Properties

Label 3808.2.a.h.1.3
Level $3808$
Weight $2$
Character 3808.1
Self dual yes
Analytic conductor $30.407$
Analytic rank $1$
Dimension $6$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [3808,2,Mod(1,3808)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(3808, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("3808.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 3808 = 2^{5} \cdot 7 \cdot 17 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 3808.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(30.4070330897\)
Analytic rank: \(1\)
Dimension: \(6\)
Coefficient field: 6.6.109859312.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{6} - 3x^{5} - 7x^{4} + 15x^{3} + 13x^{2} - 9x - 2 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 2 \)
Twist minimal: yes
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.3
Root \(-1.10086\) of defining polynomial
Character \(\chi\) \(=\) 3808.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-1.07243 q^{3} +3.18060 q^{5} -1.00000 q^{7} -1.84989 q^{9} +0.565788 q^{11} +6.01588 q^{13} -3.41098 q^{15} -1.00000 q^{17} -5.60956 q^{19} +1.07243 q^{21} -7.60956 q^{23} +5.11621 q^{25} +5.20118 q^{27} -8.65334 q^{29} -7.61740 q^{31} -0.606769 q^{33} -3.18060 q^{35} -0.737022 q^{37} -6.45162 q^{39} -6.04166 q^{41} +9.59679 q^{43} -5.88376 q^{45} +2.91237 q^{47} +1.00000 q^{49} +1.07243 q^{51} +7.85269 q^{53} +1.79954 q^{55} +6.01588 q^{57} -9.84464 q^{59} -11.6846 q^{61} +1.84989 q^{63} +19.1341 q^{65} +8.79143 q^{67} +8.16074 q^{69} -15.2894 q^{71} -5.75194 q^{73} -5.48679 q^{75} -0.565788 q^{77} +5.13920 q^{79} -0.0282405 q^{81} -3.50982 q^{83} -3.18060 q^{85} +9.28012 q^{87} -7.43833 q^{89} -6.01588 q^{91} +8.16914 q^{93} -17.8418 q^{95} +6.51390 q^{97} -1.04664 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 6 q - 4 q^{3} + 4 q^{5} - 6 q^{7} + 8 q^{9} - 8 q^{11} + 8 q^{13} - 6 q^{17} - 6 q^{19} + 4 q^{21} - 18 q^{23} + 12 q^{25} - 22 q^{27} - 8 q^{29} + 4 q^{31} - 6 q^{33} - 4 q^{35} - 8 q^{37} - 14 q^{39}+ \cdots - 28 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −1.07243 −0.619169 −0.309584 0.950872i \(-0.600190\pi\)
−0.309584 + 0.950872i \(0.600190\pi\)
\(4\) 0 0
\(5\) 3.18060 1.42241 0.711204 0.702986i \(-0.248150\pi\)
0.711204 + 0.702986i \(0.248150\pi\)
\(6\) 0 0
\(7\) −1.00000 −0.377964
\(8\) 0 0
\(9\) −1.84989 −0.616630
\(10\) 0 0
\(11\) 0.565788 0.170591 0.0852957 0.996356i \(-0.472817\pi\)
0.0852957 + 0.996356i \(0.472817\pi\)
\(12\) 0 0
\(13\) 6.01588 1.66850 0.834252 0.551383i \(-0.185900\pi\)
0.834252 + 0.551383i \(0.185900\pi\)
\(14\) 0 0
\(15\) −3.41098 −0.880710
\(16\) 0 0
\(17\) −1.00000 −0.242536
\(18\) 0 0
\(19\) −5.60956 −1.28692 −0.643461 0.765479i \(-0.722502\pi\)
−0.643461 + 0.765479i \(0.722502\pi\)
\(20\) 0 0
\(21\) 1.07243 0.234024
\(22\) 0 0
\(23\) −7.60956 −1.58670 −0.793352 0.608763i \(-0.791666\pi\)
−0.793352 + 0.608763i \(0.791666\pi\)
\(24\) 0 0
\(25\) 5.11621 1.02324
\(26\) 0 0
\(27\) 5.20118 1.00097
\(28\) 0 0
\(29\) −8.65334 −1.60689 −0.803443 0.595382i \(-0.797001\pi\)
−0.803443 + 0.595382i \(0.797001\pi\)
\(30\) 0 0
\(31\) −7.61740 −1.36813 −0.684063 0.729423i \(-0.739789\pi\)
−0.684063 + 0.729423i \(0.739789\pi\)
\(32\) 0 0
\(33\) −0.606769 −0.105625
\(34\) 0 0
\(35\) −3.18060 −0.537619
\(36\) 0 0
\(37\) −0.737022 −0.121166 −0.0605828 0.998163i \(-0.519296\pi\)
−0.0605828 + 0.998163i \(0.519296\pi\)
\(38\) 0 0
\(39\) −6.45162 −1.03309
\(40\) 0 0
\(41\) −6.04166 −0.943549 −0.471775 0.881719i \(-0.656386\pi\)
−0.471775 + 0.881719i \(0.656386\pi\)
\(42\) 0 0
\(43\) 9.59679 1.46350 0.731748 0.681575i \(-0.238705\pi\)
0.731748 + 0.681575i \(0.238705\pi\)
\(44\) 0 0
\(45\) −5.88376 −0.877099
\(46\) 0 0
\(47\) 2.91237 0.424813 0.212407 0.977181i \(-0.431870\pi\)
0.212407 + 0.977181i \(0.431870\pi\)
\(48\) 0 0
\(49\) 1.00000 0.142857
\(50\) 0 0
\(51\) 1.07243 0.150171
\(52\) 0 0
\(53\) 7.85269 1.07865 0.539325 0.842098i \(-0.318680\pi\)
0.539325 + 0.842098i \(0.318680\pi\)
\(54\) 0 0
\(55\) 1.79954 0.242650
\(56\) 0 0
\(57\) 6.01588 0.796822
\(58\) 0 0
\(59\) −9.84464 −1.28166 −0.640832 0.767681i \(-0.721410\pi\)
−0.640832 + 0.767681i \(0.721410\pi\)
\(60\) 0 0
