Properties

Label 3808.2.a.g.1.6
Level $3808$
Weight $2$
Character 3808.1
Self dual yes
Analytic conductor $30.407$
Analytic rank $1$
Dimension $6$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [3808,2,Mod(1,3808)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(3808, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("3808.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 3808 = 2^{5} \cdot 7 \cdot 17 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 3808.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(30.4070330897\)
Analytic rank: \(1\)
Dimension: \(6\)
Coefficient field: 6.6.147697840.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{6} - 2x^{5} - 10x^{4} + 10x^{3} + 18x^{2} - 16x + 3 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 2 \)
Twist minimal: yes
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.6
Root \(3.69817\) of defining polynomial
Character \(\chi\) \(=\) 3808.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+2.69817 q^{3} -2.06665 q^{5} +1.00000 q^{7} +4.28014 q^{9} -6.03600 q^{11} +2.94465 q^{13} -5.57618 q^{15} +1.00000 q^{17} -6.57383 q^{19} +2.69817 q^{21} -6.75653 q^{23} -0.728963 q^{25} +3.45404 q^{27} -1.85330 q^{29} +10.5543 q^{31} -16.2862 q^{33} -2.06665 q^{35} -4.17170 q^{37} +7.94518 q^{39} -8.24122 q^{41} -7.78952 q^{43} -8.84554 q^{45} +4.43814 q^{47} +1.00000 q^{49} +2.69817 q^{51} +2.60448 q^{53} +12.4743 q^{55} -17.7373 q^{57} -6.62625 q^{59} -3.06899 q^{61} +4.28014 q^{63} -6.08556 q^{65} -7.47640 q^{67} -18.2303 q^{69} -1.11591 q^{71} +10.9169 q^{73} -1.96687 q^{75} -6.03600 q^{77} -3.14091 q^{79} -3.52083 q^{81} +12.9013 q^{83} -2.06665 q^{85} -5.00053 q^{87} -4.25544 q^{89} +2.94465 q^{91} +28.4775 q^{93} +13.5858 q^{95} +11.9761 q^{97} -25.8349 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 6 q - 4 q^{3} - 4 q^{5} + 6 q^{7} + 8 q^{9} - 8 q^{11} - 4 q^{13} + 6 q^{17} - 18 q^{19} - 4 q^{21} - 6 q^{23} + 12 q^{25} - 10 q^{27} + 4 q^{29} + 8 q^{31} - 6 q^{33} - 4 q^{35} - 8 q^{37} + 18 q^{39}+ \cdots - 32 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 2.69817 1.55779 0.778896 0.627154i \(-0.215780\pi\)
0.778896 + 0.627154i \(0.215780\pi\)
\(4\) 0 0
\(5\) −2.06665 −0.924233 −0.462117 0.886819i \(-0.652910\pi\)
−0.462117 + 0.886819i \(0.652910\pi\)
\(6\) 0 0
\(7\) 1.00000 0.377964
\(8\) 0 0
\(9\) 4.28014 1.42671
\(10\) 0 0
\(11\) −6.03600 −1.81992 −0.909962 0.414693i \(-0.863889\pi\)
−0.909962 + 0.414693i \(0.863889\pi\)
\(12\) 0 0
\(13\) 2.94465 0.816699 0.408350 0.912826i \(-0.366104\pi\)
0.408350 + 0.912826i \(0.366104\pi\)
\(14\) 0 0
\(15\) −5.57618 −1.43976
\(16\) 0 0
\(17\) 1.00000 0.242536
\(18\) 0 0
\(19\) −6.57383 −1.50814 −0.754071 0.656793i \(-0.771912\pi\)
−0.754071 + 0.656793i \(0.771912\pi\)
\(20\) 0 0
\(21\) 2.69817 0.588790
\(22\) 0 0
\(23\) −6.75653 −1.40883 −0.704417 0.709786i \(-0.748792\pi\)
−0.704417 + 0.709786i \(0.748792\pi\)
\(24\) 0 0
\(25\) −0.728963 −0.145793
\(26\) 0 0
\(27\) 3.45404 0.664730
\(28\) 0 0
\(29\) −1.85330 −0.344149 −0.172075 0.985084i \(-0.555047\pi\)
−0.172075 + 0.985084i \(0.555047\pi\)
\(30\) 0 0
\(31\) 10.5543 1.89562 0.947808 0.318841i \(-0.103294\pi\)
0.947808 + 0.318841i \(0.103294\pi\)
\(32\) 0 0
\(33\) −16.2862 −2.83506
\(34\) 0 0
\(35\) −2.06665 −0.349327
\(36\) 0 0
\(37\) −4.17170 −0.685823 −0.342912 0.939368i \(-0.611413\pi\)
−0.342912 + 0.939368i \(0.611413\pi\)
\(38\) 0 0
\(39\) 7.94518 1.27225
\(40\) 0 0
\(41\) −8.24122 −1.28706 −0.643531 0.765420i \(-0.722531\pi\)
−0.643531 + 0.765420i \(0.722531\pi\)
\(42\) 0 0
\(43\) −7.78952 −1.18789 −0.593946 0.804505i \(-0.702431\pi\)
−0.593946 + 0.804505i \(0.702431\pi\)
\(44\) 0 0
\(45\) −8.84554 −1.31862
\(46\) 0 0
\(47\) 4.43814 0.647369 0.323684 0.946165i \(-0.395078\pi\)
0.323684 + 0.946165i \(0.395078\pi\)
\(48\) 0 0
\(49\) 1.00000 0.142857
\(50\) 0 0
\(51\) 2.69817 0.377820
\(52\) 0 0
\(53\) 2.60448 0.357753 0.178877 0.983872i \(-0.442754\pi\)
0.178877 + 0.983872i \(0.442754\pi\)
\(54\) 0 0
\(55\) 12.4743 1.68203
\(56\) 0 0
\(57\) −17.7373 −2.34937
\(58\) 0 0
\(59\) −6.62625 −0.862665 −0.431332 0.902193i \(-0.641956\pi\)
−0.431332 + 0.902193i \(0.641956\pi\)
\(60\) 0 0
