Properties

Label 3808.2.a.g.1.4
Level $3808$
Weight $2$
Character 3808.1
Self dual yes
Analytic conductor $30.407$
Analytic rank $1$
Dimension $6$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [3808,2,Mod(1,3808)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(3808, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("3808.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 3808 = 2^{5} \cdot 7 \cdot 17 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 3808.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(30.4070330897\)
Analytic rank: \(1\)
Dimension: \(6\)
Coefficient field: 6.6.147697840.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{6} - 2x^{5} - 10x^{4} + 10x^{3} + 18x^{2} - 16x + 3 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 2 \)
Twist minimal: yes
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.4
Root \(0.478948\) of defining polynomial
Character \(\chi\) \(=\) 3808.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-0.521052 q^{3} -3.59354 q^{5} +1.00000 q^{7} -2.72850 q^{9} -1.77740 q^{11} +0.242172 q^{13} +1.87242 q^{15} +1.00000 q^{17} +4.14155 q^{19} -0.521052 q^{21} +7.07110 q^{23} +7.91355 q^{25} +2.98485 q^{27} -0.706946 q^{29} +4.08666 q^{31} +0.926117 q^{33} -3.59354 q^{35} +3.76442 q^{37} -0.126184 q^{39} +0.270103 q^{41} -3.01417 q^{43} +9.80500 q^{45} -2.59974 q^{47} +1.00000 q^{49} -0.521052 q^{51} -2.32540 q^{53} +6.38715 q^{55} -2.15796 q^{57} -10.7135 q^{59} -7.86267 q^{61} -2.72850 q^{63} -0.870255 q^{65} -0.657406 q^{67} -3.68441 q^{69} -7.68555 q^{71} +0.326796 q^{73} -4.12337 q^{75} -1.77740 q^{77} -0.628083 q^{79} +6.63025 q^{81} -10.2569 q^{83} -3.59354 q^{85} +0.368356 q^{87} -0.329813 q^{89} +0.242172 q^{91} -2.12937 q^{93} -14.8828 q^{95} -12.7273 q^{97} +4.84964 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 6 q - 4 q^{3} - 4 q^{5} + 6 q^{7} + 8 q^{9} - 8 q^{11} - 4 q^{13} + 6 q^{17} - 18 q^{19} - 4 q^{21} - 6 q^{23} + 12 q^{25} - 10 q^{27} + 4 q^{29} + 8 q^{31} - 6 q^{33} - 4 q^{35} - 8 q^{37} + 18 q^{39}+ \cdots - 32 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −0.521052 −0.300830 −0.150415 0.988623i \(-0.548061\pi\)
−0.150415 + 0.988623i \(0.548061\pi\)
\(4\) 0 0
\(5\) −3.59354 −1.60708 −0.803541 0.595250i \(-0.797053\pi\)
−0.803541 + 0.595250i \(0.797053\pi\)
\(6\) 0 0
\(7\) 1.00000 0.377964
\(8\) 0 0
\(9\) −2.72850 −0.909502
\(10\) 0 0
\(11\) −1.77740 −0.535905 −0.267953 0.963432i \(-0.586347\pi\)
−0.267953 + 0.963432i \(0.586347\pi\)
\(12\) 0 0
\(13\) 0.242172 0.0671664 0.0335832 0.999436i \(-0.489308\pi\)
0.0335832 + 0.999436i \(0.489308\pi\)
\(14\) 0 0
\(15\) 1.87242 0.483458
\(16\) 0 0
\(17\) 1.00000 0.242536
\(18\) 0 0
\(19\) 4.14155 0.950137 0.475068 0.879949i \(-0.342423\pi\)
0.475068 + 0.879949i \(0.342423\pi\)
\(20\) 0 0
\(21\) −0.521052 −0.113703
\(22\) 0 0
\(23\) 7.07110 1.47443 0.737213 0.675660i \(-0.236141\pi\)
0.737213 + 0.675660i \(0.236141\pi\)
\(24\) 0 0
\(25\) 7.91355 1.58271
\(26\) 0 0
\(27\) 2.98485 0.574435
\(28\) 0 0
\(29\) −0.706946 −0.131277 −0.0656383 0.997843i \(-0.520908\pi\)
−0.0656383 + 0.997843i \(0.520908\pi\)
\(30\) 0 0
\(31\) 4.08666 0.733987 0.366993 0.930224i \(-0.380387\pi\)
0.366993 + 0.930224i \(0.380387\pi\)
\(32\) 0 0
\(33\) 0.926117 0.161216
\(34\) 0 0
\(35\) −3.59354 −0.607420
\(36\) 0 0
\(37\) 3.76442 0.618866 0.309433 0.950921i \(-0.399861\pi\)
0.309433 + 0.950921i \(0.399861\pi\)
\(38\) 0 0
\(39\) −0.126184 −0.0202056
\(40\) 0 0
\(41\) 0.270103 0.0421830 0.0210915 0.999778i \(-0.493286\pi\)
0.0210915 + 0.999778i \(0.493286\pi\)
\(42\) 0 0
\(43\) −3.01417 −0.459657 −0.229829 0.973231i \(-0.573817\pi\)
−0.229829 + 0.973231i \(0.573817\pi\)
\(44\) 0 0
\(45\) 9.80500 1.46164
\(46\) 0 0
\(47\) −2.59974 −0.379211 −0.189605 0.981860i \(-0.560721\pi\)
−0.189605 + 0.981860i \(0.560721\pi\)
\(48\) 0 0
\(49\) 1.00000 0.142857
\(50\) 0 0
\(51\) −0.521052 −0.0729619
\(52\) 0 0
\(53\) −2.32540 −0.319419 −0.159709 0.987164i \(-0.551056\pi\)
−0.159709 + 0.987164i \(0.551056\pi\)
\(54\) 0 0
\(55\) 6.38715 0.861244
\(56\) 0 0
\(57\) −2.15796 −0.285829
\(58\) 0 0
\(59\) −10.7135 −1.39478 −0.697392 0.716690i \(-0.745656\pi\)
−0.697392 + 0.716690i \(0.745656\pi\)
\(60\) 0 0
