Properties

Label 3808.2.a.g.1.5
Level $3808$
Weight $2$
Character 3808.1
Self dual yes
Analytic conductor $30.407$
Analytic rank $1$
Dimension $6$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [3808,2,Mod(1,3808)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(3808, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("3808.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 3808 = 2^{5} \cdot 7 \cdot 17 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 3808.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(30.4070330897\)
Analytic rank: \(1\)
Dimension: \(6\)
Coefficient field: 6.6.147697840.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{6} - 2x^{5} - 10x^{4} + 10x^{3} + 18x^{2} - 16x + 3 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 2 \)
Twist minimal: yes
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.5
Root \(1.46371\) of defining polynomial
Character \(\chi\) \(=\) 3808.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+0.463711 q^{3} -0.183002 q^{5} +1.00000 q^{7} -2.78497 q^{9} +4.93124 q^{11} -2.19585 q^{13} -0.0848598 q^{15} +1.00000 q^{17} -7.89068 q^{19} +0.463711 q^{21} +3.58009 q^{23} -4.96651 q^{25} -2.68255 q^{27} -2.53954 q^{29} -1.62496 q^{31} +2.28667 q^{33} -0.183002 q^{35} -9.29680 q^{37} -1.01824 q^{39} -0.851594 q^{41} +0.271676 q^{43} +0.509655 q^{45} -10.3374 q^{47} +1.00000 q^{49} +0.463711 q^{51} +13.0049 q^{53} -0.902425 q^{55} -3.65899 q^{57} +2.95312 q^{59} +5.62282 q^{61} -2.78497 q^{63} +0.401844 q^{65} -4.20488 q^{67} +1.66013 q^{69} +6.04234 q^{71} -13.9383 q^{73} -2.30302 q^{75} +4.93124 q^{77} -1.79400 q^{79} +7.11099 q^{81} -10.8384 q^{83} -0.183002 q^{85} -1.17761 q^{87} -1.13342 q^{89} -2.19585 q^{91} -0.753513 q^{93} +1.44401 q^{95} +6.87312 q^{97} -13.7334 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 6 q - 4 q^{3} - 4 q^{5} + 6 q^{7} + 8 q^{9} - 8 q^{11} - 4 q^{13} + 6 q^{17} - 18 q^{19} - 4 q^{21} - 6 q^{23} + 12 q^{25} - 10 q^{27} + 4 q^{29} + 8 q^{31} - 6 q^{33} - 4 q^{35} - 8 q^{37} + 18 q^{39}+ \cdots - 32 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0.463711 0.267723 0.133862 0.991000i \(-0.457262\pi\)
0.133862 + 0.991000i \(0.457262\pi\)
\(4\) 0 0
\(5\) −0.183002 −0.0818408 −0.0409204 0.999162i \(-0.513029\pi\)
−0.0409204 + 0.999162i \(0.513029\pi\)
\(6\) 0 0
\(7\) 1.00000 0.377964
\(8\) 0 0
\(9\) −2.78497 −0.928324
\(10\) 0 0
\(11\) 4.93124 1.48682 0.743412 0.668834i \(-0.233206\pi\)
0.743412 + 0.668834i \(0.233206\pi\)
\(12\) 0 0
\(13\) −2.19585 −0.609019 −0.304509 0.952509i \(-0.598493\pi\)
−0.304509 + 0.952509i \(0.598493\pi\)
\(14\) 0 0
\(15\) −0.0848598 −0.0219107
\(16\) 0 0
\(17\) 1.00000 0.242536
\(18\) 0 0
\(19\) −7.89068 −1.81025 −0.905123 0.425149i \(-0.860222\pi\)
−0.905123 + 0.425149i \(0.860222\pi\)
\(20\) 0 0
\(21\) 0.463711 0.101190
\(22\) 0 0
\(23\) 3.58009 0.746501 0.373250 0.927731i \(-0.378243\pi\)
0.373250 + 0.927731i \(0.378243\pi\)
\(24\) 0 0
\(25\) −4.96651 −0.993302
\(26\) 0 0
\(27\) −2.68255 −0.516258
\(28\) 0 0
\(29\) −2.53954 −0.471580 −0.235790 0.971804i \(-0.575768\pi\)
−0.235790 + 0.971804i \(0.575768\pi\)
\(30\) 0 0
\(31\) −1.62496 −0.291852 −0.145926 0.989295i \(-0.546616\pi\)
−0.145926 + 0.989295i \(0.546616\pi\)
\(32\) 0 0
\(33\) 2.28667 0.398058
\(34\) 0 0
\(35\) −0.183002 −0.0309329
\(36\) 0 0
\(37\) −9.29680 −1.52839 −0.764193 0.644988i \(-0.776862\pi\)
−0.764193 + 0.644988i \(0.776862\pi\)
\(38\) 0 0
\(39\) −1.01824 −0.163049
\(40\) 0 0
\(41\) −0.851594 −0.132997 −0.0664983 0.997787i \(-0.521183\pi\)
−0.0664983 + 0.997787i \(0.521183\pi\)
\(42\) 0 0
\(43\) 0.271676 0.0414303 0.0207151 0.999785i \(-0.493406\pi\)
0.0207151 + 0.999785i \(0.493406\pi\)
\(44\) 0 0
\(45\) 0.509655 0.0759748
\(46\) 0 0
\(47\) −10.3374 −1.50786 −0.753929 0.656956i \(-0.771844\pi\)
−0.753929 + 0.656956i \(0.771844\pi\)
\(48\) 0 0
\(49\) 1.00000 0.142857
\(50\) 0 0
\(51\) 0.463711 0.0649325
\(52\) 0 0
\(53\) 13.0049 1.78636 0.893182 0.449696i \(-0.148468\pi\)
0.893182 + 0.449696i \(0.148468\pi\)
\(54\) 0 0
\(55\) −0.902425 −0.121683
\(56\) 0 0
\(57\) −3.65899 −0.484645
\(58\) 0 0
\(59\) 2.95312 0.384463 0.192231 0.981350i \(-0.438428\pi\)
0.192231 + 0.981350i \(0.438428\pi\)
\(60\) 0 0