\(61\) −11.6846 −1.49606 −0.748029 0.663666i \(-0.769000\pi\)
−0.748029 + 0.663666i \(0.769000\pi\)
\(62\) 0 0
\(63\) 1.84989 0.233064
\(64\) 0 0
\(65\) 19.1341 2.37329
\(66\) 0 0
\(67\) 8.79143 1.07404 0.537022 0.843568i \(-0.319549\pi\)
0.537022 + 0.843568i \(0.319549\pi\)
\(68\) 0 0
\(69\) 8.16074 0.982438
\(70\) 0 0
\(71\) −15.2894 −1.81452 −0.907262 0.420566i \(-0.861831\pi\)
−0.907262 + 0.420566i \(0.861831\pi\)
\(72\) 0 0
\(73\) −5.75194 −0.673213 −0.336607 0.941645i \(-0.609279\pi\)
−0.336607 + 0.941645i \(0.609279\pi\)
\(74\) 0 0
\(75\) −5.48679 −0.633560
\(76\) 0 0
\(77\) −0.565788 −0.0644775
\(78\) 0 0
\(79\) 5.13920 0.578205 0.289103 0.957298i \(-0.406643\pi\)
0.289103 + 0.957298i \(0.406643\pi\)
\(80\) 0 0
\(81\) −0.0282405 −0.00313783
\(82\) 0 0
\(83\) −3.50982 −0.385252 −0.192626 0.981272i \(-0.561700\pi\)
−0.192626 + 0.981272i \(0.561700\pi\)
\(84\) 0 0
\(85\) −3.18060 −0.344984
\(86\) 0 0
\(87\) 9.28012 0.994933
\(88\) 0 0
\(89\) −7.43833 −0.788461 −0.394231 0.919011i \(-0.628989\pi\)
−0.394231 + 0.919011i \(0.628989\pi\)
\(90\) 0 0
\(91\) −6.01588 −0.630635
\(92\) 0 0
\(93\) 8.16914 0.847101
\(94\) 0 0
\(95\) −17.8418 −1.83053
\(96\) 0 0
\(97\) 6.51390 0.661386 0.330693 0.943738i \(-0.392718\pi\)
0.330693 + 0.943738i \(0.392718\pi\)
\(98\) 0 0
\(99\) −1.04664 −0.105192
\(100\) 0 0
\(101\) 4.43574 0.441373 0.220686 0.975345i \(-0.429170\pi\)
0.220686 + 0.975345i \(0.429170\pi\)
\(102\) 0 0
\(103\) −2.38757 −0.235254 −0.117627 0.993058i \(-0.537529\pi\)
−0.117627 + 0.993058i \(0.537529\pi\)
\(104\) 0 0
\(105\) 3.41098 0.332877
\(106\) 0 0
\(107\) −16.9307 −1.63675 −0.818375 0.574685i \(-0.805125\pi\)
−0.818375 + 0.574685i \(0.805125\pi\)
\(108\) 0 0
\(109\) 2.76993 0.265311 0.132655 0.991162i \(-0.457650\pi\)
0.132655 + 0.991162i \(0.457650\pi\)
\(110\) 0 0
\(111\) 0.790406 0.0750220
\(112\) 0 0
\(113\) 17.6149 1.65708 0.828538 0.559934i \(-0.189173\pi\)
0.828538 + 0.559934i \(0.189173\pi\)
\(114\) 0 0
\(115\) −24.2030 −2.25694
\(116\) 0 0
\(117\) −11.1287 −1.02885
\(118\) 0 0
\(119\) 1.00000 0.0916698
\(120\) 0 0
\(121\) −10.6799 −0.970899
\(122\) 0 0
\(123\) 6.47927 0.584217
\(124\) 0 0
\(125\) 0.369615 0.0330594
\(126\) 0 0
\(127\) 7.65985 0.679702 0.339851 0.940479i \(-0.389623\pi\)
0.339851 + 0.940479i \(0.389623\pi\)
\(128\) 0 0
\(129\) −10.2919 −0.906151
\(130\) 0 0
\(131\) 17.6689 1.54374 0.771871 0.635779i \(-0.219321\pi\)
0.771871 + 0.635779i \(0.219321\pi\)
\(132\) 0 0
\(133\) 5.60956 0.486411
\(134\) 0 0
\(135\) 16.5429 1.42378
\(136\) 0 0
\(137\) 0.948655 0.0810490 0.0405245 0.999179i \(-0.487097\pi\)
0.0405245 + 0.999179i \(0.487097\pi\)
\(138\) 0 0
\(139\) −7.82961 −0.664099 −0.332050 0.943262i \(-0.607740\pi\)
−0.332050 + 0.943262i \(0.607740\pi\)
\(140\) 0 0
\(141\) −3.12332 −0.263031
\(142\) 0 0
\(143\) 3.40371 0.284632
\(144\) 0 0
\(145\) −27.5228 −2.28564
\(146\) 0 0
\(147\) −1.07243 −0.0884527
\(148\) 0 0
\(149\) −4.30332 −0.352542 −0.176271 0.984342i \(-0.556403\pi\)
−0.176271 + 0.984342i \(0.556403\pi\)
\(150\) 0 0
\(151\) 17.2449 1.40337 0.701686 0.712487i \(-0.252431\pi\)
0.701686 + 0.712487i \(0.252431\pi\)
\(152\) 0 0
\(153\) 1.84989 0.149555
\(154\) 0 0
\(155\) −24.2279 −1.94603
\(156\) 0 0
\(157\) 2.72069 0.217135 0.108567 0.994089i \(-0.465374\pi\)
0.108567 + 0.994089i \(0.465374\pi\)
\(158\) 0 0
\(159\) −8.42147 −0.667866
\(160\) 0 0
\(161\) 7.60956 0.599718
\(162\) 0 0
\(163\) −10.4756 −0.820510 −0.410255 0.911971i \(-0.634560\pi\)
−0.410255 + 0.911971i \(0.634560\pi\)
\(164\) 0 0
\(165\) −1.92989 −0.150242
\(166\) 0 0
\(167\) −0.251538 −0.0194646 −0.00973230 0.999953i \(-0.503098\pi\)
−0.00973230 + 0.999953i \(0.503098\pi\)
\(168\) 0 0
\(169\) 23.1908 1.78391
\(170\) 0 0
\(171\) 10.3771 0.793555
\(172\) 0 0
\(173\) 7.41094 0.563443 0.281722 0.959496i \(-0.409094\pi\)
0.281722 + 0.959496i \(0.409094\pi\)
\(174\) 0 0
\(175\) −5.11621 −0.386749
\(176\) 0 0
\(177\) 10.5577 0.793566
\(178\) 0 0
\(179\) −18.2380 −1.36317 −0.681585 0.731739i \(-0.738709\pi\)
−0.681585 + 0.731739i \(0.738709\pi\)
\(180\) 0 0
\(181\) −4.71719 −0.350626 −0.175313 0.984513i \(-0.556094\pi\)
−0.175313 + 0.984513i \(0.556094\pi\)
\(182\) 0 0
\(183\) 12.5309 0.926313
\(184\) 0 0
\(185\) −2.34417 −0.172347
\(186\) 0 0