\(61\) −7.86267 −1.00671 −0.503356 0.864079i \(-0.667901\pi\)
−0.503356 + 0.864079i \(0.667901\pi\)
\(62\) 0 0
\(63\) −2.72850 −0.343759
\(64\) 0 0
\(65\) −0.870255 −0.107942
\(66\) 0 0
\(67\) −0.657406 −0.0803150 −0.0401575 0.999193i \(-0.512786\pi\)
−0.0401575 + 0.999193i \(0.512786\pi\)
\(68\) 0 0
\(69\) −3.68441 −0.443551
\(70\) 0 0
\(71\) −7.68555 −0.912107 −0.456054 0.889952i \(-0.650737\pi\)
−0.456054 + 0.889952i \(0.650737\pi\)
\(72\) 0 0
\(73\) 0.326796 0.0382486 0.0191243 0.999817i \(-0.493912\pi\)
0.0191243 + 0.999817i \(0.493912\pi\)
\(74\) 0 0
\(75\) −4.12337 −0.476126
\(76\) 0 0
\(77\) −1.77740 −0.202553
\(78\) 0 0
\(79\) −0.628083 −0.0706648 −0.0353324 0.999376i \(-0.511249\pi\)
−0.0353324 + 0.999376i \(0.511249\pi\)
\(80\) 0 0
\(81\) 6.63025 0.736695
\(82\) 0 0
\(83\) −10.2569 −1.12585 −0.562923 0.826509i \(-0.690323\pi\)
−0.562923 + 0.826509i \(0.690323\pi\)
\(84\) 0 0
\(85\) −3.59354 −0.389774
\(86\) 0 0
\(87\) 0.368356 0.0394919
\(88\) 0 0
\(89\) −0.329813 −0.0349601 −0.0174800 0.999847i \(-0.505564\pi\)
−0.0174800 + 0.999847i \(0.505564\pi\)
\(90\) 0 0
\(91\) 0.242172 0.0253865
\(92\) 0 0
\(93\) −2.12937 −0.220805
\(94\) 0 0
\(95\) −14.8828 −1.52695
\(96\) 0 0
\(97\) −12.7273 −1.29226 −0.646132 0.763226i \(-0.723615\pi\)
−0.646132 + 0.763226i \(0.723615\pi\)
\(98\) 0 0
\(99\) 4.84964 0.487407
\(100\) 0 0
\(101\) −2.50926 −0.249680 −0.124840 0.992177i \(-0.539842\pi\)
−0.124840 + 0.992177i \(0.539842\pi\)
\(102\) 0 0
\(103\) 10.6270 1.04711 0.523556 0.851991i \(-0.324605\pi\)
0.523556 + 0.851991i \(0.324605\pi\)
\(104\) 0 0
\(105\) 1.87242 0.182730
\(106\) 0 0
\(107\) −9.41312 −0.910001 −0.455000 0.890491i \(-0.650361\pi\)
−0.455000 + 0.890491i \(0.650361\pi\)
\(108\) 0 0
\(109\) 9.67677 0.926867 0.463433 0.886132i \(-0.346617\pi\)
0.463433 + 0.886132i \(0.346617\pi\)
\(110\) 0 0
\(111\) −1.96146 −0.186173
\(112\) 0 0
\(113\) 1.19664 0.112570 0.0562850 0.998415i \(-0.482074\pi\)
0.0562850 + 0.998415i \(0.482074\pi\)
\(114\) 0 0
\(115\) −25.4103 −2.36952
\(116\) 0 0
\(117\) −0.660767 −0.0610879
\(118\) 0 0
\(119\) 1.00000 0.0916698
\(120\) 0 0
\(121\) −7.84086 −0.712805
\(122\) 0 0
\(123\) −0.140738 −0.0126899
\(124\) 0 0
\(125\) −10.4700 −0.936463
\(126\) 0 0
\(127\) −8.67058 −0.769390 −0.384695 0.923044i \(-0.625693\pi\)
−0.384695 + 0.923044i \(0.625693\pi\)
\(128\) 0 0
\(129\) 1.57054 0.138278
\(130\) 0 0
\(131\) −10.9781 −0.959162 −0.479581 0.877498i \(-0.659211\pi\)
−0.479581 + 0.877498i \(0.659211\pi\)
\(132\) 0 0
\(133\) 4.14155 0.359118
\(134\) 0 0
\(135\) −10.7262 −0.923163
\(136\) 0 0
\(137\) 20.9432 1.78930 0.894649 0.446770i \(-0.147426\pi\)
0.894649 + 0.446770i \(0.147426\pi\)
\(138\) 0 0
\(139\) −21.1638 −1.79509 −0.897543 0.440927i \(-0.854650\pi\)
−0.897543 + 0.440927i \(0.854650\pi\)
\(140\) 0 0
\(141\) 1.35460 0.114078
\(142\) 0 0
\(143\) −0.430435 −0.0359948
\(144\) 0 0
\(145\) 2.54044 0.210972
\(146\) 0 0
\(147\) −0.521052 −0.0429757
\(148\) 0 0
\(149\) 14.5850 1.19485 0.597424 0.801925i \(-0.296191\pi\)
0.597424 + 0.801925i \(0.296191\pi\)
\(150\) 0 0
\(151\) 18.1426 1.47642 0.738212 0.674568i \(-0.235670\pi\)
0.738212 + 0.674568i \(0.235670\pi\)
\(152\) 0 0
\(153\) −2.72850 −0.220587
\(154\) 0 0
\(155\) −14.6856 −1.17958
\(156\) 0 0
\(157\) 18.6110 1.48532 0.742658 0.669671i \(-0.233565\pi\)
0.742658 + 0.669671i \(0.233565\pi\)
\(158\) 0 0
\(159\) 1.21166 0.0960906
\(160\) 0 0
\(161\) 7.07110 0.557281
\(162\) 0 0
\(163\) −0.692723 −0.0542582 −0.0271291 0.999632i \(-0.508637\pi\)
−0.0271291 + 0.999632i \(0.508637\pi\)
\(164\) 0 0
\(165\) −3.32804 −0.259088
\(166\) 0 0
\(167\) 5.43251 0.420380 0.210190 0.977661i \(-0.432592\pi\)
0.210190 + 0.977661i \(0.432592\pi\)
\(168\) 0 0
\(169\) −12.9414 −0.995489
\(170\) 0 0
\(171\) −11.3002 −0.864151
\(172\) 0 0
\(173\) −6.64724 −0.505380 −0.252690 0.967547i \(-0.581315\pi\)
−0.252690 + 0.967547i \(0.581315\pi\)
\(174\) 0 0
\(175\) 7.91355 0.598208
\(176\) 0 0
\(177\) 5.58231 0.419592
\(178\) 0 0
\(179\) −23.7425 −1.77460 −0.887298 0.461196i \(-0.847420\pi\)
−0.887298 + 0.461196i \(0.847420\pi\)
\(180\) 0 0
\(181\) −0.807569 −0.0600261 −0.0300131 0.999550i \(-0.509555\pi\)
−0.0300131 + 0.999550i \(0.509555\pi\)