\(61\) 5.62282 0.719929 0.359964 0.932966i \(-0.382789\pi\)
0.359964 + 0.932966i \(0.382789\pi\)
\(62\) 0 0
\(63\) −2.78497 −0.350874
\(64\) 0 0
\(65\) 0.401844 0.0498426
\(66\) 0 0
\(67\) −4.20488 −0.513708 −0.256854 0.966450i \(-0.582686\pi\)
−0.256854 + 0.966450i \(0.582686\pi\)
\(68\) 0 0
\(69\) 1.66013 0.199856
\(70\) 0 0
\(71\) 6.04234 0.717094 0.358547 0.933512i \(-0.383272\pi\)
0.358547 + 0.933512i \(0.383272\pi\)
\(72\) 0 0
\(73\) −13.9383 −1.63135 −0.815677 0.578507i \(-0.803635\pi\)
−0.815677 + 0.578507i \(0.803635\pi\)
\(74\) 0 0
\(75\) −2.30302 −0.265930
\(76\) 0 0
\(77\) 4.93124 0.561967
\(78\) 0 0
\(79\) −1.79400 −0.201841 −0.100921 0.994894i \(-0.532179\pi\)
−0.100921 + 0.994894i \(0.532179\pi\)
\(80\) 0 0
\(81\) 7.11099 0.790110
\(82\) 0 0
\(83\) −10.8384 −1.18967 −0.594833 0.803849i \(-0.702782\pi\)
−0.594833 + 0.803849i \(0.702782\pi\)
\(84\) 0 0
\(85\) −0.183002 −0.0198493
\(86\) 0 0
\(87\) −1.17761 −0.126253
\(88\) 0 0
\(89\) −1.13342 −0.120142 −0.0600709 0.998194i \(-0.519133\pi\)
−0.0600709 + 0.998194i \(0.519133\pi\)
\(90\) 0 0
\(91\) −2.19585 −0.230188
\(92\) 0 0
\(93\) −0.753513 −0.0781357
\(94\) 0 0
\(95\) 1.44401 0.148152
\(96\) 0 0
\(97\) 6.87312 0.697860 0.348930 0.937149i \(-0.386545\pi\)
0.348930 + 0.937149i \(0.386545\pi\)
\(98\) 0 0
\(99\) −13.7334 −1.38025
\(100\) 0 0
\(101\) 16.1192 1.60392 0.801958 0.597380i \(-0.203792\pi\)
0.801958 + 0.597380i \(0.203792\pi\)
\(102\) 0 0
\(103\) −14.6646 −1.44495 −0.722473 0.691400i \(-0.756994\pi\)
−0.722473 + 0.691400i \(0.756994\pi\)
\(104\) 0 0
\(105\) −0.0848598 −0.00828147
\(106\) 0 0
\(107\) −16.4813 −1.59331 −0.796656 0.604433i \(-0.793400\pi\)
−0.796656 + 0.604433i \(0.793400\pi\)
\(108\) 0 0
\(109\) −6.62607 −0.634662 −0.317331 0.948315i \(-0.602787\pi\)
−0.317331 + 0.948315i \(0.602787\pi\)
\(110\) 0 0
\(111\) −4.31103 −0.409185
\(112\) 0 0
\(113\) −6.45254 −0.607003 −0.303502 0.952831i \(-0.598156\pi\)
−0.303502 + 0.952831i \(0.598156\pi\)
\(114\) 0 0
\(115\) −0.655163 −0.0610942
\(116\) 0 0
\(117\) 6.11538 0.565367
\(118\) 0 0
\(119\) 1.00000 0.0916698
\(120\) 0 0
\(121\) 13.3171 1.21064
\(122\) 0 0
\(123\) −0.394893 −0.0356063
\(124\) 0 0
\(125\) 1.82389 0.163134
\(126\) 0 0
\(127\) 18.7804 1.66649 0.833247 0.552901i \(-0.186479\pi\)
0.833247 + 0.552901i \(0.186479\pi\)
\(128\) 0 0
\(129\) 0.125979 0.0110919
\(130\) 0 0
\(131\) −8.85120 −0.773333 −0.386667 0.922220i \(-0.626374\pi\)
−0.386667 + 0.922220i \(0.626374\pi\)
\(132\) 0 0
\(133\) −7.89068 −0.684209
\(134\) 0 0
\(135\) 0.490912 0.0422510
\(136\) 0 0
\(137\) 11.5919 0.990360 0.495180 0.868790i \(-0.335102\pi\)
0.495180 + 0.868790i \(0.335102\pi\)
\(138\) 0 0
\(139\) −12.4056 −1.05223 −0.526115 0.850413i \(-0.676352\pi\)
−0.526115 + 0.850413i \(0.676352\pi\)
\(140\) 0 0
\(141\) −4.79354 −0.403689
\(142\) 0 0
\(143\) −10.8283 −0.905504
\(144\) 0 0
\(145\) 0.464740 0.0385945
\(146\) 0 0
\(147\) 0.463711 0.0382462
\(148\) 0 0
\(149\) −9.99221 −0.818593 −0.409297 0.912401i \(-0.634226\pi\)
−0.409297 + 0.912401i \(0.634226\pi\)
\(150\) 0 0
\(151\) 3.27257 0.266318 0.133159 0.991095i \(-0.457488\pi\)
0.133159 + 0.991095i \(0.457488\pi\)
\(152\) 0 0
\(153\) −2.78497 −0.225152
\(154\) 0 0
\(155\) 0.297371 0.0238854
\(156\) 0 0
\(157\) −22.5564 −1.80020 −0.900099 0.435686i \(-0.856506\pi\)
−0.900099 + 0.435686i \(0.856506\pi\)
\(158\) 0 0
\(159\) 6.03052 0.478251
\(160\) 0 0
\(161\) 3.58009 0.282151
\(162\) 0 0
\(163\) −7.06625 −0.553471 −0.276736 0.960946i \(-0.589253\pi\)
−0.276736 + 0.960946i \(0.589253\pi\)
\(164\) 0 0
\(165\) −0.418464 −0.0325774
\(166\) 0 0
\(167\) 11.4098 0.882917 0.441458 0.897282i \(-0.354461\pi\)
0.441458 + 0.897282i \(0.354461\pi\)
\(168\) 0 0
\(169\) −8.17825 −0.629096
\(170\) 0 0
\(171\) 21.9753 1.68050
\(172\) 0 0
\(173\) −6.55453 −0.498332 −0.249166 0.968461i \(-0.580156\pi\)
−0.249166 + 0.968461i \(0.580156\pi\)
\(174\) 0 0
\(175\) −4.96651 −0.375433
\(176\) 0 0
\(177\) 1.36939 0.102930
\(178\) 0 0
\(179\) −9.80943 −0.733191 −0.366596 0.930380i \(-0.619477\pi\)
−0.366596 + 0.930380i \(0.619477\pi\)
\(180\) 0 0
\(181\) −12.2344 −0.909374 −0.454687 0.890651i \(-0.650249\pi\)
−0.454687 + 0.890651i \(0.650249\pi\)
\(182\) 0 0
\(183\) 2.60736 0.192742
\(184\) 0 0
\(185\) 1.70133 0.125084
\(186\) 0 0