\(187\) −0.565788 −0.0413745
\(188\) 0 0
\(189\) −5.20118 −0.378330
\(190\) 0 0
\(191\) 4.31459 0.312193 0.156096 0.987742i \(-0.450109\pi\)
0.156096 + 0.987742i \(0.450109\pi\)
\(192\) 0 0
\(193\) −7.64419 −0.550241 −0.275120 0.961410i \(-0.588718\pi\)
−0.275120 + 0.961410i \(0.588718\pi\)
\(194\) 0 0
\(195\) −20.5200 −1.46947
\(196\) 0 0
\(197\) −20.9446 −1.49224 −0.746119 0.665812i \(-0.768085\pi\)
−0.746119 + 0.665812i \(0.768085\pi\)
\(198\) 0 0
\(199\) 0.0936490 0.00663860 0.00331930 0.999994i \(-0.498943\pi\)
0.00331930 + 0.999994i \(0.498943\pi\)
\(200\) 0 0
\(201\) −9.42821 −0.665015
\(202\) 0 0
\(203\) 8.65334 0.607346
\(204\) 0 0
\(205\) −19.2161 −1.34211
\(206\) 0 0
\(207\) 14.0769 0.978409
\(208\) 0 0
\(209\) −3.17382 −0.219538
\(210\) 0 0
\(211\) −26.4236 −1.81908 −0.909539 0.415618i \(-0.863565\pi\)
−0.909539 + 0.415618i \(0.863565\pi\)
\(212\) 0 0
\(213\) 16.3969 1.12350
\(214\) 0 0
\(215\) 30.5235 2.08169
\(216\) 0 0
\(217\) 7.61740 0.517103
\(218\) 0 0
\(219\) 6.16856 0.416833
\(220\) 0 0
\(221\) −6.01588 −0.404672
\(222\) 0 0
\(223\) −6.69432 −0.448285 −0.224143 0.974556i \(-0.571958\pi\)
−0.224143 + 0.974556i \(0.571958\pi\)
\(224\) 0 0
\(225\) −9.46442 −0.630961
\(226\) 0 0
\(227\) 10.1542 0.673955 0.336978 0.941513i \(-0.390595\pi\)
0.336978 + 0.941513i \(0.390595\pi\)
\(228\) 0 0
\(229\) −24.2389 −1.60175 −0.800875 0.598831i \(-0.795632\pi\)
−0.800875 + 0.598831i \(0.795632\pi\)
\(230\) 0 0
\(231\) 0.606769 0.0399225
\(232\) 0 0
\(233\) −19.4343 −1.27318 −0.636592 0.771201i \(-0.719656\pi\)
−0.636592 + 0.771201i \(0.719656\pi\)
\(234\) 0 0
\(235\) 9.26309 0.604258
\(236\) 0 0
\(237\) −5.51144 −0.358007
\(238\) 0 0
\(239\) −7.98354 −0.516412 −0.258206 0.966090i \(-0.583131\pi\)
−0.258206 + 0.966090i \(0.583131\pi\)
\(240\) 0 0
\(241\) 22.8402 1.47127 0.735634 0.677380i \(-0.236885\pi\)
0.735634 + 0.677380i \(0.236885\pi\)
\(242\) 0 0
\(243\) −15.5732 −0.999024
\(244\) 0 0
\(245\) 3.18060 0.203201
\(246\) 0 0
\(247\) −33.7465 −2.14724
\(248\) 0 0
\(249\) 3.76404 0.238536
\(250\) 0 0
\(251\) 21.7023 1.36984 0.684918 0.728620i \(-0.259838\pi\)
0.684918 + 0.728620i \(0.259838\pi\)
\(252\) 0 0
\(253\) −4.30540 −0.270678
\(254\) 0 0
\(255\) 3.41098 0.213604
\(256\) 0 0
\(257\) −23.3082 −1.45392 −0.726962 0.686678i \(-0.759068\pi\)
−0.726962 + 0.686678i \(0.759068\pi\)
\(258\) 0 0
\(259\) 0.737022 0.0457963
\(260\) 0 0
\(261\) 16.0077 0.990853
\(262\) 0 0
\(263\) −8.21633 −0.506641 −0.253320 0.967382i \(-0.581523\pi\)
−0.253320 + 0.967382i \(0.581523\pi\)
\(264\) 0 0
\(265\) 24.9762 1.53428
\(266\) 0 0
\(267\) 7.97710 0.488191
\(268\) 0 0
\(269\) 8.59407 0.523990 0.261995 0.965069i \(-0.415620\pi\)
0.261995 + 0.965069i \(0.415620\pi\)
\(270\) 0 0
\(271\) 0.00265971 0.000161566 0 8.07829e−5 1.00000i \(-0.499974\pi\)
8.07829e−5 1.00000i \(0.499974\pi\)
\(272\) 0 0
\(273\) 6.45162 0.390470
\(274\) 0 0
\(275\) 2.89469 0.174556
\(276\) 0 0
\(277\) −16.3080 −0.979854 −0.489927 0.871763i \(-0.662977\pi\)
−0.489927 + 0.871763i \(0.662977\pi\)
\(278\) 0 0
\(279\) 14.0913 0.843627
\(280\) 0 0
\(281\) 16.0529 0.957638 0.478819 0.877914i \(-0.341065\pi\)
0.478819 + 0.877914i \(0.341065\pi\)
\(282\) 0 0
\(283\) 20.8537 1.23962 0.619811 0.784751i \(-0.287209\pi\)
0.619811 + 0.784751i \(0.287209\pi\)
\(284\) 0 0
\(285\) 19.1341 1.13341
\(286\) 0 0
\(287\) 6.04166 0.356628
\(288\) 0 0
\(289\) 1.00000 0.0588235
\(290\) 0 0
\(291\) −6.98571 −0.409510
\(292\) 0 0
\(293\) −5.48705 −0.320557 −0.160279 0.987072i \(-0.551239\pi\)
−0.160279 + 0.987072i \(0.551239\pi\)
\(294\) 0 0
\(295\) −31.3119 −1.82305
\(296\) 0 0
\(297\) 2.94276 0.170756
\(298\) 0 0
\(299\) −45.7782 −2.64742
\(300\) 0 0
\(301\) −9.59679 −0.553150
\(302\) 0 0
\(303\) −4.75703 −0.273284
\(304\) 0 0
\(305\) −37.1640 −2.12800
\(306\) 0 0
\(307\) −9.38674 −0.535730 −0.267865 0.963457i \(-0.586318\pi\)
−0.267865 + 0.963457i \(0.586318\pi\)
\(308\) 0 0
\(309\) 2.56050 0.145662
\(310\) 0 0
\(311\) 21.2513 1.20505 0.602525 0.798100i \(-0.294161\pi\)
0.602525 + 0.798100i \(0.294161\pi\)
\(312\) 0 0
\(313\) −14.3710 −0.812295 −0.406147 0.913808i \(-0.633128\pi\)
−0.406147 + 0.913808i \(0.633128\pi\)
\(314\) 0 0
\(315\) 5.88376 0.331512
\(316\) 0 0