\(61\) −3.06899 −0.392944 −0.196472 0.980509i \(-0.562948\pi\)
−0.196472 + 0.980509i \(0.562948\pi\)
\(62\) 0 0
\(63\) 4.28014 0.539247
\(64\) 0 0
\(65\) −6.08556 −0.754821
\(66\) 0 0
\(67\) −7.47640 −0.913387 −0.456694 0.889624i \(-0.650966\pi\)
−0.456694 + 0.889624i \(0.650966\pi\)
\(68\) 0 0
\(69\) −18.2303 −2.19467
\(70\) 0 0
\(71\) −1.11591 −0.132434 −0.0662170 0.997805i \(-0.521093\pi\)
−0.0662170 + 0.997805i \(0.521093\pi\)
\(72\) 0 0
\(73\) 10.9169 1.27772 0.638862 0.769322i \(-0.279406\pi\)
0.638862 + 0.769322i \(0.279406\pi\)
\(74\) 0 0
\(75\) −1.96687 −0.227114
\(76\) 0 0
\(77\) −6.03600 −0.687866
\(78\) 0 0
\(79\) −3.14091 −0.353380 −0.176690 0.984267i \(-0.556539\pi\)
−0.176690 + 0.984267i \(0.556539\pi\)
\(80\) 0 0
\(81\) −3.52083 −0.391203
\(82\) 0 0
\(83\) 12.9013 1.41610 0.708050 0.706163i \(-0.249575\pi\)
0.708050 + 0.706163i \(0.249575\pi\)
\(84\) 0 0
\(85\) −2.06665 −0.224160
\(86\) 0 0
\(87\) −5.00053 −0.536113
\(88\) 0 0
\(89\) −4.25544 −0.451075 −0.225538 0.974234i \(-0.572414\pi\)
−0.225538 + 0.974234i \(0.572414\pi\)
\(90\) 0 0
\(91\) 2.94465 0.308683
\(92\) 0 0
\(93\) 28.4775 2.95297
\(94\) 0 0
\(95\) 13.5858 1.39387
\(96\) 0 0
\(97\) 11.9761 1.21599 0.607995 0.793941i \(-0.291974\pi\)
0.607995 + 0.793941i \(0.291974\pi\)
\(98\) 0 0
\(99\) −25.8349 −2.59651
\(100\) 0 0
\(101\) −3.36487 −0.334817 −0.167409 0.985888i \(-0.553540\pi\)
−0.167409 + 0.985888i \(0.553540\pi\)
\(102\) 0 0
\(103\) −15.7989 −1.55671 −0.778357 0.627822i \(-0.783947\pi\)
−0.778357 + 0.627822i \(0.783947\pi\)
\(104\) 0 0
\(105\) −5.57618 −0.544179
\(106\) 0 0
\(107\) −16.2008 −1.56619 −0.783094 0.621903i \(-0.786360\pi\)
−0.783094 + 0.621903i \(0.786360\pi\)
\(108\) 0 0
\(109\) 0.517516 0.0495690 0.0247845 0.999693i \(-0.492110\pi\)
0.0247845 + 0.999693i \(0.492110\pi\)
\(110\) 0 0
\(111\) −11.2560 −1.06837
\(112\) 0 0
\(113\) −3.76248 −0.353944 −0.176972 0.984216i \(-0.556630\pi\)
−0.176972 + 0.984216i \(0.556630\pi\)
\(114\) 0 0
\(115\) 13.9634 1.30209
\(116\) 0 0
\(117\) 12.6035 1.16520
\(118\) 0 0
\(119\) 1.00000 0.0916698
\(120\) 0 0
\(121\) 25.4333 2.31212
\(122\) 0 0
\(123\) −22.2362 −2.00497
\(124\) 0 0
\(125\) 11.8398 1.05898
\(126\) 0 0
\(127\) −5.02230 −0.445657 −0.222829 0.974858i \(-0.571529\pi\)
−0.222829 + 0.974858i \(0.571529\pi\)
\(128\) 0 0
\(129\) −21.0175 −1.85049
\(130\) 0 0
\(131\) −7.43776 −0.649841 −0.324920 0.945741i \(-0.605337\pi\)
−0.324920 + 0.945741i \(0.605337\pi\)
\(132\) 0 0
\(133\) −6.57383 −0.570024
\(134\) 0 0
\(135\) −7.13828 −0.614365
\(136\) 0 0
\(137\) −12.0284 −1.02765 −0.513827 0.857894i \(-0.671773\pi\)
−0.513827 + 0.857894i \(0.671773\pi\)
\(138\) 0 0
\(139\) 14.6465 1.24230 0.621150 0.783691i \(-0.286666\pi\)
0.621150 + 0.783691i \(0.286666\pi\)
\(140\) 0 0
\(141\) 11.9749 1.00847
\(142\) 0 0
\(143\) −17.7739 −1.48633
\(144\) 0 0
\(145\) 3.83012 0.318074
\(146\) 0 0
\(147\) 2.69817 0.222542
\(148\) 0 0
\(149\) 8.29364 0.679441 0.339721 0.940526i \(-0.389667\pi\)
0.339721 + 0.940526i \(0.389667\pi\)
\(150\) 0 0
\(151\) 11.2518 0.915662 0.457831 0.889039i \(-0.348626\pi\)
0.457831 + 0.889039i \(0.348626\pi\)
\(152\) 0 0
\(153\) 4.28014 0.346029
\(154\) 0 0
\(155\) −21.8121 −1.75199
\(156\) 0 0
\(157\) 11.5949 0.925373 0.462686 0.886522i \(-0.346886\pi\)
0.462686 + 0.886522i \(0.346886\pi\)
\(158\) 0 0
\(159\) 7.02734 0.557304
\(160\) 0 0
\(161\) −6.75653 −0.532490
\(162\) 0 0
\(163\) 16.6324 1.30275 0.651377 0.758755i \(-0.274192\pi\)
0.651377 + 0.758755i \(0.274192\pi\)
\(164\) 0 0
\(165\) 33.6578 2.62026
\(166\) 0 0
\(167\) 16.7291 1.29453 0.647267 0.762263i \(-0.275912\pi\)
0.647267 + 0.762263i \(0.275912\pi\)
\(168\) 0 0
\(169\) −4.32903 −0.333002
\(170\) 0 0
\(171\) −28.1369 −2.15168
\(172\) 0 0
\(173\) 4.64335 0.353028 0.176514 0.984298i \(-0.443518\pi\)
0.176514 + 0.984298i \(0.443518\pi\)
\(174\) 0 0
\(175\) −0.728963 −0.0551044
\(176\) 0 0
\(177\) −17.8788 −1.34385
\(178\) 0 0
\(179\) 1.43015 0.106894 0.0534472 0.998571i \(-0.482979\pi\)
0.0534472 + 0.998571i \(0.482979\pi\)
\(180\) 0 0
\(181\) −15.3718 −1.14258 −0.571288 0.820750i \(-0.693556\pi\)
−0.571288 + 0.820750i \(0.693556\pi\)
\(182\) 0 0
\(183\) −8.28067 −0.612125
\(184\) 0 0
\(185\) 8.62144 0.633861
\(186\) 0 0