\(187\) 4.93124 0.360608
\(188\) 0 0
\(189\) −2.68255 −0.195127
\(190\) 0 0
\(191\) −16.1122 −1.16584 −0.582919 0.812530i \(-0.698090\pi\)
−0.582919 + 0.812530i \(0.698090\pi\)
\(192\) 0 0
\(193\) 20.8268 1.49915 0.749573 0.661922i \(-0.230259\pi\)
0.749573 + 0.661922i \(0.230259\pi\)
\(194\) 0 0
\(195\) 0.186339 0.0133440
\(196\) 0 0
\(197\) 12.6076 0.898252 0.449126 0.893468i \(-0.351735\pi\)
0.449126 + 0.893468i \(0.351735\pi\)
\(198\) 0 0
\(199\) −4.26153 −0.302092 −0.151046 0.988527i \(-0.548264\pi\)
−0.151046 + 0.988527i \(0.548264\pi\)
\(200\) 0 0
\(201\) −1.94985 −0.137532
\(202\) 0 0
\(203\) −2.53954 −0.178241
\(204\) 0 0
\(205\) 0.155843 0.0108846
\(206\) 0 0
\(207\) −9.97045 −0.692995
\(208\) 0 0
\(209\) −38.9108 −2.69152
\(210\) 0 0
\(211\) −19.6784 −1.35471 −0.677357 0.735654i \(-0.736875\pi\)
−0.677357 + 0.735654i \(0.736875\pi\)
\(212\) 0 0
\(213\) 2.80190 0.191983
\(214\) 0 0
\(215\) −0.0497172 −0.00339069
\(216\) 0 0
\(217\) −1.62496 −0.110310
\(218\) 0 0
\(219\) −6.46334 −0.436752
\(220\) 0 0
\(221\) −2.19585 −0.147709
\(222\) 0 0
\(223\) 15.6272 1.04647 0.523237 0.852187i \(-0.324724\pi\)
0.523237 + 0.852187i \(0.324724\pi\)
\(224\) 0 0
\(225\) 13.8316 0.922106
\(226\) 0 0
\(227\) −6.40663 −0.425223 −0.212611 0.977137i \(-0.568197\pi\)
−0.212611 + 0.977137i \(0.568197\pi\)
\(228\) 0 0
\(229\) −15.3865 −1.01677 −0.508383 0.861131i \(-0.669756\pi\)
−0.508383 + 0.861131i \(0.669756\pi\)
\(230\) 0 0
\(231\) 2.28667 0.150452
\(232\) 0 0
\(233\) −10.1129 −0.662517 −0.331259 0.943540i \(-0.607473\pi\)
−0.331259 + 0.943540i \(0.607473\pi\)
\(234\) 0 0
\(235\) 1.89175 0.123404
\(236\) 0 0
\(237\) −0.831899 −0.0540377
\(238\) 0 0
\(239\) −3.25451 −0.210517 −0.105258 0.994445i \(-0.533567\pi\)
−0.105258 + 0.994445i \(0.533567\pi\)
\(240\) 0 0
\(241\) −1.31260 −0.0845522 −0.0422761 0.999106i \(-0.513461\pi\)
−0.0422761 + 0.999106i \(0.513461\pi\)
\(242\) 0 0
\(243\) 11.3451 0.727789
\(244\) 0 0
\(245\) −0.183002 −0.0116915
\(246\) 0 0
\(247\) 17.3267 1.10247
\(248\) 0 0
\(249\) −5.02587 −0.318501
\(250\) 0 0
\(251\) −16.2386 −1.02497 −0.512486 0.858695i \(-0.671275\pi\)
−0.512486 + 0.858695i \(0.671275\pi\)
\(252\) 0 0
\(253\) 17.6543 1.10991
\(254\) 0 0
\(255\) −0.0848598 −0.00531413
\(256\) 0 0
\(257\) 21.4009 1.33495 0.667477 0.744631i \(-0.267374\pi\)
0.667477 + 0.744631i \(0.267374\pi\)
\(258\) 0 0
\(259\) −9.29680 −0.577675
\(260\) 0 0
\(261\) 7.07254 0.437779
\(262\) 0 0
\(263\) 13.8465 0.853810 0.426905 0.904297i \(-0.359604\pi\)
0.426905 + 0.904297i \(0.359604\pi\)
\(264\) 0 0
\(265\) −2.37992 −0.146197
\(266\) 0 0
\(267\) −0.525577 −0.0321648
\(268\) 0 0
\(269\) 21.6111 1.31765 0.658826 0.752295i \(-0.271053\pi\)
0.658826 + 0.752295i \(0.271053\pi\)
\(270\) 0 0
\(271\) 12.9784 0.788382 0.394191 0.919029i \(-0.371025\pi\)
0.394191 + 0.919029i \(0.371025\pi\)
\(272\) 0 0
\(273\) −1.01824 −0.0616266
\(274\) 0 0
\(275\) −24.4910 −1.47686
\(276\) 0 0
\(277\) 9.78877 0.588150 0.294075 0.955782i \(-0.404988\pi\)
0.294075 + 0.955782i \(0.404988\pi\)
\(278\) 0 0
\(279\) 4.52548 0.270933
\(280\) 0 0
\(281\) 5.70608 0.340396 0.170198 0.985410i \(-0.445559\pi\)
0.170198 + 0.985410i \(0.445559\pi\)
\(282\) 0 0
\(283\) −12.4924 −0.742598 −0.371299 0.928513i \(-0.621088\pi\)
−0.371299 + 0.928513i \(0.621088\pi\)
\(284\) 0 0
\(285\) 0.669602 0.0396638
\(286\) 0 0
\(287\) −0.851594 −0.0502680
\(288\) 0 0
\(289\) 1.00000 0.0588235
\(290\) 0 0
\(291\) 3.18714 0.186833
\(292\) 0 0
\(293\) −1.15192 −0.0672956 −0.0336478 0.999434i \(-0.510712\pi\)
−0.0336478 + 0.999434i \(0.510712\pi\)
\(294\) 0 0
\(295\) −0.540425 −0.0314648
\(296\) 0 0
\(297\) −13.2283 −0.767584
\(298\) 0 0
\(299\) −7.86134 −0.454633
\(300\) 0 0
\(301\) 0.271676 0.0156592
\(302\) 0 0
\(303\) 7.47462 0.429406
\(304\) 0 0
\(305\) −1.02899 −0.0589196
\(306\) 0 0
\(307\) −11.0721 −0.631921 −0.315960 0.948772i \(-0.602327\pi\)
−0.315960 + 0.948772i \(0.602327\pi\)
\(308\) 0 0
\(309\) −6.80013 −0.386846
\(310\) 0 0
\(311\) 4.77752 0.270908 0.135454 0.990784i \(-0.456751\pi\)
0.135454 + 0.990784i \(0.456751\pi\)
\(312\) 0 0
\(313\) 27.1742 1.53598 0.767988 0.640464i \(-0.221258\pi\)
0.767988 + 0.640464i \(0.221258\pi\)
\(314\) 0 0
\(315\) 0.509655 0.0287158
\(316\) 0 0