\(317\) 24.3225 1.36609 0.683045 0.730377i \(-0.260655\pi\)
0.683045 + 0.730377i \(0.260655\pi\)
\(318\) 0 0
\(319\) −4.89595 −0.274121
\(320\) 0 0
\(321\) 18.1570 1.01342
\(322\) 0 0
\(323\) 5.60956 0.312125
\(324\) 0 0
\(325\) 30.7785 1.70728
\(326\) 0 0
\(327\) −2.97056 −0.164272
\(328\) 0 0
\(329\) −2.91237 −0.160564
\(330\) 0 0
\(331\) −17.3559 −0.953969 −0.476984 0.878912i \(-0.658270\pi\)
−0.476984 + 0.878912i \(0.658270\pi\)
\(332\) 0 0
\(333\) 1.36341 0.0747143
\(334\) 0 0
\(335\) 27.9620 1.52773
\(336\) 0 0
\(337\) −19.1221 −1.04165 −0.520824 0.853664i \(-0.674375\pi\)
−0.520824 + 0.853664i \(0.674375\pi\)
\(338\) 0 0
\(339\) −18.8908 −1.02601
\(340\) 0 0
\(341\) −4.30983 −0.233390
\(342\) 0 0
\(343\) −1.00000 −0.0539949
\(344\) 0 0
\(345\) 25.9560 1.39743
\(346\) 0 0
\(347\) 16.5618 0.889086 0.444543 0.895758i \(-0.353366\pi\)
0.444543 + 0.895758i \(0.353366\pi\)
\(348\) 0 0
\(349\) 15.5311 0.831359 0.415680 0.909511i \(-0.363544\pi\)
0.415680 + 0.909511i \(0.363544\pi\)
\(350\) 0 0
\(351\) 31.2896 1.67012
\(352\) 0 0
\(353\) 14.4021 0.766546 0.383273 0.923635i \(-0.374797\pi\)
0.383273 + 0.923635i \(0.374797\pi\)
\(354\) 0 0
\(355\) −48.6296 −2.58099
\(356\) 0 0
\(357\) −1.07243 −0.0567591
\(358\) 0 0
\(359\) −1.13178 −0.0597333 −0.0298667 0.999554i \(-0.509508\pi\)
−0.0298667 + 0.999554i \(0.509508\pi\)
\(360\) 0 0
\(361\) 12.4672 0.656169
\(362\) 0 0
\(363\) 11.4535 0.601150
\(364\) 0 0
\(365\) −18.2946 −0.957583
\(366\) 0 0
\(367\) 15.9100 0.830496 0.415248 0.909708i \(-0.363695\pi\)
0.415248 + 0.909708i \(0.363695\pi\)
\(368\) 0 0
\(369\) 11.1764 0.581821
\(370\) 0 0
\(371\) −7.85269 −0.407691
\(372\) 0 0
\(373\) 13.0538 0.675900 0.337950 0.941164i \(-0.390266\pi\)
0.337950 + 0.941164i \(0.390266\pi\)
\(374\) 0 0
\(375\) −0.396387 −0.0204693
\(376\) 0 0
\(377\) −52.0574 −2.68109
\(378\) 0 0
\(379\) −30.4198 −1.56256 −0.781279 0.624182i \(-0.785432\pi\)
−0.781279 + 0.624182i \(0.785432\pi\)
\(380\) 0 0
\(381\) −8.21467 −0.420850
\(382\) 0 0
\(383\) −35.4221 −1.80998 −0.904992 0.425428i \(-0.860124\pi\)
−0.904992 + 0.425428i \(0.860124\pi\)
\(384\) 0 0
\(385\) −1.79954 −0.0917132
\(386\) 0 0
\(387\) −17.7530 −0.902435
\(388\) 0 0
\(389\) −12.7473 −0.646312 −0.323156 0.946346i \(-0.604744\pi\)
−0.323156 + 0.946346i \(0.604744\pi\)
\(390\) 0 0
\(391\) 7.60956 0.384832
\(392\) 0 0
\(393\) −18.9487 −0.955837
\(394\) 0 0
\(395\) 16.3457 0.822443
\(396\) 0 0
\(397\) −33.9721 −1.70501 −0.852505 0.522719i \(-0.824918\pi\)
−0.852505 + 0.522719i \(0.824918\pi\)
\(398\) 0 0
\(399\) −6.01588 −0.301171
\(400\) 0 0
\(401\) 16.2997 0.813967 0.406984 0.913435i \(-0.366581\pi\)
0.406984 + 0.913435i \(0.366581\pi\)
\(402\) 0 0
\(403\) −45.8253 −2.28272
\(404\) 0 0
\(405\) −0.0898217 −0.00446328
\(406\) 0 0
\(407\) −0.416998 −0.0206698
\(408\) 0 0
\(409\) −18.2156 −0.900703 −0.450351 0.892851i \(-0.648701\pi\)
−0.450351 + 0.892851i \(0.648701\pi\)
\(410\) 0 0
\(411\) −1.01737 −0.0501830
\(412\) 0 0
\(413\) 9.84464 0.484423
\(414\) 0 0
\(415\) −11.1633 −0.547986
\(416\) 0 0
\(417\) 8.39673 0.411190
\(418\) 0 0
\(419\) −21.7259 −1.06138 −0.530690 0.847566i \(-0.678067\pi\)
−0.530690 + 0.847566i \(0.678067\pi\)
\(420\) 0 0
\(421\) 10.7609 0.524453 0.262226 0.965006i \(-0.415543\pi\)
0.262226 + 0.965006i \(0.415543\pi\)
\(422\) 0 0
\(423\) −5.38757 −0.261953
\(424\) 0 0
\(425\) −5.11621 −0.248173
\(426\) 0 0
\(427\) 11.6846 0.565457
\(428\) 0 0
\(429\) −3.65025 −0.176236
\(430\) 0 0
\(431\) −6.71437 −0.323420 −0.161710 0.986838i \(-0.551701\pi\)
−0.161710 + 0.986838i \(0.551701\pi\)
\(432\) 0 0
\(433\) −32.1887 −1.54689 −0.773446 0.633862i \(-0.781469\pi\)
−0.773446 + 0.633862i \(0.781469\pi\)
\(434\) 0 0
\(435\) 29.5163 1.41520
\(436\) 0 0
\(437\) 42.6863 2.04196
\(438\) 0 0
\(439\) 25.8839 1.23537 0.617685 0.786426i \(-0.288071\pi\)
0.617685 + 0.786426i \(0.288071\pi\)
\(440\) 0 0
\(441\) −1.84989 −0.0880900
\(442\) 0 0
\(443\) −3.01136 −0.143074 −0.0715371 0.997438i \(-0.522790\pi\)
−0.0715371 + 0.997438i \(0.522790\pi\)
\(444\) 0 0
\(445\) −23.6583 −1.12151
\(446\) 0 0
\(447\) 4.61502 0.218283
\(448\) 0 0
\(449\) −1.06964 −0.0504795 −0.0252397 0.999681i \(-0.508035\pi\)
−0.0252397 + 0.999681i \(0.508035\pi\)