\(182\) 0 0
\(183\) 4.09686 0.302849
\(184\) 0 0
\(185\) −13.5276 −0.994568
\(186\) 0 0
\(187\) −1.77740 −0.129976
\(188\) 0 0
\(189\) 2.98485 0.217116
\(190\) 0 0
\(191\) 1.49827 0.108411 0.0542053 0.998530i \(-0.482737\pi\)
0.0542053 + 0.998530i \(0.482737\pi\)
\(192\) 0 0
\(193\) 16.8296 1.21142 0.605710 0.795686i \(-0.292889\pi\)
0.605710 + 0.795686i \(0.292889\pi\)
\(194\) 0 0
\(195\) 0.453448 0.0324721
\(196\) 0 0
\(197\) −14.6500 −1.04377 −0.521886 0.853015i \(-0.674771\pi\)
−0.521886 + 0.853015i \(0.674771\pi\)
\(198\) 0 0
\(199\) 2.62826 0.186313 0.0931563 0.995651i \(-0.470304\pi\)
0.0931563 + 0.995651i \(0.470304\pi\)
\(200\) 0 0
\(201\) 0.342543 0.0241611
\(202\) 0 0
\(203\) −0.706946 −0.0496179
\(204\) 0 0
\(205\) −0.970626 −0.0677915
\(206\) 0 0
\(207\) −19.2935 −1.34099
\(208\) 0 0
\(209\) −7.36118 −0.509183
\(210\) 0 0
\(211\) 1.86285 0.128244 0.0641219 0.997942i \(-0.479575\pi\)
0.0641219 + 0.997942i \(0.479575\pi\)
\(212\) 0 0
\(213\) 4.00457 0.274389
\(214\) 0 0
\(215\) 10.8316 0.738706
\(216\) 0 0
\(217\) 4.08666 0.277421
\(218\) 0 0
\(219\) −0.170278 −0.0115063
\(220\) 0 0
\(221\) 0.242172 0.0162902
\(222\) 0 0
\(223\) −19.8238 −1.32750 −0.663749 0.747955i \(-0.731036\pi\)
−0.663749 + 0.747955i \(0.731036\pi\)
\(224\) 0 0
\(225\) −21.5922 −1.43948
\(226\) 0 0
\(227\) 4.40949 0.292668 0.146334 0.989235i \(-0.453253\pi\)
0.146334 + 0.989235i \(0.453253\pi\)
\(228\) 0 0
\(229\) −0.133049 −0.00879212 −0.00439606 0.999990i \(-0.501399\pi\)
−0.00439606 + 0.999990i \(0.501399\pi\)
\(230\) 0 0
\(231\) 0.926117 0.0609340
\(232\) 0 0
\(233\) 15.9579 1.04543 0.522717 0.852506i \(-0.324918\pi\)
0.522717 + 0.852506i \(0.324918\pi\)
\(234\) 0 0
\(235\) 9.34226 0.609422
\(236\) 0 0
\(237\) 0.327264 0.0212581
\(238\) 0 0
\(239\) −20.3435 −1.31591 −0.657954 0.753058i \(-0.728578\pi\)
−0.657954 + 0.753058i \(0.728578\pi\)
\(240\) 0 0
\(241\) −8.65865 −0.557753 −0.278876 0.960327i \(-0.589962\pi\)
−0.278876 + 0.960327i \(0.589962\pi\)
\(242\) 0 0
\(243\) −12.4093 −0.796054
\(244\) 0 0
\(245\) −3.59354 −0.229583
\(246\) 0 0
\(247\) 1.00297 0.0638172
\(248\) 0 0
\(249\) 5.34440 0.338688
\(250\) 0 0
\(251\) −13.2464 −0.836104 −0.418052 0.908423i \(-0.637287\pi\)
−0.418052 + 0.908423i \(0.637287\pi\)
\(252\) 0 0
\(253\) −12.5682 −0.790153
\(254\) 0 0
\(255\) 1.87242 0.117256
\(256\) 0 0
\(257\) −28.6363 −1.78628 −0.893141 0.449777i \(-0.851504\pi\)
−0.893141 + 0.449777i \(0.851504\pi\)
\(258\) 0 0
\(259\) 3.76442 0.233909
\(260\) 0 0
\(261\) 1.92891 0.119396
\(262\) 0 0
\(263\) 8.76904 0.540722 0.270361 0.962759i \(-0.412857\pi\)
0.270361 + 0.962759i \(0.412857\pi\)
\(264\) 0 0
\(265\) 8.35644 0.513332
\(266\) 0 0
\(267\) 0.171850 0.0105170
\(268\) 0 0
\(269\) 4.50063 0.274408 0.137204 0.990543i \(-0.456188\pi\)
0.137204 + 0.990543i \(0.456188\pi\)
\(270\) 0 0
\(271\) −31.7715 −1.92998 −0.964990 0.262286i \(-0.915524\pi\)
−0.964990 + 0.262286i \(0.915524\pi\)
\(272\) 0 0
\(273\) −0.126184 −0.00763701
\(274\) 0 0
\(275\) −14.0655 −0.848183
\(276\) 0 0
\(277\) 13.5501 0.814146 0.407073 0.913396i \(-0.366549\pi\)
0.407073 + 0.913396i \(0.366549\pi\)
\(278\) 0 0
\(279\) −11.1505 −0.667562
\(280\) 0 0
\(281\) −26.1800 −1.56177 −0.780885 0.624675i \(-0.785231\pi\)
−0.780885 + 0.624675i \(0.785231\pi\)
\(282\) 0 0
\(283\) 29.6230 1.76090 0.880451 0.474137i \(-0.157240\pi\)
0.880451 + 0.474137i \(0.157240\pi\)
\(284\) 0 0
\(285\) 7.75473 0.459351
\(286\) 0 0
\(287\) 0.270103 0.0159437
\(288\) 0 0
\(289\) 1.00000 0.0588235
\(290\) 0 0
\(291\) 6.63160 0.388751
\(292\) 0 0
\(293\) −11.3031 −0.660333 −0.330166 0.943923i \(-0.607105\pi\)
−0.330166 + 0.943923i \(0.607105\pi\)
\(294\) 0 0
\(295\) 38.4995 2.24153
\(296\) 0 0
\(297\) −5.30526 −0.307843
\(298\) 0 0
\(299\) 1.71242 0.0990318
\(300\) 0 0
\(301\) −3.01417 −0.173734
\(302\) 0 0
\(303\) 1.30745 0.0751113
\(304\) 0 0
\(305\) 28.2548 1.61787
\(306\) 0 0
\(307\) 0.132000 0.00753363 0.00376682 0.999993i \(-0.498801\pi\)
0.00376682 + 0.999993i \(0.498801\pi\)
\(308\) 0 0
\(309\) −5.53724 −0.315003
\(310\) 0 0
\(311\) 15.5261 0.880405 0.440203 0.897898i \(-0.354907\pi\)
0.440203 + 0.897898i \(0.354907\pi\)
\(312\) 0 0
\(313\) −5.24435 −0.296428 −0.148214 0.988955i \(-0.547353\pi\)