\(187\) −6.03600 −0.441396
\(188\) 0 0
\(189\) 3.45404 0.251244
\(190\) 0 0
\(191\) −24.9569 −1.80582 −0.902910 0.429830i \(-0.858573\pi\)
−0.902910 + 0.429830i \(0.858573\pi\)
\(192\) 0 0
\(193\) −16.6404 −1.19780 −0.598902 0.800822i \(-0.704396\pi\)
−0.598902 + 0.800822i \(0.704396\pi\)
\(194\) 0 0
\(195\) −16.4199 −1.17585
\(196\) 0 0
\(197\) −9.28521 −0.661544 −0.330772 0.943711i \(-0.607309\pi\)
−0.330772 + 0.943711i \(0.607309\pi\)
\(198\) 0 0
\(199\) 7.59327 0.538272 0.269136 0.963102i \(-0.413262\pi\)
0.269136 + 0.963102i \(0.413262\pi\)
\(200\) 0 0
\(201\) −20.1726 −1.42287
\(202\) 0 0
\(203\) −1.85330 −0.130076
\(204\) 0 0
\(205\) 17.0317 1.18955
\(206\) 0 0
\(207\) −28.9189 −2.01000
\(208\) 0 0
\(209\) 39.6797 2.74470
\(210\) 0 0
\(211\) −0.478653 −0.0329518 −0.0164759 0.999864i \(-0.505245\pi\)
−0.0164759 + 0.999864i \(0.505245\pi\)
\(212\) 0 0
\(213\) −3.01091 −0.206304
\(214\) 0 0
\(215\) 16.0982 1.09789
\(216\) 0 0
\(217\) 10.5543 0.716476
\(218\) 0 0
\(219\) 29.4556 1.99043
\(220\) 0 0
\(221\) 2.94465 0.198079
\(222\) 0 0
\(223\) −15.8310 −1.06012 −0.530062 0.847959i \(-0.677831\pi\)
−0.530062 + 0.847959i \(0.677831\pi\)
\(224\) 0 0
\(225\) −3.12006 −0.208004
\(226\) 0 0
\(227\) −25.8422 −1.71521 −0.857605 0.514309i \(-0.828048\pi\)
−0.857605 + 0.514309i \(0.828048\pi\)
\(228\) 0 0
\(229\) −20.2618 −1.33894 −0.669468 0.742841i \(-0.733478\pi\)
−0.669468 + 0.742841i \(0.733478\pi\)
\(230\) 0 0
\(231\) −16.2862 −1.07155
\(232\) 0 0
\(233\) −16.4140 −1.07532 −0.537659 0.843162i \(-0.680691\pi\)
−0.537659 + 0.843162i \(0.680691\pi\)
\(234\) 0 0
\(235\) −9.17207 −0.598320
\(236\) 0 0
\(237\) −8.47472 −0.550492
\(238\) 0 0
\(239\) 5.59025 0.361603 0.180802 0.983520i \(-0.442131\pi\)
0.180802 + 0.983520i \(0.442131\pi\)
\(240\) 0 0
\(241\) −21.7544 −1.40133 −0.700663 0.713492i \(-0.747112\pi\)
−0.700663 + 0.713492i \(0.747112\pi\)
\(242\) 0 0
\(243\) −19.8619 −1.27414
\(244\) 0 0
\(245\) −2.06665 −0.132033
\(246\) 0 0
\(247\) −19.3577 −1.23170
\(248\) 0 0
\(249\) 34.8099 2.20599
\(250\) 0 0
\(251\) −1.86504 −0.117720 −0.0588600 0.998266i \(-0.518747\pi\)
−0.0588600 + 0.998266i \(0.518747\pi\)
\(252\) 0 0
\(253\) 40.7825 2.56397
\(254\) 0 0
\(255\) −5.57618 −0.349194
\(256\) 0 0
\(257\) 18.1813 1.13412 0.567060 0.823676i \(-0.308081\pi\)
0.567060 + 0.823676i \(0.308081\pi\)
\(258\) 0 0
\(259\) −4.17170 −0.259217
\(260\) 0 0
\(261\) −7.93239 −0.491003
\(262\) 0 0
\(263\) −22.6502 −1.39667 −0.698336 0.715771i \(-0.746076\pi\)
−0.698336 + 0.715771i \(0.746076\pi\)
\(264\) 0 0
\(265\) −5.38255 −0.330647
\(266\) 0 0
\(267\) −11.4819 −0.702681
\(268\) 0 0
\(269\) 23.7554 1.44839 0.724197 0.689593i \(-0.242211\pi\)
0.724197 + 0.689593i \(0.242211\pi\)
\(270\) 0 0
\(271\) 25.9045 1.57359 0.786793 0.617217i \(-0.211740\pi\)
0.786793 + 0.617217i \(0.211740\pi\)
\(272\) 0 0
\(273\) 7.94518 0.480864
\(274\) 0 0
\(275\) 4.40002 0.265331
\(276\) 0 0
\(277\) 16.6379 0.999672 0.499836 0.866120i \(-0.333394\pi\)
0.499836 + 0.866120i \(0.333394\pi\)
\(278\) 0 0
\(279\) 45.1741 2.70450
\(280\) 0 0
\(281\) 28.0132 1.67113 0.835564 0.549394i \(-0.185141\pi\)
0.835564 + 0.549394i \(0.185141\pi\)
\(282\) 0 0
\(283\) 16.3572 0.972336 0.486168 0.873865i \(-0.338394\pi\)
0.486168 + 0.873865i \(0.338394\pi\)
\(284\) 0 0
\(285\) 36.6569 2.17137
\(286\) 0 0
\(287\) −8.24122 −0.486464
\(288\) 0 0
\(289\) 1.00000 0.0588235
\(290\) 0 0
\(291\) 32.3136 1.89426
\(292\) 0 0
\(293\) −19.0231 −1.11134 −0.555672 0.831402i \(-0.687539\pi\)
−0.555672 + 0.831402i \(0.687539\pi\)
\(294\) 0 0
\(295\) 13.6941 0.797304
\(296\) 0 0
\(297\) −20.8486 −1.20976
\(298\) 0 0
\(299\) −19.8956 −1.15059
\(300\) 0 0
\(301\) −7.78952 −0.448981
\(302\) 0 0
\(303\) −9.07901 −0.521575
\(304\) 0 0
\(305\) 6.34253 0.363172
\(306\) 0 0
\(307\) −8.67806 −0.495283 −0.247641 0.968852i \(-0.579655\pi\)
−0.247641 + 0.968852i \(0.579655\pi\)
\(308\) 0 0
\(309\) −42.6282 −2.42504
\(310\) 0 0
\(311\) 2.79728 0.158619 0.0793096 0.996850i \(-0.474728\pi\)
0.0793096 + 0.996850i \(0.474728\pi\)
\(312\) 0 0
\(313\) 29.8312 1.68616 0.843081 0.537787i \(-0.180740\pi\)
0.843081 + 0.537787i \(0.180740\pi\)
\(314\) 0 0
\(315\) −8.84554 −0.498390
\(316\) 0 0