\(450\) 0 0
\(451\) −3.41830 −0.160961
\(452\) 0 0
\(453\) −18.4940 −0.868924
\(454\) 0 0
\(455\) −19.1341 −0.897020
\(456\) 0 0
\(457\) −37.6134 −1.75948 −0.879741 0.475453i \(-0.842284\pi\)
−0.879741 + 0.475453i \(0.842284\pi\)
\(458\) 0 0
\(459\) −5.20118 −0.242770
\(460\) 0 0
\(461\) 6.64704 0.309583 0.154792 0.987947i \(-0.450529\pi\)
0.154792 + 0.987947i \(0.450529\pi\)
\(462\) 0 0
\(463\) 35.8158 1.66450 0.832250 0.554401i \(-0.187052\pi\)
0.832250 + 0.554401i \(0.187052\pi\)
\(464\) 0 0
\(465\) 25.9828 1.20492
\(466\) 0 0
\(467\) −25.8823 −1.19769 −0.598846 0.800865i \(-0.704374\pi\)
−0.598846 + 0.800865i \(0.704374\pi\)
\(468\) 0 0
\(469\) −8.79143 −0.405951
\(470\) 0 0
\(471\) −2.91776 −0.134443
\(472\) 0 0
\(473\) 5.42974 0.249660
\(474\) 0 0
\(475\) −28.6997 −1.31683
\(476\) 0 0
\(477\) −14.5266 −0.665127
\(478\) 0 0
\(479\) −28.2837 −1.29231 −0.646157 0.763204i \(-0.723625\pi\)
−0.646157 + 0.763204i \(0.723625\pi\)
\(480\) 0 0
\(481\) −4.43383 −0.202165
\(482\) 0 0
\(483\) −8.16074 −0.371327
\(484\) 0 0
\(485\) 20.7181 0.940760
\(486\) 0 0
\(487\) 35.2167 1.59582 0.797910 0.602777i \(-0.205939\pi\)
0.797910 + 0.602777i \(0.205939\pi\)
\(488\) 0 0
\(489\) 11.2343 0.508034
\(490\) 0 0
\(491\) −2.01739 −0.0910433 −0.0455217 0.998963i \(-0.514495\pi\)
−0.0455217 + 0.998963i \(0.514495\pi\)
\(492\) 0 0
\(493\) 8.65334 0.389727
\(494\) 0 0
\(495\) −3.32896 −0.149625
\(496\) 0 0
\(497\) 15.2894 0.685826
\(498\) 0 0
\(499\) 10.8472 0.485587 0.242794 0.970078i \(-0.421936\pi\)
0.242794 + 0.970078i \(0.421936\pi\)
\(500\) 0 0
\(501\) 0.269757 0.0120519
\(502\) 0 0
\(503\) −11.9677 −0.533613 −0.266806 0.963750i \(-0.585968\pi\)
−0.266806 + 0.963750i \(0.585968\pi\)
\(504\) 0 0
\(505\) 14.1083 0.627812
\(506\) 0 0
\(507\) −24.8705 −1.10454
\(508\) 0 0
\(509\) 32.4608 1.43880 0.719400 0.694596i \(-0.244417\pi\)
0.719400 + 0.694596i \(0.244417\pi\)
\(510\) 0 0
\(511\) 5.75194 0.254451
\(512\) 0 0
\(513\) −29.1763 −1.28817
\(514\) 0 0
\(515\) −7.59390 −0.334627
\(516\) 0 0
\(517\) 1.64779 0.0724695
\(518\) 0 0
\(519\) −7.94773 −0.348867
\(520\) 0 0
\(521\) −16.8689 −0.739038 −0.369519 0.929223i \(-0.620478\pi\)
−0.369519 + 0.929223i \(0.620478\pi\)
\(522\) 0 0
\(523\) 36.4122 1.59220 0.796098 0.605168i \(-0.206894\pi\)
0.796098 + 0.605168i \(0.206894\pi\)
\(524\) 0 0
\(525\) 5.48679 0.239463
\(526\) 0 0
\(527\) 7.61740 0.331819
\(528\) 0 0
\(529\) 34.9055 1.51763
\(530\) 0 0
\(531\) 18.2115 0.790312
\(532\) 0 0
\(533\) −36.3459 −1.57432
\(534\) 0 0
\(535\) −53.8497 −2.32812
\(536\) 0 0
\(537\) 19.5590 0.844032
\(538\) 0 0
\(539\) 0.565788 0.0243702
\(540\) 0 0
\(541\) 21.5010 0.924400 0.462200 0.886776i \(-0.347060\pi\)
0.462200 + 0.886776i \(0.347060\pi\)
\(542\) 0 0
\(543\) 5.05886 0.217097
\(544\) 0 0
\(545\) 8.81002 0.377380
\(546\) 0 0
\(547\) −27.2708 −1.16602 −0.583008 0.812466i \(-0.698124\pi\)
−0.583008 + 0.812466i \(0.698124\pi\)
\(548\) 0 0
\(549\) 21.6152 0.922514
\(550\) 0 0
\(551\) 48.5415 2.06794
\(552\) 0 0
\(553\) −5.13920 −0.218541
\(554\) 0 0
\(555\) 2.51396 0.106712
\(556\) 0 0
\(557\) −10.3029 −0.436546 −0.218273 0.975888i \(-0.570042\pi\)
−0.218273 + 0.975888i \(0.570042\pi\)
\(558\) 0 0
\(559\) 57.7331 2.44185
\(560\) 0 0
\(561\) 0.606769 0.0256178
\(562\) 0 0
\(563\) 20.2550 0.853648 0.426824 0.904335i \(-0.359632\pi\)
0.426824 + 0.904335i \(0.359632\pi\)
\(564\) 0 0
\(565\) 56.0261 2.35704
\(566\) 0 0
\(567\) 0.0282405 0.00118599
\(568\) 0 0
\(569\) −16.2918 −0.682988 −0.341494 0.939884i \(-0.610933\pi\)
−0.341494 + 0.939884i \(0.610933\pi\)
\(570\) 0 0
\(571\) 36.5486 1.52951 0.764756 0.644320i \(-0.222860\pi\)
0.764756 + 0.644320i \(0.222860\pi\)
\(572\) 0 0
\(573\) −4.62710 −0.193300
\(574\) 0 0
\(575\) −38.9321 −1.62358
\(576\) 0 0
\(577\) −16.0398 −0.667745 −0.333872 0.942618i \(-0.608355\pi\)
−0.333872 + 0.942618i \(0.608355\pi\)
\(578\) 0 0
\(579\) 8.19787 0.340692
\(580\) 0 0
\(581\) 3.50982 0.145612
\(582\) 0 0
\(583\) 4.44295 0.184008
\(584\) 0 0
\(585\) −35.3960 −1.46344
\(586\) 0 0
\(587\) 23.8841 0.985802 0.492901 0.870085i \(-0.335936\pi\)
0.492901 + 0.870085i \(0.335936\pi\)
\(588\) 0 0
\(589\) 42.7303 1.76067
\(590\) 0 0
\(591\) 22.4616 0.923948
\(592\) 0 0