−0.148214 + 0.988955i \(0.547353\pi\)
\(314\) 0 0
\(315\) 9.80500 0.552449
\(316\) 0 0
\(317\) −4.82970 −0.271263 −0.135631 0.990759i \(-0.543306\pi\)
−0.135631 + 0.990759i \(0.543306\pi\)
\(318\) 0 0
\(319\) 1.25652 0.0703519
\(320\) 0 0
\(321\) 4.90473 0.273755
\(322\) 0 0
\(323\) 4.14155 0.230442
\(324\) 0 0
\(325\) 1.91644 0.106305
\(326\) 0 0
\(327\) −5.04210 −0.278829
\(328\) 0 0
\(329\) −2.59974 −0.143328
\(330\) 0 0
\(331\) 13.9415 0.766295 0.383148 0.923687i \(-0.374840\pi\)
0.383148 + 0.923687i \(0.374840\pi\)
\(332\) 0 0
\(333\) −10.2712 −0.562860
\(334\) 0 0
\(335\) 2.36242 0.129073
\(336\) 0 0
\(337\) 7.73051 0.421107 0.210554 0.977582i \(-0.432473\pi\)
0.210554 + 0.977582i \(0.432473\pi\)
\(338\) 0 0
\(339\) −0.623509 −0.0338644
\(340\) 0 0
\(341\) −7.26363 −0.393347
\(342\) 0 0
\(343\) 1.00000 0.0539949
\(344\) 0 0
\(345\) 13.2401 0.712822
\(346\) 0 0
\(347\) −11.1765 −0.599984 −0.299992 0.953942i \(-0.596984\pi\)
−0.299992 + 0.953942i \(0.596984\pi\)
\(348\) 0 0
\(349\) −16.2102 −0.867711 −0.433855 0.900983i \(-0.642847\pi\)
−0.433855 + 0.900983i \(0.642847\pi\)
\(350\) 0 0
\(351\) 0.722846 0.0385827
\(352\) 0 0
\(353\) −24.0699 −1.28111 −0.640556 0.767911i \(-0.721296\pi\)
−0.640556 + 0.767911i \(0.721296\pi\)
\(354\) 0 0
\(355\) 27.6184 1.46583
\(356\) 0 0
\(357\) −0.521052 −0.0275770
\(358\) 0 0
\(359\) −20.0758 −1.05956 −0.529780 0.848135i \(-0.677726\pi\)
−0.529780 + 0.848135i \(0.677726\pi\)
\(360\) 0 0
\(361\) −1.84757 −0.0972406
\(362\) 0 0
\(363\) 4.08550 0.214433
\(364\) 0 0
\(365\) −1.17436 −0.0614686
\(366\) 0 0
\(367\) −21.9057 −1.14347 −0.571733 0.820440i \(-0.693729\pi\)
−0.571733 + 0.820440i \(0.693729\pi\)
\(368\) 0 0
\(369\) −0.736977 −0.0383655
\(370\) 0 0
\(371\) −2.32540 −0.120729
\(372\) 0 0
\(373\) 5.14722 0.266513 0.133257 0.991082i \(-0.457457\pi\)
0.133257 + 0.991082i \(0.457457\pi\)
\(374\) 0 0
\(375\) 5.45540 0.281716
\(376\) 0 0
\(377\) −0.171202 −0.00881737
\(378\) 0 0
\(379\) −23.0656 −1.18480 −0.592400 0.805644i \(-0.701819\pi\)
−0.592400 + 0.805644i \(0.701819\pi\)
\(380\) 0 0
\(381\) 4.51783 0.231455
\(382\) 0 0
\(383\) 16.7575 0.856270 0.428135 0.903715i \(-0.359171\pi\)
0.428135 + 0.903715i \(0.359171\pi\)
\(384\) 0 0
\(385\) 6.38715 0.325519
\(386\) 0 0
\(387\) 8.22419 0.418059
\(388\) 0 0
\(389\) 21.8542 1.10805 0.554027 0.832499i \(-0.313090\pi\)
0.554027 + 0.832499i \(0.313090\pi\)
\(390\) 0 0
\(391\) 7.07110 0.357601
\(392\) 0 0
\(393\) 5.72017 0.288544
\(394\) 0 0
\(395\) 2.25704 0.113564
\(396\) 0 0
\(397\) 5.50933 0.276506 0.138253 0.990397i \(-0.455851\pi\)
0.138253 + 0.990397i \(0.455851\pi\)
\(398\) 0 0
\(399\) −2.15796 −0.108033
\(400\) 0 0
\(401\) 11.9283 0.595672 0.297836 0.954617i \(-0.403735\pi\)
0.297836 + 0.954617i \(0.403735\pi\)
\(402\) 0 0
\(403\) 0.989675 0.0492992
\(404\) 0 0
\(405\) −23.8261 −1.18393
\(406\) 0 0
\(407\) −6.69086 −0.331654
\(408\) 0 0
\(409\) −34.2245 −1.69229 −0.846145 0.532953i \(-0.821082\pi\)
−0.846145 + 0.532953i \(0.821082\pi\)
\(410\) 0 0
\(411\) −10.9125 −0.538274
\(412\) 0 0
\(413\) −10.7135 −0.527179
\(414\) 0 0
\(415\) 36.8588 1.80933
\(416\) 0 0
\(417\) 11.0274 0.540015
\(418\) 0 0
\(419\) 16.1257 0.787793 0.393897 0.919155i \(-0.371127\pi\)
0.393897 + 0.919155i \(0.371127\pi\)
\(420\) 0 0
\(421\) −5.97331 −0.291121 −0.145561 0.989349i \(-0.546499\pi\)
−0.145561 + 0.989349i \(0.546499\pi\)
\(422\) 0 0
\(423\) 7.09339 0.344893
\(424\) 0 0
\(425\) 7.91355 0.383864
\(426\) 0 0
\(427\) −7.86267 −0.380501
\(428\) 0 0
\(429\) 0.224279 0.0108283
\(430\) 0 0
\(431\) 2.34394 0.112903 0.0564517 0.998405i \(-0.482021\pi\)
0.0564517 + 0.998405i \(0.482021\pi\)
\(432\) 0 0
\(433\) 9.69611 0.465965 0.232983 0.972481i \(-0.425151\pi\)
0.232983 + 0.972481i \(0.425151\pi\)
\(434\) 0 0
\(435\) −1.32370 −0.0634667
\(436\) 0 0
\(437\) 29.2853 1.40091
\(438\) 0 0
\(439\) 24.2470 1.15725 0.578623 0.815595i \(-0.303590\pi\)
0.578623 + 0.815595i \(0.303590\pi\)
\(440\) 0 0
\(441\) −2.72850 −0.129929
\(442\) 0 0
\(443\) −24.9603 −1.18590 −0.592949 0.805240i \(-0.702037\pi\)
−0.592949 + 0.805240i \(0.702037\pi\)
\(444\) 0 0
\(445\) 1.18520 0.0561837
\(446\) 0 0
\(447\) −7.59954 −0.359446
\(448\) 0 0