\(317\) 16.1954 0.909622 0.454811 0.890588i \(-0.349707\pi\)
0.454811 + 0.890588i \(0.349707\pi\)
\(318\) 0 0
\(319\) 11.1865 0.626326
\(320\) 0 0
\(321\) −43.7125 −2.43979
\(322\) 0 0
\(323\) −6.57383 −0.365778
\(324\) 0 0
\(325\) −2.14654 −0.119069
\(326\) 0 0
\(327\) 1.39635 0.0772181
\(328\) 0 0
\(329\) 4.43814 0.244682
\(330\) 0 0
\(331\) −10.5418 −0.579430 −0.289715 0.957113i \(-0.593561\pi\)
−0.289715 + 0.957113i \(0.593561\pi\)
\(332\) 0 0
\(333\) −17.8555 −0.978473
\(334\) 0 0
\(335\) 15.4511 0.844183
\(336\) 0 0
\(337\) 14.3443 0.781386 0.390693 0.920521i \(-0.372235\pi\)
0.390693 + 0.920521i \(0.372235\pi\)
\(338\) 0 0
\(339\) −10.1518 −0.551371
\(340\) 0 0
\(341\) −63.7060 −3.44988
\(342\) 0 0
\(343\) 1.00000 0.0539949
\(344\) 0 0
\(345\) 37.6756 2.02839
\(346\) 0 0
\(347\) 23.9604 1.28626 0.643131 0.765756i \(-0.277635\pi\)
0.643131 + 0.765756i \(0.277635\pi\)
\(348\) 0 0
\(349\) −7.85213 −0.420315 −0.210157 0.977668i \(-0.567398\pi\)
−0.210157 + 0.977668i \(0.567398\pi\)
\(350\) 0 0
\(351\) 10.1709 0.542884
\(352\) 0 0
\(353\) 7.45251 0.396657 0.198329 0.980136i \(-0.436449\pi\)
0.198329 + 0.980136i \(0.436449\pi\)
\(354\) 0 0
\(355\) 2.30619 0.122400
\(356\) 0 0
\(357\) 2.69817 0.142802
\(358\) 0 0
\(359\) −21.9980 −1.16101 −0.580505 0.814257i \(-0.697145\pi\)
−0.580505 + 0.814257i \(0.697145\pi\)
\(360\) 0 0
\(361\) 24.2153 1.27449
\(362\) 0 0
\(363\) 68.6235 3.60180
\(364\) 0 0
\(365\) −22.5613 −1.18091
\(366\) 0 0
\(367\) 11.6430 0.607757 0.303879 0.952711i \(-0.401718\pi\)
0.303879 + 0.952711i \(0.401718\pi\)
\(368\) 0 0
\(369\) −35.2736 −1.83627
\(370\) 0 0
\(371\) 2.60448 0.135218
\(372\) 0 0
\(373\) 30.0513 1.55600 0.777999 0.628266i \(-0.216235\pi\)
0.777999 + 0.628266i \(0.216235\pi\)
\(374\) 0 0
\(375\) 31.9457 1.64967
\(376\) 0 0
\(377\) −5.45733 −0.281067
\(378\) 0 0
\(379\) 6.81796 0.350215 0.175108 0.984549i \(-0.443973\pi\)
0.175108 + 0.984549i \(0.443973\pi\)
\(380\) 0 0
\(381\) −13.5510 −0.694241
\(382\) 0 0
\(383\) −2.26730 −0.115854 −0.0579269 0.998321i \(-0.518449\pi\)
−0.0579269 + 0.998321i \(0.518449\pi\)
\(384\) 0 0
\(385\) 12.4743 0.635749
\(386\) 0 0
\(387\) −33.3402 −1.69478
\(388\) 0 0
\(389\) 1.05212 0.0533446 0.0266723 0.999644i \(-0.491509\pi\)
0.0266723 + 0.999644i \(0.491509\pi\)
\(390\) 0 0
\(391\) −6.75653 −0.341693
\(392\) 0 0
\(393\) −20.0684 −1.01232
\(394\) 0 0
\(395\) 6.49116 0.326605
\(396\) 0 0
\(397\) 16.8593 0.846146 0.423073 0.906096i \(-0.360951\pi\)
0.423073 + 0.906096i \(0.360951\pi\)
\(398\) 0 0
\(399\) −17.7373 −0.887978
\(400\) 0 0
\(401\) 31.2778 1.56194 0.780970 0.624568i \(-0.214725\pi\)
0.780970 + 0.624568i \(0.214725\pi\)
\(402\) 0 0
\(403\) 31.0789 1.54815
\(404\) 0 0
\(405\) 7.27631 0.361563
\(406\) 0 0
\(407\) 25.1804 1.24815
\(408\) 0 0
\(409\) −4.18136 −0.206755 −0.103377 0.994642i \(-0.532965\pi\)
−0.103377 + 0.994642i \(0.532965\pi\)
\(410\) 0 0
\(411\) −32.4547 −1.60087
\(412\) 0 0
\(413\) −6.62625 −0.326057
\(414\) 0 0
\(415\) −26.6624 −1.30881
\(416\) 0 0
\(417\) 39.5188 1.93525
\(418\) 0 0
\(419\) −16.0859 −0.785849 −0.392924 0.919571i \(-0.628537\pi\)
−0.392924 + 0.919571i \(0.628537\pi\)
\(420\) 0 0
\(421\) −23.4639 −1.14356 −0.571780 0.820407i \(-0.693747\pi\)
−0.571780 + 0.820407i \(0.693747\pi\)
\(422\) 0 0
\(423\) 18.9958 0.923610
\(424\) 0 0
\(425\) −0.728963 −0.0353599
\(426\) 0 0
\(427\) −3.06899 −0.148519
\(428\) 0 0
\(429\) −47.9571 −2.31539
\(430\) 0 0
\(431\) −2.65126 −0.127706 −0.0638532 0.997959i \(-0.520339\pi\)
−0.0638532 + 0.997959i \(0.520339\pi\)
\(432\) 0 0
\(433\) −10.8144 −0.519706 −0.259853 0.965648i \(-0.583674\pi\)
−0.259853 + 0.965648i \(0.583674\pi\)
\(434\) 0 0
\(435\) 10.3343 0.495494
\(436\) 0 0
\(437\) 44.4163 2.12472
\(438\) 0 0
\(439\) −17.7704 −0.848136 −0.424068 0.905630i \(-0.639398\pi\)
−0.424068 + 0.905630i \(0.639398\pi\)
\(440\) 0 0
\(441\) 4.28014 0.203816
\(442\) 0 0
\(443\) −16.5600 −0.786789 −0.393394 0.919370i \(-0.628699\pi\)
−0.393394 + 0.919370i \(0.628699\pi\)
\(444\) 0 0
\(445\) 8.79449 0.416899
\(446\) 0 0
\(447\) 22.3777 1.05843
\(448\) 0 0
\(449\) 10.1671 0.479814 0.239907 0.970796i \(-0.422883\pi\)
0.239907 + 0.970796i \(0.422883\pi\)
\(450\) 0 0
\(451\) 49.7440 2.34235