\(593\) 14.9443 0.613690 0.306845 0.951759i \(-0.400727\pi\)
0.306845 + 0.951759i \(0.400727\pi\)
\(594\) 0 0
\(595\) 3.18060 0.130392
\(596\) 0 0
\(597\) −0.100432 −0.00411042
\(598\) 0 0
\(599\) 11.1611 0.456029 0.228014 0.973658i \(-0.426777\pi\)
0.228014 + 0.973658i \(0.426777\pi\)
\(600\) 0 0
\(601\) 23.9318 0.976198 0.488099 0.872788i \(-0.337691\pi\)
0.488099 + 0.872788i \(0.337691\pi\)
\(602\) 0 0
\(603\) −16.2632 −0.662288
\(604\) 0 0
\(605\) −33.9684 −1.38101
\(606\) 0 0
\(607\) 10.9074 0.442717 0.221359 0.975192i \(-0.428951\pi\)
0.221359 + 0.975192i \(0.428951\pi\)
\(608\) 0 0
\(609\) −9.28012 −0.376049
\(610\) 0 0
\(611\) 17.5205 0.708803
\(612\) 0 0
\(613\) −15.6985 −0.634056 −0.317028 0.948416i \(-0.602685\pi\)
−0.317028 + 0.948416i \(0.602685\pi\)
\(614\) 0 0
\(615\) 20.6080 0.830994
\(616\) 0 0
\(617\) 32.8872 1.32399 0.661995 0.749508i \(-0.269710\pi\)
0.661995 + 0.749508i \(0.269710\pi\)
\(618\) 0 0
\(619\) 19.8331 0.797159 0.398580 0.917134i \(-0.369503\pi\)
0.398580 + 0.917134i \(0.369503\pi\)
\(620\) 0 0
\(621\) −39.5787 −1.58824
\(622\) 0 0
\(623\) 7.43833 0.298010
\(624\) 0 0
\(625\) −24.4054 −0.976218
\(626\) 0 0
\(627\) 3.40371 0.135931
\(628\) 0 0
\(629\) 0.737022 0.0293870
\(630\) 0 0
\(631\) 29.8673 1.18900 0.594499 0.804096i \(-0.297350\pi\)
0.594499 + 0.804096i \(0.297350\pi\)
\(632\) 0 0
\(633\) 28.3376 1.12632
\(634\) 0 0
\(635\) 24.3629 0.966813
\(636\) 0 0
\(637\) 6.01588 0.238358
\(638\) 0 0
\(639\) 28.2838 1.11889
\(640\) 0 0
\(641\) −41.4059 −1.63543 −0.817717 0.575620i \(-0.804761\pi\)
−0.817717 + 0.575620i \(0.804761\pi\)
\(642\) 0 0
\(643\) 43.7843 1.72668 0.863341 0.504620i \(-0.168367\pi\)
0.863341 + 0.504620i \(0.168367\pi\)
\(644\) 0 0
\(645\) −32.7344 −1.28892
\(646\) 0 0
\(647\) 0.708087 0.0278378 0.0139189 0.999903i \(-0.495569\pi\)
0.0139189 + 0.999903i \(0.495569\pi\)
\(648\) 0 0
\(649\) −5.56998 −0.218641
\(650\) 0 0
\(651\) −8.16914 −0.320174
\(652\) 0 0
\(653\) −20.1332 −0.787872 −0.393936 0.919138i \(-0.628887\pi\)
−0.393936 + 0.919138i \(0.628887\pi\)
\(654\) 0 0
\(655\) 56.1978 2.19583
\(656\) 0 0
\(657\) 10.6404 0.415123
\(658\) 0 0
\(659\) 4.34634 0.169310 0.0846548 0.996410i \(-0.473021\pi\)
0.0846548 + 0.996410i \(0.473021\pi\)
\(660\) 0 0
\(661\) 9.79150 0.380845 0.190423 0.981702i \(-0.439014\pi\)
0.190423 + 0.981702i \(0.439014\pi\)
\(662\) 0 0
\(663\) 6.45162 0.250560
\(664\) 0 0
\(665\) 17.8418 0.691874
\(666\) 0 0
\(667\) 65.8482 2.54965
\(668\) 0 0
\(669\) 7.17921 0.277564
\(670\) 0 0
\(671\) −6.61099 −0.255215
\(672\) 0 0
\(673\) 15.4496 0.595538 0.297769 0.954638i \(-0.403758\pi\)
0.297769 + 0.954638i \(0.403758\pi\)
\(674\) 0 0
\(675\) 26.6103 1.02423
\(676\) 0 0
\(677\) −6.37751 −0.245108 −0.122554 0.992462i \(-0.539108\pi\)
−0.122554 + 0.992462i \(0.539108\pi\)
\(678\) 0 0
\(679\) −6.51390 −0.249980
\(680\) 0 0
\(681\) −10.8896 −0.417292
\(682\) 0 0
\(683\) 33.4023 1.27810 0.639051 0.769164i \(-0.279327\pi\)
0.639051 + 0.769164i \(0.279327\pi\)
\(684\) 0 0
\(685\) 3.01729 0.115285
\(686\) 0 0
\(687\) 25.9946 0.991754
\(688\) 0 0
\(689\) 47.2408 1.79973
\(690\) 0 0
\(691\) −6.17478 −0.234900 −0.117450 0.993079i \(-0.537472\pi\)
−0.117450 + 0.993079i \(0.537472\pi\)
\(692\) 0 0
\(693\) 1.04664 0.0397587
\(694\) 0 0
\(695\) −24.9029 −0.944619
\(696\) 0 0
\(697\) 6.04166 0.228844
\(698\) 0 0
\(699\) 20.8420 0.788316
\(700\) 0 0
\(701\) −33.2071 −1.25422 −0.627108 0.778932i \(-0.715762\pi\)
−0.627108 + 0.778932i \(0.715762\pi\)
\(702\) 0 0
\(703\) 4.13437 0.155931
\(704\) 0 0
\(705\) −9.93404 −0.374138
\(706\) 0 0
\(707\) −4.43574 −0.166823
\(708\) 0 0
\(709\) −17.3087 −0.650042 −0.325021 0.945707i \(-0.605371\pi\)
−0.325021 + 0.945707i \(0.605371\pi\)
\(710\) 0 0
\(711\) −9.50695 −0.356539
\(712\) 0 0
\(713\) 57.9651 2.17081
\(714\) 0 0
\(715\) 10.8258 0.404863
\(716\) 0 0
\(717\) 8.56180 0.319746
\(718\) 0 0
\(719\) 22.6523 0.844789 0.422394 0.906412i \(-0.361190\pi\)
0.422394 + 0.906412i \(0.361190\pi\)
\(720\) 0 0
\(721\) 2.38757 0.0889177
\(722\) 0 0
\(723\) −24.4946 −0.910963
\(724\) 0 0
\(725\) −44.2723 −1.64423
\(726\) 0 0
\(727\) 20.1743 0.748223 0.374112 0.927384i \(-0.377948\pi\)
0.374112 + 0.927384i \(0.377948\pi\)
\(728\) 0 0