\(317\) −0.373669 −0.0209873 −0.0104937 0.999945i \(-0.503340\pi\)
−0.0104937 + 0.999945i \(0.503340\pi\)
\(318\) 0 0
\(319\) −12.5231 −0.701157
\(320\) 0 0
\(321\) −7.64258 −0.426567
\(322\) 0 0
\(323\) −7.89068 −0.439049
\(324\) 0 0
\(325\) 10.9057 0.604940
\(326\) 0 0
\(327\) −3.07258 −0.169914
\(328\) 0 0
\(329\) −10.3374 −0.569917
\(330\) 0 0
\(331\) −8.15819 −0.448415 −0.224207 0.974541i \(-0.571979\pi\)
−0.224207 + 0.974541i \(0.571979\pi\)
\(332\) 0 0
\(333\) 25.8913 1.41884
\(334\) 0 0
\(335\) 0.769500 0.0420423
\(336\) 0 0
\(337\) −36.3869 −1.98212 −0.991060 0.133416i \(-0.957405\pi\)
−0.991060 + 0.133416i \(0.957405\pi\)
\(338\) 0 0
\(339\) −2.99211 −0.162509
\(340\) 0 0
\(341\) −8.01308 −0.433933
\(342\) 0 0
\(343\) 1.00000 0.0539949
\(344\) 0 0
\(345\) −0.303806 −0.0163564
\(346\) 0 0
\(347\) −28.6177 −1.53628 −0.768139 0.640283i \(-0.778817\pi\)
−0.768139 + 0.640283i \(0.778817\pi\)
\(348\) 0 0
\(349\) 29.0704 1.55610 0.778052 0.628200i \(-0.216208\pi\)
0.778052 + 0.628200i \(0.216208\pi\)
\(350\) 0 0
\(351\) 5.89048 0.314411
\(352\) 0 0
\(353\) −0.921995 −0.0490728 −0.0245364 0.999699i \(-0.507811\pi\)
−0.0245364 + 0.999699i \(0.507811\pi\)
\(354\) 0 0
\(355\) −1.10576 −0.0586875
\(356\) 0 0
\(357\) 0.463711 0.0245422
\(358\) 0 0
\(359\) −2.33598 −0.123288 −0.0616442 0.998098i \(-0.519634\pi\)
−0.0616442 + 0.998098i \(0.519634\pi\)
\(360\) 0 0
\(361\) 43.2629 2.27699
\(362\) 0 0
\(363\) 6.17528 0.324118
\(364\) 0 0
\(365\) 2.55073 0.133511
\(366\) 0 0
\(367\) −13.3212 −0.695360 −0.347680 0.937613i \(-0.613030\pi\)
−0.347680 + 0.937613i \(0.613030\pi\)
\(368\) 0 0
\(369\) 2.37167 0.123464
\(370\) 0 0
\(371\) 13.0049 0.675182
\(372\) 0 0
\(373\) 17.1148 0.886170 0.443085 0.896480i \(-0.353884\pi\)
0.443085 + 0.896480i \(0.353884\pi\)
\(374\) 0 0
\(375\) 0.845756 0.0436747
\(376\) 0 0
\(377\) 5.57644 0.287201
\(378\) 0 0
\(379\) −2.94066 −0.151052 −0.0755258 0.997144i \(-0.524064\pi\)
−0.0755258 + 0.997144i \(0.524064\pi\)
\(380\) 0 0
\(381\) 8.70868 0.446159
\(382\) 0 0
\(383\) 4.75655 0.243048 0.121524 0.992588i \(-0.461222\pi\)
0.121524 + 0.992588i \(0.461222\pi\)
\(384\) 0 0
\(385\) −0.902425 −0.0459918
\(386\) 0 0
\(387\) −0.756611 −0.0384607
\(388\) 0 0
\(389\) −19.5985 −0.993685 −0.496842 0.867841i \(-0.665507\pi\)
−0.496842 + 0.867841i \(0.665507\pi\)
\(390\) 0 0
\(391\) 3.58009 0.181053
\(392\) 0 0
\(393\) −4.10440 −0.207039
\(394\) 0 0
\(395\) 0.328306 0.0165189
\(396\) 0 0
\(397\) 6.03784 0.303031 0.151515 0.988455i \(-0.451585\pi\)
0.151515 + 0.988455i \(0.451585\pi\)
\(398\) 0 0
\(399\) −3.65899 −0.183179
\(400\) 0 0
\(401\) −20.1813 −1.00781 −0.503904 0.863760i \(-0.668103\pi\)
−0.503904 + 0.863760i \(0.668103\pi\)
\(402\) 0 0
\(403\) 3.56818 0.177744
\(404\) 0 0
\(405\) −1.30132 −0.0646633
\(406\) 0 0
\(407\) −45.8447 −2.27244
\(408\) 0 0
\(409\) −5.39688 −0.266859 −0.133429 0.991058i \(-0.542599\pi\)
−0.133429 + 0.991058i \(0.542599\pi\)
\(410\) 0 0
\(411\) 5.37527 0.265143
\(412\) 0 0
\(413\) 2.95312 0.145313
\(414\) 0 0
\(415\) 1.98344 0.0973633
\(416\) 0 0
\(417\) −5.75262 −0.281707
\(418\) 0 0
\(419\) 21.5680 1.05367 0.526833 0.849969i \(-0.323379\pi\)
0.526833 + 0.849969i \(0.323379\pi\)
\(420\) 0 0
\(421\) 6.23653 0.303950 0.151975 0.988384i \(-0.451437\pi\)
0.151975 + 0.988384i \(0.451437\pi\)
\(422\) 0 0
\(423\) 28.7893 1.39978
\(424\) 0 0
\(425\) −4.96651 −0.240911
\(426\) 0 0
\(427\) 5.62282 0.272107
\(428\) 0 0
\(429\) −5.02117 −0.242425
\(430\) 0 0
\(431\) 1.11677 0.0537931 0.0268965 0.999638i \(-0.491438\pi\)
0.0268965 + 0.999638i \(0.491438\pi\)
\(432\) 0 0
\(433\) −15.9211 −0.765118 −0.382559 0.923931i \(-0.624957\pi\)
−0.382559 + 0.923931i \(0.624957\pi\)
\(434\) 0 0
\(435\) 0.215505 0.0103327
\(436\) 0 0
\(437\) −28.2494 −1.35135
\(438\) 0 0
\(439\) 33.5445 1.60099 0.800496 0.599338i \(-0.204569\pi\)
0.800496 + 0.599338i \(0.204569\pi\)
\(440\) 0 0
\(441\) −2.78497 −0.132618
\(442\) 0 0
\(443\) −7.65293 −0.363602 −0.181801 0.983335i \(-0.558193\pi\)
−0.181801 + 0.983335i \(0.558193\pi\)
\(444\) 0 0
\(445\) 0.207417 0.00983251
\(446\) 0 0
\(447\) −4.63349 −0.219157
\(448\) 0 0
\(449\) −34.5304 −1.62959 −0.814795 0.579749i \(-0.803151\pi\)
−0.814795 + 0.579749i \(0.803151\pi\)
\(450\) 0 0