\(452\) 0 0
\(453\) 30.3594 1.42641
\(454\) 0 0
\(455\) −6.08556 −0.285295
\(456\) 0 0
\(457\) −17.3416 −0.811206 −0.405603 0.914049i \(-0.632938\pi\)
−0.405603 + 0.914049i \(0.632938\pi\)
\(458\) 0 0
\(459\) 3.45404 0.161221
\(460\) 0 0
\(461\) −9.37885 −0.436817 −0.218408 0.975857i \(-0.570086\pi\)
−0.218408 + 0.975857i \(0.570086\pi\)
\(462\) 0 0
\(463\) 8.43849 0.392170 0.196085 0.980587i \(-0.437177\pi\)
0.196085 + 0.980587i \(0.437177\pi\)
\(464\) 0 0
\(465\) −58.8529 −2.72924
\(466\) 0 0
\(467\) −31.8747 −1.47499 −0.737493 0.675355i \(-0.763991\pi\)
−0.737493 + 0.675355i \(0.763991\pi\)
\(468\) 0 0
\(469\) −7.47640 −0.345228
\(470\) 0 0
\(471\) 31.2850 1.44154
\(472\) 0 0
\(473\) 47.0176 2.16187
\(474\) 0 0
\(475\) 4.79208 0.219876
\(476\) 0 0
\(477\) 11.1475 0.510411
\(478\) 0 0
\(479\) 16.8008 0.767646 0.383823 0.923407i \(-0.374607\pi\)
0.383823 + 0.923407i \(0.374607\pi\)
\(480\) 0 0
\(481\) −12.2842 −0.560111
\(482\) 0 0
\(483\) −18.2303 −0.829507
\(484\) 0 0
\(485\) −24.7504 −1.12386
\(486\) 0 0
\(487\) 39.5498 1.79217 0.896087 0.443878i \(-0.146398\pi\)
0.896087 + 0.443878i \(0.146398\pi\)
\(488\) 0 0
\(489\) 44.8772 2.02942
\(490\) 0 0
\(491\) −28.1655 −1.27109 −0.635545 0.772064i \(-0.719225\pi\)
−0.635545 + 0.772064i \(0.719225\pi\)
\(492\) 0 0
\(493\) −1.85330 −0.0834685
\(494\) 0 0
\(495\) 53.3917 2.39978
\(496\) 0 0
\(497\) −1.11591 −0.0500553
\(498\) 0 0
\(499\) −35.4626 −1.58753 −0.793763 0.608227i \(-0.791881\pi\)
−0.793763 + 0.608227i \(0.791881\pi\)
\(500\) 0 0
\(501\) 45.1379 2.01661
\(502\) 0 0
\(503\) −12.3445 −0.550415 −0.275208 0.961385i \(-0.588747\pi\)
−0.275208 + 0.961385i \(0.588747\pi\)
\(504\) 0 0
\(505\) 6.95401 0.309449
\(506\) 0 0
\(507\) −11.6805 −0.518748
\(508\) 0 0
\(509\) −11.7911 −0.522633 −0.261317 0.965253i \(-0.584157\pi\)
−0.261317 + 0.965253i \(0.584157\pi\)
\(510\) 0 0
\(511\) 10.9169 0.482934
\(512\) 0 0
\(513\) −22.7063 −1.00251
\(514\) 0 0
\(515\) 32.6508 1.43877
\(516\) 0 0
\(517\) −26.7886 −1.17816
\(518\) 0 0
\(519\) 12.5286 0.549943
\(520\) 0 0
\(521\) 27.5332 1.20625 0.603125 0.797646i \(-0.293922\pi\)
0.603125 + 0.797646i \(0.293922\pi\)
\(522\) 0 0
\(523\) −7.48162 −0.327148 −0.163574 0.986531i \(-0.552302\pi\)
−0.163574 + 0.986531i \(0.552302\pi\)
\(524\) 0 0
\(525\) −1.96687 −0.0858412
\(526\) 0 0
\(527\) 10.5543 0.459755
\(528\) 0 0
\(529\) 22.6508 0.984816
\(530\) 0 0
\(531\) −28.3613 −1.23078
\(532\) 0 0
\(533\) −24.2675 −1.05114
\(534\) 0 0
\(535\) 33.4813 1.44752
\(536\) 0 0
\(537\) 3.85879 0.166519
\(538\) 0 0
\(539\) −6.03600 −0.259989
\(540\) 0 0
\(541\) 12.1165 0.520927 0.260464 0.965484i \(-0.416125\pi\)
0.260464 + 0.965484i \(0.416125\pi\)
\(542\) 0 0
\(543\) −41.4757 −1.77989
\(544\) 0 0
\(545\) −1.06952 −0.0458133
\(546\) 0 0
\(547\) −22.0333 −0.942074 −0.471037 0.882113i \(-0.656120\pi\)
−0.471037 + 0.882113i \(0.656120\pi\)
\(548\) 0 0
\(549\) −13.1357 −0.560618
\(550\) 0 0
\(551\) 12.1833 0.519026
\(552\) 0 0
\(553\) −3.14091 −0.133565
\(554\) 0 0
\(555\) 23.2621 0.987422
\(556\) 0 0
\(557\) 42.6927 1.80895 0.904474 0.426529i \(-0.140264\pi\)
0.904474 + 0.426529i \(0.140264\pi\)
\(558\) 0 0
\(559\) −22.9374 −0.970150
\(560\) 0 0
\(561\) −16.2862 −0.687603
\(562\) 0 0
\(563\) −11.9348 −0.502990 −0.251495 0.967859i \(-0.580922\pi\)
−0.251495 + 0.967859i \(0.580922\pi\)
\(564\) 0 0
\(565\) 7.77573 0.327127
\(566\) 0 0
\(567\) −3.52083 −0.147861
\(568\) 0 0
\(569\) −21.5972 −0.905401 −0.452700 0.891663i \(-0.649539\pi\)
−0.452700 + 0.891663i \(0.649539\pi\)
\(570\) 0 0
\(571\) −2.27788 −0.0953264 −0.0476632 0.998863i \(-0.515177\pi\)
−0.0476632 + 0.998863i \(0.515177\pi\)
\(572\) 0 0
\(573\) −67.3381 −2.81309
\(574\) 0 0
\(575\) 4.92526 0.205398
\(576\) 0 0
\(577\) 22.9129 0.953875 0.476938 0.878937i \(-0.341747\pi\)
0.476938 + 0.878937i \(0.341747\pi\)
\(578\) 0 0
\(579\) −44.8987 −1.86593
\(580\) 0 0
\(581\) 12.9013 0.535235
\(582\) 0 0
\(583\) −15.7207 −0.651083
\(584\) 0 0
\(585\) −26.0470 −1.07691
\(586\) 0 0
\(587\) 10.0619 0.415299 0.207650 0.978203i \(-0.433419\pi\)
0.207650 + 0.978203i \(0.433419\pi\)
\(588\) 0 0
\(589\) −69.3825 −2.85886
\(590\) 0 0
\(591\) −25.0531 −1.03055
\(592\) 0 0