\(449\) 29.2044 1.37824 0.689121 0.724646i \(-0.257997\pi\)
0.689121 + 0.724646i \(0.257997\pi\)
\(450\) 0 0
\(451\) −0.480080 −0.0226061
\(452\) 0 0
\(453\) −9.45325 −0.444152
\(454\) 0 0
\(455\) −0.870255 −0.0407982
\(456\) 0 0
\(457\) −19.4825 −0.911355 −0.455678 0.890145i \(-0.650603\pi\)
−0.455678 + 0.890145i \(0.650603\pi\)
\(458\) 0 0
\(459\) 2.98485 0.139321
\(460\) 0 0
\(461\) −9.11030 −0.424309 −0.212155 0.977236i \(-0.568048\pi\)
−0.212155 + 0.977236i \(0.568048\pi\)
\(462\) 0 0
\(463\) −14.5969 −0.678376 −0.339188 0.940719i \(-0.610152\pi\)
−0.339188 + 0.940719i \(0.610152\pi\)
\(464\) 0 0
\(465\) 7.65197 0.354851
\(466\) 0 0
\(467\) −29.5801 −1.36880 −0.684401 0.729106i \(-0.739936\pi\)
−0.684401 + 0.729106i \(0.739936\pi\)
\(468\) 0 0
\(469\) −0.657406 −0.0303562
\(470\) 0 0
\(471\) −9.69728 −0.446827
\(472\) 0 0
\(473\) 5.35738 0.246333
\(474\) 0 0
\(475\) 32.7744 1.50379
\(476\) 0 0
\(477\) 6.34487 0.290512
\(478\) 0 0
\(479\) −13.4317 −0.613709 −0.306855 0.951756i \(-0.599277\pi\)
−0.306855 + 0.951756i \(0.599277\pi\)
\(480\) 0 0
\(481\) 0.911635 0.0415670
\(482\) 0 0
\(483\) −3.68441 −0.167647
\(484\) 0 0
\(485\) 45.7362 2.07677
\(486\) 0 0
\(487\) 40.5453 1.83728 0.918642 0.395092i \(-0.129287\pi\)
0.918642 + 0.395092i \(0.129287\pi\)
\(488\) 0 0
\(489\) 0.360945 0.0163225
\(490\) 0 0
\(491\) 34.2949 1.54771 0.773854 0.633364i \(-0.218326\pi\)
0.773854 + 0.633364i \(0.218326\pi\)
\(492\) 0 0
\(493\) −0.706946 −0.0318393
\(494\) 0 0
\(495\) −17.4274 −0.783302
\(496\) 0 0
\(497\) −7.68555 −0.344744
\(498\) 0 0
\(499\) 18.6425 0.834553 0.417276 0.908780i \(-0.362985\pi\)
0.417276 + 0.908780i \(0.362985\pi\)
\(500\) 0 0
\(501\) −2.83062 −0.126463
\(502\) 0 0
\(503\) −2.38529 −0.106355 −0.0531775 0.998585i \(-0.516935\pi\)
−0.0531775 + 0.998585i \(0.516935\pi\)
\(504\) 0 0
\(505\) 9.01713 0.401257
\(506\) 0 0
\(507\) 6.74312 0.299472
\(508\) 0 0
\(509\) −18.9969 −0.842021 −0.421011 0.907056i \(-0.638325\pi\)
−0.421011 + 0.907056i \(0.638325\pi\)
\(510\) 0 0
\(511\) 0.326796 0.0144566
\(512\) 0 0
\(513\) 12.3619 0.545791
\(514\) 0 0
\(515\) −38.1887 −1.68280
\(516\) 0 0
\(517\) 4.62076 0.203221
\(518\) 0 0
\(519\) 3.46356 0.152033
\(520\) 0 0
\(521\) −41.8609 −1.83396 −0.916980 0.398934i \(-0.869380\pi\)
−0.916980 + 0.398934i \(0.869380\pi\)
\(522\) 0 0
\(523\) −18.2454 −0.797817 −0.398909 0.916991i \(-0.630611\pi\)
−0.398909 + 0.916991i \(0.630611\pi\)
\(524\) 0 0
\(525\) −4.12337 −0.179959
\(526\) 0 0
\(527\) 4.08666 0.178018
\(528\) 0 0
\(529\) 27.0004 1.17393
\(530\) 0 0
\(531\) 29.2319 1.26856
\(532\) 0 0
\(533\) 0.0654113 0.00283328
\(534\) 0 0
\(535\) 33.8265 1.46245
\(536\) 0 0
\(537\) 12.3711 0.533851
\(538\) 0 0
\(539\) −1.77740 −0.0765579
\(540\) 0 0
\(541\) −1.17618 −0.0505680 −0.0252840 0.999680i \(-0.508049\pi\)
−0.0252840 + 0.999680i \(0.508049\pi\)
\(542\) 0 0
\(543\) 0.420786 0.0180576
\(544\) 0 0
\(545\) −34.7739 −1.48955
\(546\) 0 0
\(547\) 33.9132 1.45002 0.725011 0.688737i \(-0.241835\pi\)
0.725011 + 0.688737i \(0.241835\pi\)
\(548\) 0 0
\(549\) 21.4533 0.915606
\(550\) 0 0
\(551\) −2.92785 −0.124731
\(552\) 0 0
\(553\) −0.628083 −0.0267088
\(554\) 0 0
\(555\) 7.04858 0.299196
\(556\) 0 0
\(557\) 4.32264 0.183156 0.0915780 0.995798i \(-0.470809\pi\)
0.0915780 + 0.995798i \(0.470809\pi\)
\(558\) 0 0
\(559\) −0.729948 −0.0308735
\(560\) 0 0
\(561\) 0.926117 0.0391007
\(562\) 0 0
\(563\) −1.53402 −0.0646514 −0.0323257 0.999477i \(-0.510291\pi\)
−0.0323257 + 0.999477i \(0.510291\pi\)
\(564\) 0 0
\(565\) −4.30016 −0.180909
\(566\) 0 0
\(567\) 6.63025 0.278444
\(568\) 0 0
\(569\) 25.6759 1.07639 0.538194 0.842821i \(-0.319107\pi\)
0.538194 + 0.842821i \(0.319107\pi\)
\(570\) 0 0
\(571\) 9.20825 0.385353 0.192677 0.981262i \(-0.438283\pi\)
0.192677 + 0.981262i \(0.438283\pi\)
\(572\) 0 0
\(573\) −0.780674 −0.0326131
\(574\) 0 0
\(575\) 55.9575 2.33359
\(576\) 0 0
\(577\) −28.6499 −1.19271 −0.596356 0.802720i \(-0.703385\pi\)
−0.596356 + 0.802720i \(0.703385\pi\)
\(578\) 0 0
\(579\) −8.76909 −0.364431
\(580\) 0 0
\(581\) −10.2569 −0.425530
\(582\) 0 0
\(583\) 4.13317 0.171178
\(584\) 0 0
\(585\) 2.37449 0.0981732
\(586\) 0 0
\(587\) −19.2263 −0.793553 −0.396777 0.917915i \(-0.629871\pi\)
