
\(860\) 0 0
\(861\) 5.81573 0.198200
\(862\) 0 0
\(863\) −29.7597 −1.01303 −0.506515 0.862231i \(-0.669067\pi\)
−0.506515 + 0.862231i \(0.669067\pi\)
\(864\) 0 0
\(865\) 10.6687 0.362748
\(866\) 0 0
\(867\) 1.73670 0.0589815
\(868\) 0 0
\(869\) −27.3686 −0.928416
\(870\) 0 0
\(871\) 1.69185 0.0573262
\(872\) 0 0
\(873\) −0.0583390 −0.00197447
\(874\) 0 0
\(875\) −11.7583 −0.397502
\(876\) 0 0
\(877\) 48.0126 1.62127 0.810636 0.585551i \(-0.199122\pi\)
0.810636 + 0.585551i \(0.199122\pi\)
\(878\) 0 0
\(879\) −17.9465 −0.605321
\(880\) 0 0
\(881\) −1.73011 −0.0582889 −0.0291444 0.999575i \(-0.509278\pi\)
−0.0291444 + 0.999575i \(0.509278\pi\)
\(882\) 0 0
\(883\) −13.4867 −0.453865 −0.226932 0.973910i \(-0.572870\pi\)
−0.226932 + 0.973910i \(0.572870\pi\)
\(884\) 0 0
\(885\) 1.32524 0.0445474
\(886\) 0 0
\(887\) −18.7271 −0.628793 −0.314397 0.949292i \(-0.601802\pi\)
−0.314397 + 0.949292i \(0.601802\pi\)
\(888\) 0 0
\(889\) −6.48233 −0.217410
\(890\) 0 0
\(891\) 27.8360 0.932540
\(892\) 0 0
\(893\) −13.2136 −0.442177
\(894\) 0 0
\(895\) 37.5620 1.25556
\(896\) 0 0
\(897\) 8.53271 0.284899
\(898\) 0 0
\(899\) −19.2923 −0.643434
\(900\) 0 0
\(901\) 7.31576 0.243723
\(902\) 0 0
\(903\) 3.41329 0.113587
\(904\) 0 0
\(905\) −27.8275 −0.925018
\(906\) 0 0
\(907\) 11.5187 0.382474 0.191237 0.981544i \(-0.438750\pi\)
0.191237 + 0.981544i \(0.438750\pi\)
\(908\) 0 0
\(909\) −0.162211 −0.00538018
\(910\) 0 0
\(911\) −40.2975 −1.33512 −0.667559 0.744557i \(-0.732661\pi\)
−0.667559 + 0.744557i \(0.732661\pi\)
\(912\) 0 0
\(913\) 54.4399 1.80170
\(914\) 0 0
\(915\) −5.99955 −0.198339
\(916\) 0 0
\(917\) 3.17648 0.104896
\(918\) 0 0
\(919\) 46.4359 1.53178 0.765889 0.642973i \(-0.222299\pi\)
0.765889 + 0.642973i \(0.222299\pi\)
\(920\) 0 0
\(921\) 58.1079 1.91472
\(922\) 0 0
\(923\) 12.4330 0.409237
\(924\) 0 0
\(925\) 14.5621 0.478800
\(926\) 0 0
\(927\) −0.113379 −0.00372387
\(928\) 0 0
\(929\) 23.4205 0.768402 0.384201 0.923250i \(-0.374477\pi\)
0.384201 + 0.923250i \(0.374477\pi\)
\(930\) 0 0
\(931\) 2.95679 0.0969048
\(932\) 0 0
\(933\) −25.1867 −0.824577
\(934\) 0 0
\(935\) −4.74901 −0.155309
\(936\) 0 0
\(937\) −15.0807 −0.492664 −0.246332 0.969186i \(-0.579225\pi\)
−0.246332 + 0.969186i \(0.579225\pi\)
\(938\) 0 0
\(939\) −1.15574 −0.0377161
\(940\) 0 0
\(941\) −43.8498 −1.42946 −0.714732 0.699399i \(-0.753451\pi\)
−0.714732 + 0.699399i \(0.753451\pi\)
\(942\) 0 0
\(943\) −3.20402 −0.104337
\(944\) 0 0
\(945\) −7.99946 −0.260223
\(946\) 0 0
\(947\) −35.7859 −1.16288 −0.581442 0.813588i \(-0.697511\pi\)
−0.581442 + 0.813588i \(0.697511\pi\)
\(948\) 0 0
\(949\) −73.4084 −2.38294
\(950\) 0 0
\(951\) −4.38587 −0.142222
\(952\) 0 0
\(953\) 2.73924 0.0887327 0.0443663 0.999015i \(-0.485873\pi\)
0.0443663 + 0.999015i \(0.485873\pi\)
\(954\) 0 0
\(955\) 0.771096 0.0249521
\(956\) 0 0
\(957\) −25.8441 −0.835422
\(958\) 0 0
\(959\) −6.72383 −0.217124
\(960\) 0 0
\(961\) −15.0930 −0.486870
\(962\) 0 0
\(963\) −0.255957 −0.00824811
\(964\) 0 0
\(965\) 1.91931 0.0617847
\(966\) 0 0
\(967\) −3.24324 −0.104296 −0.0521478 0.998639i \(-0.516607\pi\)
−0.0521478 + 0.998639i \(0.516607\pi\)
\(968\) 0 0
\(969\) −5.13506 −0.164962
\(970\) 0 0
\(971\) 11.8203 0.379333 0.189666 0.981849i \(-0.439259\pi\)
0.189666 + 0.981849i \(0.439259\pi\)
\(972\) 0 0
\(973\) 21.0484 0.674780
\(974\) 0 0
\(975\) −23.3392 −0.747451
\(976\) 0 0
\(977\) 25.5359 0.816965 0.408483 0.912766i \(-0.366058\pi\)
0.408483 + 0.912766i \(0.366058\pi\)
\(978\) 0 0
\(979\) −29.5261 −0.943658
\(980\) 0 0
\(981\) 0.132334 0.00422510
\(982\) 0 0
\(983\) 4.22087 0.134625 0.0673124 0.997732i \(-0.478558\pi\)
0.0673124 + 0.997732i \(0.478558\pi\)
\(984\) 0 0
\(985\) −32.2624 −1.02796
\(986\) 0 0
\(987\) 7.76116 0.247041
\(988\) 0 0
\(989\) −1.88046 −0.0597951
\(990\) 0 0
\(991\) 39.3864 1.25115 0.625575 0.780164i \(-0.284864\pi\)
0.625575 + 0.780164i \(0.284864\pi\)
\(992\) 0 0
\(993\) 50.3831 1.59886
\(994\) 0 0
\(995\) 7.22269 0.228975
\(996\) 0 0
\(997\) 9.15850 0.290053 0.145026 0.989428i \(-0.453673\pi\)
0.145026 + 0.989428i \(0.453673\pi\)
\(998\) 0 0
\(999\) 28.8347 0.912290
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 3808.2.a.h.1.5 6
4.3 odd 2 3808.2.a.p.1.2 yes 6
8.3 odd 2 7616.2.a.bu.1.5 6
8.5 even 2 7616.2.a.cc.1.2 6
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
3808.2.a.h.1.5 6 1.1 even 1 trivial
3808.2.a.p.1.2 yes 6 4.3 odd 2
7616.2.a.bu.1.5 6 8.3 odd 2
7616.2.a.cc.1.2 6 8.5 even 2