\(593\) 31.3563 1.28765 0.643824 0.765174i \(-0.277347\pi\)
0.643824 + 0.765174i \(0.277347\pi\)
\(594\) 0 0
\(595\) −2.06665 −0.0847243
\(596\) 0 0
\(597\) 20.4879 0.838516
\(598\) 0 0
\(599\) −1.95870 −0.0800304 −0.0400152 0.999199i \(-0.512741\pi\)
−0.0400152 + 0.999199i \(0.512741\pi\)
\(600\) 0 0
\(601\) 15.1805 0.619227 0.309613 0.950863i \(-0.399800\pi\)
0.309613 + 0.950863i \(0.399800\pi\)
\(602\) 0 0
\(603\) −32.0000 −1.30314
\(604\) 0 0
\(605\) −52.5617 −2.13694
\(606\) 0 0
\(607\) 41.6186 1.68925 0.844623 0.535361i \(-0.179824\pi\)
0.844623 + 0.535361i \(0.179824\pi\)
\(608\) 0 0
\(609\) −5.00053 −0.202632
\(610\) 0 0
\(611\) 13.0688 0.528706
\(612\) 0 0
\(613\) −18.8221 −0.760219 −0.380110 0.924941i \(-0.624114\pi\)
−0.380110 + 0.924941i \(0.624114\pi\)
\(614\) 0 0
\(615\) 45.9545 1.85306
\(616\) 0 0
\(617\) 9.04376 0.364088 0.182044 0.983290i \(-0.441729\pi\)
0.182044 + 0.983290i \(0.441729\pi\)
\(618\) 0 0
\(619\) 38.2588 1.53775 0.768875 0.639399i \(-0.220817\pi\)
0.768875 + 0.639399i \(0.220817\pi\)
\(620\) 0 0
\(621\) −23.3373 −0.936494
\(622\) 0 0
\(623\) −4.25544 −0.170490
\(624\) 0 0
\(625\) −20.8238 −0.832952
\(626\) 0 0
\(627\) 107.063 4.27567
\(628\) 0 0
\(629\) −4.17170 −0.166337
\(630\) 0 0
\(631\) −42.6093 −1.69625 −0.848126 0.529795i \(-0.822269\pi\)
−0.848126 + 0.529795i \(0.822269\pi\)
\(632\) 0 0
\(633\) −1.29149 −0.0513320
\(634\) 0 0
\(635\) 10.3793 0.411891
\(636\) 0 0
\(637\) 2.94465 0.116671
\(638\) 0 0
\(639\) −4.77624 −0.188945
\(640\) 0 0
\(641\) −38.7679 −1.53124 −0.765620 0.643294i \(-0.777567\pi\)
−0.765620 + 0.643294i \(0.777567\pi\)
\(642\) 0 0
\(643\) 10.9046 0.430037 0.215019 0.976610i \(-0.431019\pi\)
0.215019 + 0.976610i \(0.431019\pi\)
\(644\) 0 0
\(645\) 43.4358 1.71028
\(646\) 0 0
\(647\) −45.0312 −1.77036 −0.885179 0.465251i \(-0.845964\pi\)
−0.885179 + 0.465251i \(0.845964\pi\)
\(648\) 0 0
\(649\) 39.9961 1.56998
\(650\) 0 0
\(651\) 28.4775 1.11612
\(652\) 0 0
\(653\) −23.4045 −0.915890 −0.457945 0.888981i \(-0.651414\pi\)
−0.457945 + 0.888981i \(0.651414\pi\)
\(654\) 0 0
\(655\) 15.3712 0.600604
\(656\) 0 0
\(657\) 46.7257 1.82294
\(658\) 0 0
\(659\) 10.8385 0.422209 0.211105 0.977463i \(-0.432294\pi\)
0.211105 + 0.977463i \(0.432294\pi\)
\(660\) 0 0
\(661\) −17.2153 −0.669599 −0.334800 0.942289i \(-0.608669\pi\)
−0.334800 + 0.942289i \(0.608669\pi\)
\(662\) 0 0
\(663\) 7.94518 0.308565
\(664\) 0 0
\(665\) 13.5858 0.526835
\(666\) 0 0
\(667\) 12.5219 0.484850
\(668\) 0 0
\(669\) −42.7149 −1.65145
\(670\) 0 0
\(671\) 18.5244 0.715128
\(672\) 0 0
\(673\) −16.0173 −0.617422 −0.308711 0.951156i \(-0.599898\pi\)
−0.308711 + 0.951156i \(0.599898\pi\)
\(674\) 0 0
\(675\) −2.51786 −0.0969127
\(676\) 0 0
\(677\) 50.4523 1.93904 0.969520 0.245011i \(-0.0787917\pi\)
0.969520 + 0.245011i \(0.0787917\pi\)
\(678\) 0 0
\(679\) 11.9761 0.459601
\(680\) 0 0
\(681\) −69.7268 −2.67194
\(682\) 0 0
\(683\) −8.09388 −0.309704 −0.154852 0.987938i \(-0.549490\pi\)
−0.154852 + 0.987938i \(0.549490\pi\)
\(684\) 0 0
\(685\) 24.8585 0.949793
\(686\) 0 0
\(687\) −54.6698 −2.08578
\(688\) 0 0
\(689\) 7.66929 0.292177
\(690\) 0 0
\(691\) −44.8400 −1.70580 −0.852898 0.522078i \(-0.825157\pi\)
−0.852898 + 0.522078i \(0.825157\pi\)
\(692\) 0 0
\(693\) −25.8349 −0.981388
\(694\) 0 0
\(695\) −30.2692 −1.14818
\(696\) 0 0
\(697\) −8.24122 −0.312158
\(698\) 0 0
\(699\) −44.2879 −1.67512
\(700\) 0 0
\(701\) 3.17476 0.119909 0.0599546 0.998201i \(-0.480904\pi\)
0.0599546 + 0.998201i \(0.480904\pi\)
\(702\) 0 0
\(703\) 27.4241 1.03432
\(704\) 0 0
\(705\) −24.7478 −0.932058
\(706\) 0 0
\(707\) −3.36487 −0.126549
\(708\) 0 0
\(709\) −43.5824 −1.63677 −0.818385 0.574670i \(-0.805130\pi\)
−0.818385 + 0.574670i \(0.805130\pi\)
\(710\) 0 0
\(711\) −13.4435 −0.504172
\(712\) 0 0
\(713\) −71.3108 −2.67061
\(714\) 0 0
\(715\) 36.7325 1.37372
\(716\) 0 0
\(717\) 15.0835 0.563302
\(718\) 0 0
\(719\) −48.2140 −1.79808 −0.899039 0.437869i \(-0.855733\pi\)
−0.899039 + 0.437869i \(0.855733\pi\)
\(720\) 0 0
\(721\) −15.7989 −0.588383
\(722\) 0 0
\(723\) −58.6972 −2.18297
\(724\) 0 0
\(725\) 1.35099 0.0501744
\(726\) 0 0
\(727\) 21.7931 0.808261 0.404130 0.914701i \(-0.367574\pi\)
0.404130 + 0.914701i \(0.367574\pi\)
\(728\) 0 0