\(451\) −4.19941 −0.197743
\(452\) 0 0
\(453\) 1.51753 0.0712996
\(454\) 0 0
\(455\) 0.401844 0.0188387
\(456\) 0 0
\(457\) 30.1151 1.40872 0.704362 0.709841i \(-0.251233\pi\)
0.704362 + 0.709841i \(0.251233\pi\)
\(458\) 0 0
\(459\) −2.68255 −0.125211
\(460\) 0 0
\(461\) −11.0758 −0.515851 −0.257926 0.966165i \(-0.583039\pi\)
−0.257926 + 0.966165i \(0.583039\pi\)
\(462\) 0 0
\(463\) 30.0852 1.39818 0.699090 0.715034i \(-0.253589\pi\)
0.699090 + 0.715034i \(0.253589\pi\)
\(464\) 0 0
\(465\) 0.137894 0.00639469
\(466\) 0 0
\(467\) −3.37320 −0.156093 −0.0780465 0.996950i \(-0.524868\pi\)
−0.0780465 + 0.996950i \(0.524868\pi\)
\(468\) 0 0
\(469\) −4.20488 −0.194163
\(470\) 0 0
\(471\) −10.4596 −0.481955
\(472\) 0 0
\(473\) 1.33970 0.0615995
\(474\) 0 0
\(475\) 39.1892 1.79812
\(476\) 0 0
\(477\) −36.2183 −1.65832
\(478\) 0 0
\(479\) −35.1850 −1.60764 −0.803822 0.594870i \(-0.797204\pi\)
−0.803822 + 0.594870i \(0.797204\pi\)
\(480\) 0 0
\(481\) 20.4144 0.930816
\(482\) 0 0
\(483\) 1.66013 0.0755384
\(484\) 0 0
\(485\) −1.25779 −0.0571134
\(486\) 0 0
\(487\) −2.59431 −0.117559 −0.0587797 0.998271i \(-0.518721\pi\)
−0.0587797 + 0.998271i \(0.518721\pi\)
\(488\) 0 0
\(489\) −3.27669 −0.148177
\(490\) 0 0
\(491\) 28.4561 1.28420 0.642102 0.766619i \(-0.278063\pi\)
0.642102 + 0.766619i \(0.278063\pi\)
\(492\) 0 0
\(493\) −2.53954 −0.114375
\(494\) 0 0
\(495\) 2.51323 0.112961
\(496\) 0 0
\(497\) 6.04234 0.271036
\(498\) 0 0
\(499\) 31.1134 1.39283 0.696414 0.717640i \(-0.254778\pi\)
0.696414 + 0.717640i \(0.254778\pi\)
\(500\) 0 0
\(501\) 5.29084 0.236377
\(502\) 0 0
\(503\) 19.0754 0.850532 0.425266 0.905068i \(-0.360181\pi\)
0.425266 + 0.905068i \(0.360181\pi\)
\(504\) 0 0
\(505\) −2.94983 −0.131266
\(506\) 0 0
\(507\) −3.79234 −0.168424
\(508\) 0 0
\(509\) 18.5666 0.822948 0.411474 0.911421i \(-0.365014\pi\)
0.411474 + 0.911421i \(0.365014\pi\)
\(510\) 0 0
\(511\) −13.9383 −0.616594
\(512\) 0 0
\(513\) 21.1672 0.934554
\(514\) 0 0
\(515\) 2.68365 0.118256
\(516\) 0 0
\(517\) −50.9760 −2.24192
\(518\) 0 0
\(519\) −3.03940 −0.133415
\(520\) 0 0
\(521\) −26.3149 −1.15287 −0.576437 0.817141i \(-0.695558\pi\)
−0.576437 + 0.817141i \(0.695558\pi\)
\(522\) 0 0
\(523\) −1.74845 −0.0764545 −0.0382273 0.999269i \(-0.512171\pi\)
−0.0382273 + 0.999269i \(0.512171\pi\)
\(524\) 0 0
\(525\) −2.30302 −0.100512
\(526\) 0 0
\(527\) −1.62496 −0.0707845
\(528\) 0 0
\(529\) −10.1829 −0.442737
\(530\) 0 0
\(531\) −8.22435 −0.356906
\(532\) 0 0
\(533\) 1.86997 0.0809975
\(534\) 0 0
\(535\) 3.01611 0.130398
\(536\) 0 0
\(537\) −4.54874 −0.196292
\(538\) 0 0
\(539\) 4.93124 0.212403
\(540\) 0 0
\(541\) 2.54424 0.109386 0.0546928 0.998503i \(-0.482582\pi\)
0.0546928 + 0.998503i \(0.482582\pi\)
\(542\) 0 0
\(543\) −5.67321 −0.243461
\(544\) 0 0
\(545\) 1.21258 0.0519413
\(546\) 0 0
\(547\) −31.3222 −1.33924 −0.669621 0.742703i \(-0.733543\pi\)
−0.669621 + 0.742703i \(0.733543\pi\)
\(548\) 0 0
\(549\) −15.6594 −0.668327
\(550\) 0 0
\(551\) 20.0387 0.853677
\(552\) 0 0
\(553\) −1.79400 −0.0762889
\(554\) 0 0
\(555\) 0.788925 0.0334880
\(556\) 0 0
\(557\) −16.6278 −0.704543 −0.352271 0.935898i \(-0.614591\pi\)
−0.352271 + 0.935898i \(0.614591\pi\)
\(558\) 0 0
\(559\) −0.596560 −0.0252318
\(560\) 0 0
\(561\) 2.28667 0.0965431
\(562\) 0 0
\(563\) −37.8498 −1.59518 −0.797590 0.603200i \(-0.793892\pi\)
−0.797590 + 0.603200i \(0.793892\pi\)
\(564\) 0 0
\(565\) 1.18082 0.0496777
\(566\) 0 0
\(567\) 7.11099 0.298633
\(568\) 0 0
\(569\) 41.8257 1.75343 0.876713 0.481013i \(-0.159731\pi\)
0.876713 + 0.481013i \(0.159731\pi\)
\(570\) 0 0
\(571\) 27.2584 1.14073 0.570365 0.821391i \(-0.306802\pi\)
0.570365 + 0.821391i \(0.306802\pi\)
\(572\) 0 0
\(573\) −7.47140 −0.312122
\(574\) 0 0
\(575\) −17.7806 −0.741501
\(576\) 0 0
\(577\) 9.98450 0.415660 0.207830 0.978165i \(-0.433360\pi\)
0.207830 + 0.978165i \(0.433360\pi\)
\(578\) 0 0
\(579\) 9.65761 0.401357
\(580\) 0 0
\(581\) −10.8384 −0.449651
\(582\) 0 0
\(583\) 64.1303 2.65601
\(584\) 0 0
\(585\) −1.11912 −0.0462701
\(586\) 0 0
\(587\) −15.1058 −0.623485 −0.311742 0.950167i \(-0.600913\pi\)
−0.311742 + 0.950167i \(0.600913\pi\)
\(588\) 0 0
\(589\) 12.8221 0.528324
\(590\) 0 0
\(591\) 5.84626 0.240483
\(592\) 0 0