−0.396777 + 0.917915i \(0.629871\pi\)
\(588\) 0 0
\(589\) 16.9251 0.697387
\(590\) 0 0
\(591\) 7.63343 0.313997
\(592\) 0 0
\(593\) 3.01321 0.123738 0.0618689 0.998084i \(-0.480294\pi\)
0.0618689 + 0.998084i \(0.480294\pi\)
\(594\) 0 0
\(595\) −3.59354 −0.147321
\(596\) 0 0
\(597\) −1.36946 −0.0560483
\(598\) 0 0
\(599\) −31.9070 −1.30368 −0.651842 0.758355i \(-0.726003\pi\)
−0.651842 + 0.758355i \(0.726003\pi\)
\(600\) 0 0
\(601\) −3.85064 −0.157071 −0.0785354 0.996911i \(-0.525024\pi\)
−0.0785354 + 0.996911i \(0.525024\pi\)
\(602\) 0 0
\(603\) 1.79374 0.0730466
\(604\) 0 0
\(605\) 28.1765 1.14554
\(606\) 0 0
\(607\) 12.4976 0.507262 0.253631 0.967301i \(-0.418375\pi\)
0.253631 + 0.967301i \(0.418375\pi\)
\(608\) 0 0
\(609\) 0.368356 0.0149265
\(610\) 0 0
\(611\) −0.629583 −0.0254702
\(612\) 0 0
\(613\) 34.3960 1.38924 0.694621 0.719376i \(-0.255572\pi\)
0.694621 + 0.719376i \(0.255572\pi\)
\(614\) 0 0
\(615\) 0.505747 0.0203937
\(616\) 0 0
\(617\) −3.87366 −0.155948 −0.0779739 0.996955i \(-0.524845\pi\)
−0.0779739 + 0.996955i \(0.524845\pi\)
\(618\) 0 0
\(619\) −10.4694 −0.420801 −0.210400 0.977615i \(-0.567477\pi\)
−0.210400 + 0.977615i \(0.567477\pi\)
\(620\) 0 0
\(621\) 21.1062 0.846961
\(622\) 0 0
\(623\) −0.329813 −0.0132137
\(624\) 0 0
\(625\) −1.94347 −0.0777388
\(626\) 0 0
\(627\) 3.83556 0.153177
\(628\) 0 0
\(629\) 3.76442 0.150097
\(630\) 0 0
\(631\) 2.23285 0.0888884 0.0444442 0.999012i \(-0.485848\pi\)
0.0444442 + 0.999012i \(0.485848\pi\)
\(632\) 0 0
\(633\) −0.970641 −0.0385795
\(634\) 0 0
\(635\) 31.1581 1.23647
\(636\) 0 0
\(637\) 0.242172 0.00959519
\(638\) 0 0
\(639\) 20.9701 0.829563
\(640\) 0 0
\(641\) 3.17089 0.125243 0.0626213 0.998037i \(-0.480054\pi\)
0.0626213 + 0.998037i \(0.480054\pi\)
\(642\) 0 0
\(643\) −28.5119 −1.12440 −0.562200 0.827001i \(-0.690045\pi\)
−0.562200 + 0.827001i \(0.690045\pi\)
\(644\) 0 0
\(645\) −5.64381 −0.222225
\(646\) 0 0
\(647\) −46.3718 −1.82306 −0.911531 0.411231i \(-0.865099\pi\)
−0.911531 + 0.411231i \(0.865099\pi\)
\(648\) 0 0
\(649\) 19.0422 0.747472
\(650\) 0 0
\(651\) −2.12937 −0.0834564
\(652\) 0 0
\(653\) −31.2361 −1.22236 −0.611181 0.791491i \(-0.709305\pi\)
−0.611181 + 0.791491i \(0.709305\pi\)
\(654\) 0 0
\(655\) 39.4503 1.54145
\(656\) 0 0
\(657\) −0.891664 −0.0347871
\(658\) 0 0
\(659\) −40.2223 −1.56684 −0.783420 0.621493i \(-0.786527\pi\)
−0.783420 + 0.621493i \(0.786527\pi\)
\(660\) 0 0
\(661\) −32.2903 −1.25595 −0.627973 0.778235i \(-0.716115\pi\)
−0.627973 + 0.778235i \(0.716115\pi\)
\(662\) 0 0
\(663\) −0.126184 −0.00490059
\(664\) 0 0
\(665\) −14.8828 −0.577132
\(666\) 0 0
\(667\) −4.99889 −0.193558
\(668\) 0 0
\(669\) 10.3292 0.399351
\(670\) 0 0
\(671\) 13.9751 0.539502
\(672\) 0 0
\(673\) 20.5674 0.792816 0.396408 0.918074i \(-0.370256\pi\)
0.396408 + 0.918074i \(0.370256\pi\)
\(674\) 0 0
\(675\) 23.6208 0.909163
\(676\) 0 0
\(677\) −8.63622 −0.331917 −0.165958 0.986133i \(-0.553072\pi\)
−0.165958 + 0.986133i \(0.553072\pi\)
\(678\) 0 0
\(679\) −12.7273 −0.488430
\(680\) 0 0
\(681\) −2.29757 −0.0880432
\(682\) 0 0
\(683\) −36.8513 −1.41008 −0.705038 0.709169i \(-0.749070\pi\)
−0.705038 + 0.709169i \(0.749070\pi\)
\(684\) 0 0
\(685\) −75.2603 −2.87555
\(686\) 0 0
\(687\) 0.0693254 0.00264493
\(688\) 0 0
\(689\) −0.563147 −0.0214542
\(690\) 0 0
\(691\) 39.1003 1.48745 0.743723 0.668488i \(-0.233058\pi\)
0.743723 + 0.668488i \(0.233058\pi\)
\(692\) 0 0
\(693\) 4.84964 0.184222
\(694\) 0 0
\(695\) 76.0529 2.88485
\(696\) 0 0
\(697\) 0.270103 0.0102309
\(698\) 0 0
\(699\) −8.31488 −0.314498
\(700\) 0 0
\(701\) 24.0707 0.909139 0.454570 0.890711i \(-0.349793\pi\)
0.454570 + 0.890711i \(0.349793\pi\)
\(702\) 0 0
\(703\) 15.5905 0.588007
\(704\) 0 0
\(705\) −4.86781 −0.183332
\(706\) 0 0
\(707\) −2.50926 −0.0943704
\(708\) 0 0
\(709\) 19.0724 0.716280 0.358140 0.933668i \(-0.383411\pi\)
0.358140 + 0.933668i \(0.383411\pi\)
\(710\) 0 0
\(711\) 1.71373 0.0642698
\(712\) 0 0
\(713\) 28.8972 1.08221
\(714\) 0 0
\(715\) 1.54679 0.0578466
\(716\) 0 0
\(717\) 10.6000 0.395864
\(718\) 0 0
\(719\) −13.3961 −0.499590 −0.249795 0.968299i \(-0.580363\pi\)
−0.249795 + 0.968299i \(0.580363\pi\)
\(720\) 0 0