\(729\) −43.0284 −1.59364
\(730\) 0 0
\(731\) −7.78952 −0.288106
\(732\) 0 0
\(733\) 31.3972 1.15968 0.579840 0.814730i \(-0.303115\pi\)
0.579840 + 0.814730i \(0.303115\pi\)
\(734\) 0 0
\(735\) −5.57618 −0.205680
\(736\) 0 0
\(737\) 45.1275 1.66229
\(738\) 0 0
\(739\) −42.7648 −1.57313 −0.786564 0.617508i \(-0.788142\pi\)
−0.786564 + 0.617508i \(0.788142\pi\)
\(740\) 0 0
\(741\) −52.2303 −1.91873
\(742\) 0 0
\(743\) 14.3880 0.527845 0.263922 0.964544i \(-0.414984\pi\)
0.263922 + 0.964544i \(0.414984\pi\)
\(744\) 0 0
\(745\) −17.1400 −0.627962
\(746\) 0 0
\(747\) 55.2193 2.02037
\(748\) 0 0
\(749\) −16.2008 −0.591963
\(750\) 0 0
\(751\) 1.70839 0.0623399 0.0311699 0.999514i \(-0.490077\pi\)
0.0311699 + 0.999514i \(0.490077\pi\)
\(752\) 0 0
\(753\) −5.03219 −0.183383
\(754\) 0 0
\(755\) −23.2536 −0.846286
\(756\) 0 0
\(757\) 48.4062 1.75935 0.879676 0.475574i \(-0.157760\pi\)
0.879676 + 0.475574i \(0.157760\pi\)
\(758\) 0 0
\(759\) 110.038 3.99413
\(760\) 0 0
\(761\) 31.2822 1.13398 0.566990 0.823725i \(-0.308108\pi\)
0.566990 + 0.823725i \(0.308108\pi\)
\(762\) 0 0
\(763\) 0.517516 0.0187353
\(764\) 0 0
\(765\) −8.84554 −0.319811
\(766\) 0 0
\(767\) −19.5120 −0.704538
\(768\) 0 0
\(769\) −32.1505 −1.15938 −0.579688 0.814839i \(-0.696825\pi\)
−0.579688 + 0.814839i \(0.696825\pi\)
\(770\) 0 0
\(771\) 49.0564 1.76672
\(772\) 0 0
\(773\) −9.17979 −0.330174 −0.165087 0.986279i \(-0.552791\pi\)
−0.165087 + 0.986279i \(0.552791\pi\)
\(774\) 0 0
\(775\) −7.69373 −0.276367
\(776\) 0 0
\(777\) −11.2560 −0.403806
\(778\) 0 0
\(779\) 54.1764 1.94107
\(780\) 0 0
\(781\) 6.73563 0.241020
\(782\) 0 0
\(783\) −6.40137 −0.228766
\(784\) 0 0
\(785\) −23.9626 −0.855260
\(786\) 0 0
\(787\) −11.1887 −0.398834 −0.199417 0.979915i \(-0.563905\pi\)
−0.199417 + 0.979915i \(0.563905\pi\)
\(788\) 0 0
\(789\) −61.1142 −2.17572
\(790\) 0 0
\(791\) −3.76248 −0.133778
\(792\) 0 0
\(793\) −9.03711 −0.320917
\(794\) 0 0
\(795\) −14.5230 −0.515079
\(796\) 0 0
\(797\) 3.64731 0.129194 0.0645971 0.997911i \(-0.479424\pi\)
0.0645971 + 0.997911i \(0.479424\pi\)
\(798\) 0 0
\(799\) 4.43814 0.157010
\(800\) 0 0
\(801\) −18.2139 −0.643555
\(802\) 0 0
\(803\) −65.8943 −2.32536
\(804\) 0 0
\(805\) 13.9634 0.492145
\(806\) 0 0
\(807\) 64.0962 2.25629
\(808\) 0 0
\(809\) 22.9897 0.808273 0.404137 0.914699i \(-0.367572\pi\)
0.404137 + 0.914699i \(0.367572\pi\)
\(810\) 0 0
\(811\) −4.61114 −0.161919 −0.0809594 0.996717i \(-0.525798\pi\)
−0.0809594 + 0.996717i \(0.525798\pi\)
\(812\) 0 0
\(813\) 69.8948 2.45132
\(814\) 0 0
\(815\) −34.3734 −1.20405
\(816\) 0 0
\(817\) 51.2070 1.79151
\(818\) 0 0
\(819\) 12.6035 0.440403
\(820\) 0 0
\(821\) −35.6653 −1.24473 −0.622364 0.782728i \(-0.713828\pi\)
−0.622364 + 0.782728i \(0.713828\pi\)
\(822\) 0 0
\(823\) −37.8241 −1.31847 −0.659233 0.751939i \(-0.729119\pi\)
−0.659233 + 0.751939i \(0.729119\pi\)
\(824\) 0 0
\(825\) 11.8720 0.413331
\(826\) 0 0
\(827\) 35.0659 1.21936 0.609680 0.792648i \(-0.291298\pi\)
0.609680 + 0.792648i \(0.291298\pi\)
\(828\) 0 0
\(829\) −2.11269 −0.0733769 −0.0366885 0.999327i \(-0.511681\pi\)
−0.0366885 + 0.999327i \(0.511681\pi\)
\(830\) 0 0
\(831\) 44.8918 1.55728
\(832\) 0 0
\(833\) 1.00000 0.0346479
\(834\) 0 0
\(835\) −34.5731 −1.19645
\(836\) 0 0
\(837\) 36.4551 1.26007
\(838\) 0 0
\(839\) 22.6688 0.782613 0.391306 0.920261i \(-0.372023\pi\)
0.391306 + 0.920261i \(0.372023\pi\)
\(840\) 0 0
\(841\) −25.5653 −0.881561
\(842\) 0 0
\(843\) 75.5845 2.60327
\(844\) 0 0
\(845\) 8.94658 0.307772
\(846\) 0 0
\(847\) 25.4333 0.873899
\(848\) 0 0
\(849\) 44.1346 1.51470
\(850\) 0 0
\(851\) 28.1862 0.966211
\(852\) 0 0
\(853\) 2.76785 0.0947693 0.0473847 0.998877i \(-0.484911\pi\)
0.0473847 + 0.998877i \(0.484911\pi\)
\(854\) 0 0
\(855\) 58.1491 1.98866
\(856\) 0 0
\(857\) 10.6206 0.362792 0.181396 0.983410i \(-0.441938\pi\)
0.181396 + 0.983410i \(0.441938\pi\)
\(858\) 0 0
\(859\) −34.1180 −1.16409 −0.582045 0.813157i \(-0.697747\pi\)
−0.582045 + 0.813157i \(0.697747\pi\)
\(860\) 0 0
\(861\) −22.2362 −0.757809
\(862\) 0 0
\(863\) 38.6533 1.31578 0.657888 0.753116i \(-0.271450\pi\)
0.657888 + 0.753116i \(0.271450\pi\)
\(864\) 0 0
\(865\) −9.59618 −0.326280
\(866\) 0 0