\(593\) 0.0549998 0.00225857 0.00112929 0.999999i \(-0.499641\pi\)
0.00112929 + 0.999999i \(0.499641\pi\)
\(594\) 0 0
\(595\) −0.183002 −0.00750234
\(596\) 0 0
\(597\) −1.97612 −0.0808771
\(598\) 0 0
\(599\) 25.7172 1.05078 0.525388 0.850863i \(-0.323920\pi\)
0.525388 + 0.850863i \(0.323920\pi\)
\(600\) 0 0
\(601\) 27.4462 1.11955 0.559777 0.828643i \(-0.310887\pi\)
0.559777 + 0.828643i \(0.310887\pi\)
\(602\) 0 0
\(603\) 11.7105 0.476888
\(604\) 0 0
\(605\) −2.43705 −0.0990802
\(606\) 0 0
\(607\) −5.87264 −0.238363 −0.119181 0.992872i \(-0.538027\pi\)
−0.119181 + 0.992872i \(0.538027\pi\)
\(608\) 0 0
\(609\) −1.17761 −0.0477192
\(610\) 0 0
\(611\) 22.6993 0.918314
\(612\) 0 0
\(613\) 24.7178 0.998343 0.499172 0.866503i \(-0.333638\pi\)
0.499172 + 0.866503i \(0.333638\pi\)
\(614\) 0 0
\(615\) 0.0722661 0.00291405
\(616\) 0 0
\(617\) 35.3322 1.42242 0.711211 0.702978i \(-0.248147\pi\)
0.711211 + 0.702978i \(0.248147\pi\)
\(618\) 0 0
\(619\) −34.5313 −1.38793 −0.693965 0.720009i \(-0.744138\pi\)
−0.693965 + 0.720009i \(0.744138\pi\)
\(620\) 0 0
\(621\) −9.60378 −0.385387
\(622\) 0 0
\(623\) −1.13342 −0.0454094
\(624\) 0 0
\(625\) 24.4988 0.979951
\(626\) 0 0
\(627\) −18.0434 −0.720582
\(628\) 0 0
\(629\) −9.29680 −0.370688
\(630\) 0 0
\(631\) −12.7939 −0.509319 −0.254659 0.967031i \(-0.581963\pi\)
−0.254659 + 0.967031i \(0.581963\pi\)
\(632\) 0 0
\(633\) −9.12506 −0.362689
\(634\) 0 0
\(635\) −3.43685 −0.136387
\(636\) 0 0
\(637\) −2.19585 −0.0870027
\(638\) 0 0
\(639\) −16.8277 −0.665695
\(640\) 0 0
\(641\) 25.0501 0.989421 0.494711 0.869058i \(-0.335274\pi\)
0.494711 + 0.869058i \(0.335274\pi\)
\(642\) 0 0
\(643\) 28.6582 1.13017 0.565084 0.825033i \(-0.308844\pi\)
0.565084 + 0.825033i \(0.308844\pi\)
\(644\) 0 0
\(645\) −0.0230544 −0.000907767 0
\(646\) 0 0
\(647\) 27.5782 1.08421 0.542105 0.840311i \(-0.317627\pi\)
0.542105 + 0.840311i \(0.317627\pi\)
\(648\) 0 0
\(649\) 14.5625 0.571629
\(650\) 0 0
\(651\) −0.753513 −0.0295325
\(652\) 0 0
\(653\) 23.4365 0.917142 0.458571 0.888658i \(-0.348361\pi\)
0.458571 + 0.888658i \(0.348361\pi\)
\(654\) 0 0
\(655\) 1.61978 0.0632902
\(656\) 0 0
\(657\) 38.8178 1.51443
\(658\) 0 0
\(659\) −14.1301 −0.550432 −0.275216 0.961382i \(-0.588749\pi\)
−0.275216 + 0.961382i \(0.588749\pi\)
\(660\) 0 0
\(661\) −43.7488 −1.70163 −0.850815 0.525465i \(-0.823891\pi\)
−0.850815 + 0.525465i \(0.823891\pi\)
\(662\) 0 0
\(663\) −1.01824 −0.0395451
\(664\) 0 0
\(665\) 1.44401 0.0559962
\(666\) 0 0
\(667\) −9.09178 −0.352035
\(668\) 0 0
\(669\) 7.24650 0.280166
\(670\) 0 0
\(671\) 27.7275 1.07041
\(672\) 0 0
\(673\) −38.4550 −1.48233 −0.741166 0.671322i \(-0.765727\pi\)
−0.741166 + 0.671322i \(0.765727\pi\)
\(674\) 0 0
\(675\) 13.3229 0.512800
\(676\) 0 0
\(677\) 9.19792 0.353505 0.176752 0.984255i \(-0.443441\pi\)
0.176752 + 0.984255i \(0.443441\pi\)
\(678\) 0 0
\(679\) 6.87312 0.263766
\(680\) 0 0
\(681\) −2.97082 −0.113842
\(682\) 0 0
\(683\) 29.8086 1.14059 0.570297 0.821439i \(-0.306828\pi\)
0.570297 + 0.821439i \(0.306828\pi\)
\(684\) 0 0
\(685\) −2.12133 −0.0810519
\(686\) 0 0
\(687\) −7.13486 −0.272212
\(688\) 0 0
\(689\) −28.5568 −1.08793
\(690\) 0 0
\(691\) −38.5017 −1.46467 −0.732337 0.680943i \(-0.761570\pi\)
−0.732337 + 0.680943i \(0.761570\pi\)
\(692\) 0 0
\(693\) −13.7334 −0.521687
\(694\) 0 0
\(695\) 2.27025 0.0861154
\(696\) 0 0
\(697\) −0.851594 −0.0322564
\(698\) 0 0
\(699\) −4.68945 −0.177371
\(700\) 0 0
\(701\) 27.2127 1.02781 0.513904 0.857848i \(-0.328199\pi\)
0.513904 + 0.857848i \(0.328199\pi\)
\(702\) 0 0
\(703\) 73.3581 2.76675
\(704\) 0 0
\(705\) 0.877226 0.0330383
\(706\) 0 0
\(707\) 16.1192 0.606223
\(708\) 0 0
\(709\) 19.7388 0.741304 0.370652 0.928772i \(-0.379134\pi\)
0.370652 + 0.928772i \(0.379134\pi\)
\(710\) 0 0
\(711\) 4.99625 0.187374
\(712\) 0 0
\(713\) −5.81752 −0.217868
\(714\) 0 0
\(715\) 1.98159 0.0741072
\(716\) 0 0
\(717\) −1.50915 −0.0563602
\(718\) 0 0
\(719\) 1.02686 0.0382955 0.0191477 0.999817i \(-0.493905\pi\)
0.0191477 + 0.999817i \(0.493905\pi\)
\(720\) 0 0
\(721\) −14.6646 −0.546138
\(722\) 0 0
\(723\) −0.608668 −0.0226366
\(724\) 0 0
\(725\) 12.6126 0.468422
\(726\) 0 0
\(727\) −1.92475 −0.0713849 −0.0356924 0.999363i \(-0.511364\pi\)
−0.0356924 + 0.999363i \(0.511364\pi\)