\(729\) 16.7860 0.621703
\(730\) 0 0
\(731\) −9.59679 −0.354950
\(732\) 0 0
\(733\) 32.0124 1.18240 0.591202 0.806523i \(-0.298653\pi\)
0.591202 + 0.806523i \(0.298653\pi\)
\(734\) 0 0
\(735\) −3.41098 −0.125816
\(736\) 0 0
\(737\) 4.97408 0.183223
\(738\) 0 0
\(739\) −33.2350 −1.22257 −0.611285 0.791410i \(-0.709347\pi\)
−0.611285 + 0.791410i \(0.709347\pi\)
\(740\) 0 0
\(741\) 36.1908 1.32950
\(742\) 0 0
\(743\) 39.5480 1.45088 0.725438 0.688288i \(-0.241637\pi\)
0.725438 + 0.688288i \(0.241637\pi\)
\(744\) 0 0
\(745\) −13.6871 −0.501458
\(746\) 0 0
\(747\) 6.49277 0.237558
\(748\) 0 0
\(749\) 16.9307 0.618633
\(750\) 0 0
\(751\) −13.9905 −0.510521 −0.255261 0.966872i \(-0.582161\pi\)
−0.255261 + 0.966872i \(0.582161\pi\)
\(752\) 0 0
\(753\) −23.2742 −0.848160
\(754\) 0 0
\(755\) 54.8492 1.99617
\(756\) 0 0
\(757\) 43.9379 1.59695 0.798474 0.602029i \(-0.205641\pi\)
0.798474 + 0.602029i \(0.205641\pi\)
\(758\) 0 0
\(759\) 4.61725 0.167595
\(760\) 0 0
\(761\) −7.93480 −0.287636 −0.143818 0.989604i \(-0.545938\pi\)
−0.143818 + 0.989604i \(0.545938\pi\)
\(762\) 0 0
\(763\) −2.76993 −0.100278
\(764\) 0 0
\(765\) 5.88376 0.212728
\(766\) 0 0
\(767\) −59.2242 −2.13846
\(768\) 0 0
\(769\) 3.46389 0.124911 0.0624555 0.998048i \(-0.480107\pi\)
0.0624555 + 0.998048i \(0.480107\pi\)
\(770\) 0 0
\(771\) 24.9964 0.900225
\(772\) 0 0
\(773\) 36.9208 1.32795 0.663974 0.747755i \(-0.268868\pi\)
0.663974 + 0.747755i \(0.268868\pi\)
\(774\) 0 0
\(775\) −38.9722 −1.39992
\(776\) 0 0
\(777\) −0.790406 −0.0283556
\(778\) 0 0
\(779\) 33.8911 1.21428
\(780\) 0 0
\(781\) −8.65058 −0.309542
\(782\) 0 0
\(783\) −45.0076 −1.60844
\(784\) 0 0
\(785\) 8.65343 0.308854
\(786\) 0 0
\(787\) −27.6999 −0.987396 −0.493698 0.869633i \(-0.664355\pi\)
−0.493698 + 0.869633i \(0.664355\pi\)
\(788\) 0 0
\(789\) 8.81146 0.313696
\(790\) 0 0
\(791\) −17.6149 −0.626315
\(792\) 0 0
\(793\) −70.2930 −2.49618
\(794\) 0 0
\(795\) −26.7853 −0.949978
\(796\) 0 0
\(797\) −0.871164 −0.0308582 −0.0154291 0.999881i \(-0.504911\pi\)
−0.0154291 + 0.999881i \(0.504911\pi\)
\(798\) 0 0
\(799\) −2.91237 −0.103032
\(800\) 0 0
\(801\) 13.7601 0.486189
\(802\) 0 0
\(803\) −3.25437 −0.114844
\(804\) 0 0
\(805\) 24.2030 0.853043
\(806\) 0 0
\(807\) −9.21655 −0.324438
\(808\) 0 0
\(809\) −44.9196 −1.57929 −0.789645 0.613564i \(-0.789735\pi\)
−0.789645 + 0.613564i \(0.789735\pi\)
\(810\) 0 0
\(811\) −37.1509 −1.30454 −0.652272 0.757985i \(-0.726184\pi\)
−0.652272 + 0.757985i \(0.726184\pi\)
\(812\) 0 0
\(813\) −0.00285236 −0.000100037 0
\(814\) 0 0
\(815\) −33.3186 −1.16710
\(816\) 0 0
\(817\) −53.8338 −1.88341
\(818\) 0 0
\(819\) 11.1287 0.388869
\(820\) 0 0
\(821\) 40.4231 1.41078 0.705388 0.708821i \(-0.250773\pi\)
0.705388 + 0.708821i \(0.250773\pi\)
\(822\) 0 0
\(823\) 17.5691 0.612422 0.306211 0.951964i \(-0.400939\pi\)
0.306211 + 0.951964i \(0.400939\pi\)
\(824\) 0 0
\(825\) −3.10436 −0.108080
\(826\) 0 0
\(827\) 36.8149 1.28018 0.640089 0.768300i \(-0.278897\pi\)
0.640089 + 0.768300i \(0.278897\pi\)
\(828\) 0 0
\(829\) −37.8449 −1.31441 −0.657204 0.753713i \(-0.728261\pi\)
−0.657204 + 0.753713i \(0.728261\pi\)
\(830\) 0 0
\(831\) 17.4892 0.606695
\(832\) 0 0
\(833\) −1.00000 −0.0346479
\(834\) 0 0
\(835\) −0.800041 −0.0276866
\(836\) 0 0
\(837\) −39.6194 −1.36945
\(838\) 0 0
\(839\) 10.3934 0.358819 0.179409 0.983774i \(-0.442581\pi\)
0.179409 + 0.983774i \(0.442581\pi\)
\(840\) 0 0
\(841\) 45.8803 1.58208
\(842\) 0 0
\(843\) −17.2157 −0.592940
\(844\) 0 0
\(845\) 73.7606 2.53744
\(846\) 0 0
\(847\) 10.6799 0.366965
\(848\) 0 0
\(849\) −22.3641 −0.767536
\(850\) 0 0
\(851\) 5.60841 0.192254
\(852\) 0 0
\(853\) 34.9766 1.19758 0.598788 0.800908i \(-0.295649\pi\)
0.598788 + 0.800908i \(0.295649\pi\)
\(854\) 0 0
\(855\) 33.0053 1.12876
\(856\) 0 0
\(857\) −27.3992 −0.935938 −0.467969 0.883745i \(-0.655014\pi\)
−0.467969 + 0.883745i \(0.655014\pi\)
\(858\) 0 0
\(859\) 19.7022 0.672229 0.336114 0.941821i \(-0.390887\pi\)
0.336114 + 0.941821i \(0.390887\pi\)
\(860\) 0 0
\(861\) −6.47927 −0.220813
\(862\) 0 0
\(863\) 40.5207 1.37934 0.689670 0.724123i \(-0.257755\pi\)
0.689670 + 0.724123i \(0.257755\pi\)
\(864\) 0 0
\(865\) 23.5712 0.801446
\(866\) 0 0
\(867\) −1.07243 −0.0364217