\(721\) 10.6270 0.395771
\(722\) 0 0
\(723\) 4.51161 0.167788
\(724\) 0 0
\(725\) −5.59446 −0.207773
\(726\) 0 0
\(727\) −16.1554 −0.599172 −0.299586 0.954069i \(-0.596849\pi\)
−0.299586 + 0.954069i \(0.596849\pi\)
\(728\) 0 0
\(729\) −13.4249 −0.497218
\(730\) 0 0
\(731\) −3.01417 −0.111483
\(732\) 0 0
\(733\) 14.5144 0.536100 0.268050 0.963405i \(-0.413621\pi\)
0.268050 + 0.963405i \(0.413621\pi\)
\(734\) 0 0
\(735\) 1.87242 0.0690654
\(736\) 0 0
\(737\) 1.16847 0.0430412
\(738\) 0 0
\(739\) −41.9965 −1.54486 −0.772432 0.635097i \(-0.780960\pi\)
−0.772432 + 0.635097i \(0.780960\pi\)
\(740\) 0 0
\(741\) −0.522598 −0.0191981
\(742\) 0 0
\(743\) 5.81233 0.213234 0.106617 0.994300i \(-0.465998\pi\)
0.106617 + 0.994300i \(0.465998\pi\)
\(744\) 0 0
\(745\) −52.4118 −1.92022
\(746\) 0 0
\(747\) 27.9861 1.02396
\(748\) 0 0
\(749\) −9.41312 −0.343948
\(750\) 0 0
\(751\) −35.0156 −1.27774 −0.638869 0.769315i \(-0.720597\pi\)
−0.638869 + 0.769315i \(0.720597\pi\)
\(752\) 0 0
\(753\) 6.90206 0.251525
\(754\) 0 0
\(755\) −65.1963 −2.37273
\(756\) 0 0
\(757\) −33.6148 −1.22175 −0.610875 0.791727i \(-0.709182\pi\)
−0.610875 + 0.791727i \(0.709182\pi\)
\(758\) 0 0
\(759\) 6.54866 0.237701
\(760\) 0 0
\(761\) 32.5823 1.18111 0.590554 0.806998i \(-0.298909\pi\)
0.590554 + 0.806998i \(0.298909\pi\)
\(762\) 0 0
\(763\) 9.67677 0.350323
\(764\) 0 0
\(765\) 9.80500 0.354500
\(766\) 0 0
\(767\) −2.59452 −0.0936825
\(768\) 0 0
\(769\) 14.2206 0.512807 0.256404 0.966570i \(-0.417462\pi\)
0.256404 + 0.966570i \(0.417462\pi\)
\(770\) 0 0
\(771\) 14.9210 0.537367
\(772\) 0 0
\(773\) 17.5552 0.631417 0.315708 0.948856i \(-0.397758\pi\)
0.315708 + 0.948856i \(0.397758\pi\)
\(774\) 0 0
\(775\) 32.3400 1.16169
\(776\) 0 0
\(777\) −1.96146 −0.0703669
\(778\) 0 0
\(779\) 1.11864 0.0400796
\(780\) 0 0
\(781\) 13.6603 0.488803
\(782\) 0 0
\(783\) −2.11013 −0.0754098
\(784\) 0 0
\(785\) −66.8793 −2.38702
\(786\) 0 0
\(787\) −42.1505 −1.50250 −0.751251 0.660017i \(-0.770549\pi\)
−0.751251 + 0.660017i \(0.770549\pi\)
\(788\) 0 0
\(789\) −4.56913 −0.162665
\(790\) 0 0
\(791\) 1.19664 0.0425474
\(792\) 0 0
\(793\) −1.90412 −0.0676172
\(794\) 0 0
\(795\) −4.35414 −0.154425
\(796\) 0 0
\(797\) 25.4660 0.902053 0.451027 0.892510i \(-0.351058\pi\)
0.451027 + 0.892510i \(0.351058\pi\)
\(798\) 0 0
\(799\) −2.59974 −0.0919721
\(800\) 0 0
\(801\) 0.899896 0.0317963
\(802\) 0 0
\(803\) −0.580846 −0.0204976
\(804\) 0 0
\(805\) −25.4103 −0.895595
\(806\) 0 0
\(807\) −2.34506 −0.0825502
\(808\) 0 0
\(809\) −14.8300 −0.521395 −0.260698 0.965421i \(-0.583953\pi\)
−0.260698 + 0.965421i \(0.583953\pi\)
\(810\) 0 0
\(811\) 17.1020 0.600532 0.300266 0.953855i \(-0.402925\pi\)
0.300266 + 0.953855i \(0.402925\pi\)
\(812\) 0 0
\(813\) 16.5546 0.580595
\(814\) 0 0
\(815\) 2.48933 0.0871974
\(816\) 0 0
\(817\) −12.4833 −0.436737
\(818\) 0 0
\(819\) −0.660767 −0.0230891
\(820\) 0 0
\(821\) 20.1654 0.703777 0.351888 0.936042i \(-0.385540\pi\)
0.351888 + 0.936042i \(0.385540\pi\)
\(822\) 0 0
\(823\) 0.105743 0.00368595 0.00184298 0.999998i \(-0.499413\pi\)
0.00184298 + 0.999998i \(0.499413\pi\)
\(824\) 0 0
\(825\) 7.32887 0.255159
\(826\) 0 0
\(827\) −35.5296 −1.23549 −0.617743 0.786380i \(-0.711953\pi\)
−0.617743 + 0.786380i \(0.711953\pi\)
\(828\) 0 0
\(829\) −43.2001 −1.50040 −0.750201 0.661210i \(-0.770043\pi\)
−0.750201 + 0.661210i \(0.770043\pi\)
\(830\) 0 0
\(831\) −7.06031 −0.244919
\(832\) 0 0
\(833\) 1.00000 0.0346479
\(834\) 0 0
\(835\) −19.5220 −0.675585
\(836\) 0 0
\(837\) 12.1981 0.421627
\(838\) 0 0
\(839\) 19.8052 0.683752 0.341876 0.939745i \(-0.388938\pi\)
0.341876 + 0.939745i \(0.388938\pi\)
\(840\) 0 0
\(841\) −28.5002 −0.982766
\(842\) 0 0
\(843\) 13.6412 0.469826
\(844\) 0 0
\(845\) 46.5053 1.59983
\(846\) 0 0
\(847\) −7.84086 −0.269415
\(848\) 0 0
\(849\) −15.4351 −0.529732
\(850\) 0 0
\(851\) 26.6186 0.912472
\(852\) 0 0
\(853\) 4.18275 0.143215 0.0716074 0.997433i \(-0.477187\pi\)
0.0716074 + 0.997433i \(0.477187\pi\)
\(854\) 0 0
\(855\) 40.6079 1.38876
\(856\) 0 0
\(857\) −41.2979 −1.41071 −0.705355 0.708854i \(-0.749212\pi\)
−0.705355 + 0.708854i \(0.749212\pi\)
\(858\) 0 0
\(859\) 7.12069 0.242955 0.121477 0.992594i \(-0.461237\pi\)