\(867\) 2.69817 0.0916348
\(868\) 0 0
\(869\) 18.9585 0.643124
\(870\) 0 0
\(871\) −22.0154 −0.745963
\(872\) 0 0
\(873\) 51.2594 1.73487
\(874\) 0 0
\(875\) 11.8398 0.400257
\(876\) 0 0
\(877\) −14.6546 −0.494850 −0.247425 0.968907i \(-0.579584\pi\)
−0.247425 + 0.968907i \(0.579584\pi\)
\(878\) 0 0
\(879\) −51.3277 −1.73124
\(880\) 0 0
\(881\) −32.1168 −1.08204 −0.541021 0.841009i \(-0.681962\pi\)
−0.541021 + 0.841009i \(0.681962\pi\)
\(882\) 0 0
\(883\) −9.35225 −0.314728 −0.157364 0.987541i \(-0.550300\pi\)
−0.157364 + 0.987541i \(0.550300\pi\)
\(884\) 0 0
\(885\) 36.9492 1.24203
\(886\) 0 0
\(887\) −57.6954 −1.93722 −0.968611 0.248581i \(-0.920036\pi\)
−0.968611 + 0.248581i \(0.920036\pi\)
\(888\) 0 0
\(889\) −5.02230 −0.168443
\(890\) 0 0
\(891\) 21.2517 0.711960
\(892\) 0 0
\(893\) −29.1756 −0.976324
\(894\) 0 0
\(895\) −2.95562 −0.0987954
\(896\) 0 0
\(897\) −53.6819 −1.79239
\(898\) 0 0
\(899\) −19.5604 −0.652375
\(900\) 0 0
\(901\) 2.60448 0.0867679
\(902\) 0 0
\(903\) −21.0175 −0.699418
\(904\) 0 0
\(905\) 31.7681 1.05601
\(906\) 0 0
\(907\) 29.5931 0.982622 0.491311 0.870984i \(-0.336518\pi\)
0.491311 + 0.870984i \(0.336518\pi\)
\(908\) 0 0
\(909\) −14.4021 −0.477688
\(910\) 0 0
\(911\) 15.9598 0.528771 0.264385 0.964417i \(-0.414831\pi\)
0.264385 + 0.964417i \(0.414831\pi\)
\(912\) 0 0
\(913\) −77.8721 −2.57719
\(914\) 0 0
\(915\) 17.1132 0.565746
\(916\) 0 0
\(917\) −7.43776 −0.245617
\(918\) 0 0
\(919\) 16.4561 0.542837 0.271418 0.962461i \(-0.412507\pi\)
0.271418 + 0.962461i \(0.412507\pi\)
\(920\) 0 0
\(921\) −23.4149 −0.771547
\(922\) 0 0
\(923\) −3.28596 −0.108159
\(924\) 0 0
\(925\) 3.04101 0.0999879
\(926\) 0 0
\(927\) −67.6216 −2.22098
\(928\) 0 0
\(929\) 24.2400 0.795290 0.397645 0.917539i \(-0.369828\pi\)
0.397645 + 0.917539i \(0.369828\pi\)
\(930\) 0 0
\(931\) −6.57383 −0.215449
\(932\) 0 0
\(933\) 7.54755 0.247096
\(934\) 0 0
\(935\) 12.4743 0.407953
\(936\) 0 0
\(937\) −28.5568 −0.932909 −0.466454 0.884545i \(-0.654469\pi\)
−0.466454 + 0.884545i \(0.654469\pi\)
\(938\) 0 0
\(939\) 80.4898 2.62669
\(940\) 0 0
\(941\) 24.7694 0.807461 0.403730 0.914878i \(-0.367713\pi\)
0.403730 + 0.914878i \(0.367713\pi\)
\(942\) 0 0
\(943\) 55.6821 1.81326
\(944\) 0 0
\(945\) −7.13828 −0.232208
\(946\) 0 0
\(947\) −0.960336 −0.0312067 −0.0156034 0.999878i \(-0.504967\pi\)
−0.0156034 + 0.999878i \(0.504967\pi\)
\(948\) 0 0
\(949\) 32.1464 1.04352
\(950\) 0 0
\(951\) 43.6979 1.41700
\(952\) 0 0
\(953\) −37.5957 −1.21784 −0.608922 0.793230i \(-0.708398\pi\)
−0.608922 + 0.793230i \(0.708398\pi\)
\(954\) 0 0
\(955\) 51.5772 1.66900
\(956\) 0 0
\(957\) 30.1832 0.975684
\(958\) 0 0
\(959\) −12.0284 −0.388417
\(960\) 0 0
\(961\) 80.3942 2.59336
\(962\) 0 0
\(963\) −69.3416 −2.23450
\(964\) 0 0
\(965\) 34.3899 1.10705
\(966\) 0 0
\(967\) 51.1922 1.64623 0.823115 0.567874i \(-0.192234\pi\)
0.823115 + 0.567874i \(0.192234\pi\)
\(968\) 0 0
\(969\) −17.7373 −0.569806
\(970\) 0 0
\(971\) 52.9062 1.69784 0.848921 0.528520i \(-0.177253\pi\)
0.848921 + 0.528520i \(0.177253\pi\)
\(972\) 0 0
\(973\) 14.6465 0.469546
\(974\) 0 0
\(975\) −5.79174 −0.185484
\(976\) 0 0
\(977\) 13.7743 0.440678 0.220339 0.975423i \(-0.429284\pi\)
0.220339 + 0.975423i \(0.429284\pi\)
\(978\) 0 0
\(979\) 25.6858 0.820923
\(980\) 0 0
\(981\) 2.21504 0.0707207
\(982\) 0 0
\(983\) 55.5522 1.77184 0.885920 0.463837i \(-0.153528\pi\)
0.885920 + 0.463837i \(0.153528\pi\)
\(984\) 0 0
\(985\) 19.1893 0.611421
\(986\) 0 0
\(987\) 11.9749 0.381164
\(988\) 0 0
\(989\) 52.6302 1.67354
\(990\) 0 0
\(991\) 26.9638 0.856533 0.428267 0.903652i \(-0.359124\pi\)
0.428267 + 0.903652i \(0.359124\pi\)
\(992\) 0 0
\(993\) −28.4436 −0.902631
\(994\) 0 0
\(995\) −15.6926 −0.497489
\(996\) 0 0
\(997\) −49.0462 −1.55331 −0.776654 0.629927i \(-0.783085\pi\)
−0.776654 + 0.629927i \(0.783085\pi\)
\(998\) 0 0
\(999\) −14.4092 −0.455887
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 3808.2.a.g.1.6 6
4.3 odd 2 3808.2.a.o.1.1 yes 6
8.3 odd 2 7616.2.a.bv.1.6 6
8.5 even 2 7616.2.a.cd.1.1 6
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
3808.2.a.g.1.6 6 1.1 even 1 trivial
3808.2.a.o.1.1 yes 6 4.3 odd 2
7616.2.a.bv.1.6 6 8.3 odd 2
7616.2.a.cd.1.1 6 8.5 even 2