\(868\) 0 0
\(869\) 2.90770 0.0986368
\(870\) 0 0
\(871\) 52.8882 1.79205
\(872\) 0 0
\(873\) −12.0500 −0.407830
\(874\) 0 0
\(875\) −0.369615 −0.0124953
\(876\) 0 0
\(877\) 39.1528 1.32210 0.661048 0.750344i \(-0.270112\pi\)
0.661048 + 0.750344i \(0.270112\pi\)
\(878\) 0 0
\(879\) 5.88449 0.198479
\(880\) 0 0
\(881\) 10.6853 0.359998 0.179999 0.983667i \(-0.442391\pi\)
0.179999 + 0.983667i \(0.442391\pi\)
\(882\) 0 0
\(883\) −23.0187 −0.774640 −0.387320 0.921945i \(-0.626599\pi\)
−0.387320 + 0.921945i \(0.626599\pi\)
\(884\) 0 0
\(885\) 33.5798 1.12877
\(886\) 0 0
\(887\) −27.5360 −0.924567 −0.462284 0.886732i \(-0.652970\pi\)
−0.462284 + 0.886732i \(0.652970\pi\)
\(888\) 0 0
\(889\) −7.65985 −0.256903
\(890\) 0 0
\(891\) −0.0159781 −0.000535288 0
\(892\) 0 0
\(893\) −16.3372 −0.546702
\(894\) 0 0
\(895\) −58.0077 −1.93898
\(896\) 0 0
\(897\) 49.0940 1.63920
\(898\) 0 0
\(899\) 65.9160 2.19842
\(900\) 0 0
\(901\) −7.85269 −0.261611
\(902\) 0 0
\(903\) 10.2919 0.342493
\(904\) 0 0
\(905\) −15.0035 −0.498732
\(906\) 0 0
\(907\) 20.3518 0.675769 0.337885 0.941188i \(-0.390289\pi\)
0.337885 + 0.941188i \(0.390289\pi\)
\(908\) 0 0
\(909\) −8.20563 −0.272164
\(910\) 0 0
\(911\) −57.8477 −1.91658 −0.958290 0.285798i \(-0.907741\pi\)
−0.958290 + 0.285798i \(0.907741\pi\)
\(912\) 0 0
\(913\) −1.98581 −0.0657207
\(914\) 0 0
\(915\) 39.8558 1.31759
\(916\) 0 0
\(917\) −17.6689 −0.583480
\(918\) 0 0
\(919\) 21.3389 0.703905 0.351952 0.936018i \(-0.385518\pi\)
0.351952 + 0.936018i \(0.385518\pi\)
\(920\) 0 0
\(921\) 10.0666 0.331707
\(922\) 0 0
\(923\) −91.9794 −3.02754
\(924\) 0 0
\(925\) −3.77076 −0.123982
\(926\) 0 0
\(927\) 4.41674 0.145065
\(928\) 0 0
\(929\) 8.02916 0.263428 0.131714 0.991288i \(-0.457952\pi\)
0.131714 + 0.991288i \(0.457952\pi\)
\(930\) 0 0
\(931\) −5.60956 −0.183846
\(932\) 0 0
\(933\) −22.7906 −0.746130
\(934\) 0 0
\(935\) −1.79954 −0.0588514
\(936\) 0 0
\(937\) 59.4541 1.94228 0.971141 0.238507i \(-0.0766580\pi\)
0.971141 + 0.238507i \(0.0766580\pi\)
\(938\) 0 0
\(939\) 15.4119 0.502948
\(940\) 0 0
\(941\) 8.40071 0.273855 0.136928 0.990581i \(-0.456277\pi\)
0.136928 + 0.990581i \(0.456277\pi\)
\(942\) 0 0
\(943\) 45.9744 1.49713
\(944\) 0 0
\(945\) −16.5429 −0.538139
\(946\) 0 0
\(947\) −30.3153 −0.985115 −0.492557 0.870280i \(-0.663938\pi\)
−0.492557 + 0.870280i \(0.663938\pi\)
\(948\) 0 0
\(949\) −34.6029 −1.12326
\(950\) 0 0
\(951\) −26.0843 −0.845840
\(952\) 0 0
\(953\) 12.9838 0.420588 0.210294 0.977638i \(-0.432558\pi\)
0.210294 + 0.977638i \(0.432558\pi\)
\(954\) 0 0
\(955\) 13.7230 0.444065
\(956\) 0 0
\(957\) 5.25058 0.169727
\(958\) 0 0
\(959\) −0.948655 −0.0306337
\(960\) 0 0
\(961\) 27.0248 0.871767
\(962\) 0 0
\(963\) 31.3199 1.00927
\(964\) 0 0
\(965\) −24.3131 −0.782666
\(966\) 0 0
\(967\) 10.8013 0.347348 0.173674 0.984803i \(-0.444436\pi\)
0.173674 + 0.984803i \(0.444436\pi\)
\(968\) 0 0
\(969\) −6.01588 −0.193258
\(970\) 0 0
\(971\) 34.2280 1.09843 0.549215 0.835681i \(-0.314927\pi\)
0.549215 + 0.835681i \(0.314927\pi\)
\(972\) 0 0
\(973\) 7.82961 0.251006
\(974\) 0 0
\(975\) −33.0078 −1.05710
\(976\) 0 0
\(977\) 27.9190 0.893209 0.446604 0.894732i \(-0.352633\pi\)
0.446604 + 0.894732i \(0.352633\pi\)
\(978\) 0 0
\(979\) −4.20852 −0.134505
\(980\) 0 0
\(981\) −5.12406 −0.163599
\(982\) 0 0
\(983\) 31.5704 1.00694 0.503470 0.864013i \(-0.332056\pi\)
0.503470 + 0.864013i \(0.332056\pi\)
\(984\) 0 0
\(985\) −66.6163 −2.12257
\(986\) 0 0
\(987\) 3.12332 0.0994165
\(988\) 0 0
\(989\) −73.0274 −2.32214
\(990\) 0 0
\(991\) −13.5078 −0.429088 −0.214544 0.976714i \(-0.568827\pi\)
−0.214544 + 0.976714i \(0.568827\pi\)
\(992\) 0 0
\(993\) 18.6131 0.590668
\(994\) 0 0
\(995\) 0.297860 0.00944279
\(996\) 0 0
\(997\) −13.5349 −0.428654 −0.214327 0.976762i \(-0.568756\pi\)
−0.214327 + 0.976762i \(0.568756\pi\)
\(998\) 0 0
\(999\) −3.83338 −0.121283
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 3808.2.a.h.1.3 6
4.3 odd 2 3808.2.a.p.1.4 yes 6
8.3 odd 2 7616.2.a.bu.1.3 6
8.5 even 2 7616.2.a.cc.1.4 6
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
3808.2.a.h.1.3 6 1.1 even 1 trivial
3808.2.a.p.1.4 yes 6 4.3 odd 2
7616.2.a.bu.1.3 6 8.3 odd 2
7616.2.a.cc.1.4 6 8.5 even 2