\(728\) 0 0
\(729\) −16.0721 −0.595264
\(730\) 0 0
\(731\) 0.271676 0.0100483
\(732\) 0 0
\(733\) −45.0103 −1.66249 −0.831246 0.555904i \(-0.812372\pi\)
−0.831246 + 0.555904i \(0.812372\pi\)
\(734\) 0 0
\(735\) −0.0848598 −0.00313010
\(736\) 0 0
\(737\) −20.7353 −0.763793
\(738\) 0 0
\(739\) 39.2233 1.44285 0.721427 0.692491i \(-0.243487\pi\)
0.721427 + 0.692491i \(0.243487\pi\)
\(740\) 0 0
\(741\) 8.03460 0.295158
\(742\) 0 0
\(743\) −22.9672 −0.842586 −0.421293 0.906924i \(-0.638424\pi\)
−0.421293 + 0.906924i \(0.638424\pi\)
\(744\) 0 0
\(745\) 1.82859 0.0669944
\(746\) 0 0
\(747\) 30.1846 1.10440
\(748\) 0 0
\(749\) −16.4813 −0.602215
\(750\) 0 0
\(751\) 45.8102 1.67164 0.835818 0.549006i \(-0.184994\pi\)
0.835818 + 0.549006i \(0.184994\pi\)
\(752\) 0 0
\(753\) −7.53002 −0.274409
\(754\) 0 0
\(755\) −0.598887 −0.0217957
\(756\) 0 0
\(757\) −26.7597 −0.972597 −0.486299 0.873793i \(-0.661653\pi\)
−0.486299 + 0.873793i \(0.661653\pi\)
\(758\) 0 0
\(759\) 8.18647 0.297150
\(760\) 0 0
\(761\) −6.10079 −0.221154 −0.110577 0.993868i \(-0.535270\pi\)
−0.110577 + 0.993868i \(0.535270\pi\)
\(762\) 0 0
\(763\) −6.62607 −0.239880
\(764\) 0 0
\(765\) 0.509655 0.0184266
\(766\) 0 0
\(767\) −6.48460 −0.234145
\(768\) 0 0
\(769\) 32.4699 1.17090 0.585448 0.810710i \(-0.300919\pi\)
0.585448 + 0.810710i \(0.300919\pi\)
\(770\) 0 0
\(771\) 9.92384 0.357398
\(772\) 0 0
\(773\) 9.02047 0.324444 0.162222 0.986754i \(-0.448134\pi\)
0.162222 + 0.986754i \(0.448134\pi\)
\(774\) 0 0
\(775\) 8.07040 0.289897
\(776\) 0 0
\(777\) −4.31103 −0.154657
\(778\) 0 0
\(779\) 6.71966 0.240757
\(780\) 0 0
\(781\) 29.7962 1.06619
\(782\) 0 0
\(783\) 6.81245 0.243457
\(784\) 0 0
\(785\) 4.12786 0.147330
\(786\) 0 0
\(787\) 28.4077 1.01263 0.506313 0.862350i \(-0.331008\pi\)
0.506313 + 0.862350i \(0.331008\pi\)
\(788\) 0 0
\(789\) 6.42075 0.228585
\(790\) 0 0
\(791\) −6.45254 −0.229426
\(792\) 0 0
\(793\) −12.3469 −0.438450
\(794\) 0 0
\(795\) −1.10360 −0.0391405
\(796\) 0 0
\(797\) −41.4002 −1.46647 −0.733235 0.679975i \(-0.761991\pi\)
−0.733235 + 0.679975i \(0.761991\pi\)
\(798\) 0 0
\(799\) −10.3374 −0.365709
\(800\) 0 0
\(801\) 3.15653 0.111531
\(802\) 0 0
\(803\) −68.7330 −2.42554
\(804\) 0 0
\(805\) −0.655163 −0.0230915
\(806\) 0 0
\(807\) 10.0213 0.352767
\(808\) 0 0
\(809\) 18.3561 0.645368 0.322684 0.946507i \(-0.395415\pi\)
0.322684 + 0.946507i \(0.395415\pi\)
\(810\) 0 0
\(811\) 29.5985 1.03934 0.519671 0.854366i \(-0.326054\pi\)
0.519671 + 0.854366i \(0.326054\pi\)
\(812\) 0 0
\(813\) 6.01822 0.211068
\(814\) 0 0
\(815\) 1.29314 0.0452966
\(816\) 0 0
\(817\) −2.14371 −0.0749990
\(818\) 0 0
\(819\) 6.11538 0.213689
\(820\) 0 0
\(821\) 34.8892 1.21764 0.608821 0.793308i \(-0.291643\pi\)
0.608821 + 0.793308i \(0.291643\pi\)
\(822\) 0 0
\(823\) 16.0577 0.559735 0.279867 0.960039i \(-0.409709\pi\)
0.279867 + 0.960039i \(0.409709\pi\)
\(824\) 0 0
\(825\) −11.3568 −0.395391
\(826\) 0 0
\(827\) 52.5866 1.82861 0.914307 0.405022i \(-0.132736\pi\)
0.914307 + 0.405022i \(0.132736\pi\)
\(828\) 0 0
\(829\) 15.8591 0.550810 0.275405 0.961328i \(-0.411188\pi\)
0.275405 + 0.961328i \(0.411188\pi\)
\(830\) 0 0
\(831\) 4.53916 0.157462
\(832\) 0 0
\(833\) 1.00000 0.0346479
\(834\) 0 0
\(835\) −2.08801 −0.0722586
\(836\) 0 0
\(837\) 4.35905 0.150671
\(838\) 0 0
\(839\) −9.73445 −0.336071 −0.168035 0.985781i \(-0.553742\pi\)
−0.168035 + 0.985781i \(0.553742\pi\)
\(840\) 0 0
\(841\) −22.5507 −0.777612
\(842\) 0 0
\(843\) 2.64597 0.0911320
\(844\) 0 0
\(845\) 1.49663 0.0514857
\(846\) 0 0
\(847\) 13.3171 0.457581
\(848\) 0 0
\(849\) −5.79287 −0.198811
\(850\) 0 0
\(851\) −33.2834 −1.14094
\(852\) 0 0
\(853\) 0.384669 0.0131708 0.00658541 0.999978i \(-0.497904\pi\)
0.00658541 + 0.999978i \(0.497904\pi\)
\(854\) 0 0
\(855\) −4.02152 −0.137533
\(856\) 0 0
\(857\) −9.71692 −0.331924 −0.165962 0.986132i \(-0.553073\pi\)
−0.165962 + 0.986132i \(0.553073\pi\)
\(858\) 0 0
\(859\) −24.0428 −0.820328 −0.410164 0.912012i \(-0.634529\pi\)
−0.410164 + 0.912012i \(0.634529\pi\)
\(860\) 0 0
\(861\) −0.394893 −0.0134579
\(862\) 0 0
\(863\) −58.2764 −1.98375 −0.991875 0.127213i \(-0.959397\pi\)
−0.991875 + 0.127213i \(0.959397\pi\)
\(864\) 0 0
\(865\) 1.19949 0.0407839
\(866\) 0 0
\(867\) 0.463711 0.0157484
\(868\) 0 0
\(869\) −8.84666 −0.300102
\(870\) 0 0
\(871\) 9.23329 0.312858
\(872\) 0 0
\(873\) −19.1415 −0.647840
\(874\) 0 0
\(875\) 1.82389 0.0616587
\(876\) 0 0
\(877\) −40.6895 −1.37399 −0.686994 0.726663i \(-0.741070\pi\)
−0.686994 + 0.726663i \(0.741070\pi\)
\(878\) 0 0
\(879\) −0.534156 −0.0180166
\(880\) 0 0
\(881\) −13.8474 −0.466530 −0.233265 0.972413i \(-0.574941\pi\)
−0.233265 + 0.972413i \(0.574941\pi\)
\(882\) 0 0
\(883\) −56.1576 −1.88985 −0.944927 0.327282i \(-0.893867\pi\)
−0.944927 + 0.327282i \(0.893867\pi\)
\(884\) 0 0
\(885\) −0.250601 −0.00842386
\(886\) 0 0
\(887\) −27.9890 −0.939777 −0.469889 0.882726i \(-0.655706\pi\)
−0.469889 + 0.882726i \(0.655706\pi\)
\(888\) 0 0
\(889\) 18.7804 0.629875
\(890\) 0 0
\(891\) 35.0660 1.17475
\(892\) 0 0
\(893\) 81.5688 2.72960
\(894\) 0 0
\(895\) 1.79514 0.0600050
\(896\) 0 0
\(897\) −3.64539 −0.121716
\(898\) 0 0
\(899\) 4.12666 0.137632
\(900\) 0 0
\(901\) 13.0049 0.433257
\(902\) 0 0
\(903\) 0.125979 0.00419233
\(904\) 0 0
\(905\) 2.23891 0.0744239
\(906\) 0 0
\(907\) −6.31795 −0.209784 −0.104892 0.994484i \(-0.533450\pi\)
−0.104892 + 0.994484i \(0.533450\pi\)
\(908\) 0 0
\(909\) −44.8914 −1.48895
\(910\) 0 0
\(911\) 57.1761 1.89433 0.947165 0.320747i \(-0.103934\pi\)
0.947165 + 0.320747i \(0.103934\pi\)
\(912\) 0 0
\(913\) −53.4466 −1.76882
\(914\) 0 0
\(915\) −0.477152 −0.0157741
\(916\) 0 0
\(917\) −8.85120 −0.292292
\(918\) 0 0
\(919\) 12.9388 0.426813 0.213407 0.976963i \(-0.431544\pi\)
0.213407 + 0.976963i \(0.431544\pi\)
\(920\) 0 0
\(921\) −5.13427 −0.169180
\(922\) 0 0
\(923\) −13.2681 −0.436724
\(924\) 0 0
\(925\) 46.1727 1.51815
\(926\) 0 0
\(927\) 40.8405 1.34138
\(928\) 0 0
\(929\) 46.8304 1.53646 0.768228 0.640177i \(-0.221139\pi\)
0.768228 + 0.640177i \(0.221139\pi\)
\(930\) 0 0
\(931\) −7.89068 −0.258607
\(932\) 0 0
\(933\) 2.21538 0.0725284
\(934\) 0 0
\(935\) −0.902425 −0.0295124
\(936\) 0 0
\(937\) −37.1054 −1.21218 −0.606090 0.795396i \(-0.707263\pi\)
−0.606090 + 0.795396i \(0.707263\pi\)
\(938\) 0 0
\(939\) 12.6010 0.411217
\(940\) 0 0
\(941\) −29.8654 −0.973585 −0.486792 0.873518i \(-0.661833\pi\)
−0.486792 + 0.873518i \(0.661833\pi\)
\(942\) 0 0
\(943\) −3.04878 −0.0992820
\(944\) 0 0
\(945\) 0.490912 0.0159694
\(946\) 0 0
\(947\) 34.5751 1.12354 0.561769 0.827294i \(-0.310121\pi\)
0.561769 + 0.827294i \(0.310121\pi\)
\(948\) 0 0
\(949\) 30.6064 0.993526
\(950\) 0 0
\(951\) −0.173274 −0.00561880
\(952\) 0 0
\(953\) −21.7992 −0.706147 −0.353073 0.935596i \(-0.614863\pi\)
−0.353073 + 0.935596i \(0.614863\pi\)
\(954\) 0 0
\(955\) 2.94856 0.0954132
\(956\) 0 0
\(957\) −5.80708 −0.187716
\(958\) 0 0
\(959\) 11.5919 0.374321
\(960\) 0 0
\(961\) −28.3595 −0.914822
\(962\) 0 0
\(963\) 45.9001 1.47911
\(964\) 0 0
\(965\) −3.81134 −0.122691
\(966\) 0 0
\(967\) 36.9088 1.18691 0.593453 0.804868i \(-0.297764\pi\)
0.593453 + 0.804868i \(0.297764\pi\)
\(968\) 0 0
\(969\) −3.65899 −0.117544
\(970\) 0 0
\(971\) 32.7964 1.05249 0.526243 0.850334i \(-0.323600\pi\)
0.526243 + 0.850334i \(0.323600\pi\)
\(972\) 0 0
\(973\) −12.4056 −0.397706
\(974\) 0 0
\(975\) 5.05709 0.161957
\(976\) 0 0
\(977\) 46.5869 1.49045 0.745223 0.666816i \(-0.232343\pi\)
0.745223 + 0.666816i \(0.232343\pi\)
\(978\) 0 0
\(979\) −5.58914 −0.178630
\(980\) 0 0
\(981\) 18.4534 0.589172
\(982\) 0 0
\(983\) −44.6023 −1.42259 −0.711296 0.702892i \(-0.751892\pi\)
−0.711296 + 0.702892i \(0.751892\pi\)
\(984\) 0 0
\(985\) −2.30721 −0.0735137
\(986\) 0 0
\(987\) −4.79354 −0.152580
\(988\) 0 0
\(989\) 0.972626 0.0309277
\(990\) 0 0
\(991\) −4.43880 −0.141003 −0.0705016 0.997512i \(-0.522460\pi\)
−0.0705016 + 0.997512i \(0.522460\pi\)
\(992\) 0 0
\(993\) −3.78304 −0.120051
\(994\) 0 0
\(995\) 0.779867 0.0247235
\(996\) 0 0
\(997\) 42.7786 1.35481 0.677406 0.735609i \(-0.263104\pi\)
0.677406 + 0.735609i \(0.263104\pi\)
\(998\) 0 0
\(999\) 24.9392 0.789040
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 3808.2.a.g.1.5 6
4.3 odd 2 3808.2.a.o.1.2 yes 6
8.3 odd 2 7616.2.a.bv.1.5 6
8.5 even 2 7616.2.a.cd.1.2 6
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
3808.2.a.g.1.5 6 1.1 even 1 trivial
3808.2.a.o.1.2 yes 6 4.3 odd 2
7616.2.a.bv.1.5 6 8.3 odd 2
7616.2.a.cd.1.2 6 8.5 even 2