0.121477 + 0.992594i \(0.461237\pi\)
\(860\) 0 0
\(861\) −0.140738 −0.00479633
\(862\) 0 0
\(863\) 13.1066 0.446154 0.223077 0.974801i \(-0.428390\pi\)
0.223077 + 0.974801i \(0.428390\pi\)
\(864\) 0 0
\(865\) 23.8871 0.812187
\(866\) 0 0
\(867\) −0.521052 −0.0176959
\(868\) 0 0
\(869\) 1.11635 0.0378697
\(870\) 0 0
\(871\) −0.159205 −0.00539447
\(872\) 0 0
\(873\) 34.7266 1.17532
\(874\) 0 0
\(875\) −10.4700 −0.353950
\(876\) 0 0
\(877\) −19.8172 −0.669180 −0.334590 0.942364i \(-0.608598\pi\)
−0.334590 + 0.942364i \(0.608598\pi\)
\(878\) 0 0
\(879\) 5.88949 0.198648
\(880\) 0 0
\(881\) 16.4737 0.555014 0.277507 0.960724i \(-0.410492\pi\)
0.277507 + 0.960724i \(0.410492\pi\)
\(882\) 0 0
\(883\) 34.4713 1.16005 0.580026 0.814598i \(-0.303042\pi\)
0.580026 + 0.814598i \(0.303042\pi\)
\(884\) 0 0
\(885\) −20.0603 −0.674319
\(886\) 0 0
\(887\) −6.59459 −0.221425 −0.110712 0.993852i \(-0.535313\pi\)
−0.110712 + 0.993852i \(0.535313\pi\)
\(888\) 0 0
\(889\) −8.67058 −0.290802
\(890\) 0 0
\(891\) −11.7846 −0.394799
\(892\) 0 0
\(893\) −10.7669 −0.360302
\(894\) 0 0
\(895\) 85.3196 2.85192
\(896\) 0 0
\(897\) −0.892260 −0.0297917
\(898\) 0 0
\(899\) −2.88905 −0.0963553
\(900\) 0 0
\(901\) −2.32540 −0.0774704
\(902\) 0 0
\(903\) 1.57054 0.0522643
\(904\) 0 0
\(905\) 2.90203 0.0964669
\(906\) 0 0
\(907\) 45.8349 1.52192 0.760962 0.648797i \(-0.224727\pi\)
0.760962 + 0.648797i \(0.224727\pi\)
\(908\) 0 0
\(909\) 6.84652 0.227085
\(910\) 0 0
\(911\) −39.2464 −1.30029 −0.650145 0.759810i \(-0.725292\pi\)
−0.650145 + 0.759810i \(0.725292\pi\)
\(912\) 0 0
\(913\) 18.2307 0.603347
\(914\) 0 0
\(915\) −14.7222 −0.486702
\(916\) 0 0
\(917\) −10.9781 −0.362529
\(918\) 0 0
\(919\) −25.8827 −0.853792 −0.426896 0.904301i \(-0.640393\pi\)
−0.426896 + 0.904301i \(0.640393\pi\)
\(920\) 0 0
\(921\) −0.0687788 −0.00226634
\(922\) 0 0
\(923\) −1.86122 −0.0612629
\(924\) 0 0
\(925\) 29.7899 0.979486
\(926\) 0 0
\(927\) −28.9959 −0.952351
\(928\) 0 0
\(929\) 36.2319 1.18873 0.594366 0.804195i \(-0.297403\pi\)
0.594366 + 0.804195i \(0.297403\pi\)
\(930\) 0 0
\(931\) 4.14155 0.135734
\(932\) 0 0
\(933\) −8.08992 −0.264852
\(934\) 0 0
\(935\) 6.38715 0.208882
\(936\) 0 0
\(937\) 48.8281 1.59515 0.797573 0.603223i \(-0.206117\pi\)
0.797573 + 0.603223i \(0.206117\pi\)
\(938\) 0 0
\(939\) 2.73258 0.0891744
\(940\) 0 0
\(941\) 5.32917 0.173726 0.0868631 0.996220i \(-0.472316\pi\)
0.0868631 + 0.996220i \(0.472316\pi\)
\(942\) 0 0
\(943\) 1.90992 0.0621957
\(944\) 0 0
\(945\) −10.7262 −0.348923
\(946\) 0 0
\(947\) −9.61529 −0.312455 −0.156227 0.987721i \(-0.549933\pi\)
−0.156227 + 0.987721i \(0.549933\pi\)
\(948\) 0 0
\(949\) 0.0791408 0.00256902
\(950\) 0 0
\(951\) 2.51652 0.0816039
\(952\) 0 0
\(953\) 39.2917 1.27278 0.636392 0.771366i \(-0.280426\pi\)
0.636392 + 0.771366i \(0.280426\pi\)
\(954\) 0 0
\(955\) −5.38408 −0.174225
\(956\) 0 0
\(957\) −0.654715 −0.0211639
\(958\) 0 0
\(959\) 20.9432 0.676291
\(960\) 0 0
\(961\) −14.2992 −0.461264
\(962\) 0 0
\(963\) 25.6837 0.827647
\(964\) 0 0
\(965\) −60.4778 −1.94685
\(966\) 0 0
\(967\) 23.7753 0.764562 0.382281 0.924046i \(-0.375139\pi\)
0.382281 + 0.924046i \(0.375139\pi\)
\(968\) 0 0
\(969\) −2.15796 −0.0693238
\(970\) 0 0
\(971\) 5.56247 0.178508 0.0892541 0.996009i \(-0.471552\pi\)
0.0892541 + 0.996009i \(0.471552\pi\)
\(972\) 0 0
\(973\) −21.1638 −0.678479
\(974\) 0 0
\(975\) −0.998564 −0.0319797
\(976\) 0 0
\(977\) −22.9348 −0.733750 −0.366875 0.930270i \(-0.619572\pi\)
−0.366875 + 0.930270i \(0.619572\pi\)
\(978\) 0 0
\(979\) 0.586208 0.0187353
\(980\) 0 0
\(981\) −26.4031 −0.842987
\(982\) 0 0
\(983\) 50.7404 1.61837 0.809183 0.587556i \(-0.199910\pi\)
0.809183 + 0.587556i \(0.199910\pi\)
\(984\) 0 0
\(985\) 52.6455 1.67743
\(986\) 0 0
\(987\) 1.35460 0.0431173
\(988\) 0 0
\(989\) −21.3135 −0.677730
\(990\) 0 0
\(991\) 39.3792 1.25092 0.625461 0.780255i \(-0.284911\pi\)
0.625461 + 0.780255i \(0.284911\pi\)
\(992\) 0 0
\(993\) −7.26426 −0.230524
\(994\) 0 0
\(995\) −9.44477 −0.299419
\(996\) 0 0
\(997\) −60.4604 −1.91480 −0.957400 0.288764i \(-0.906756\pi\)
−0.957400 + 0.288764i \(0.906756\pi\)
\(998\) 0 0
\(999\) 11.2362 0.355498
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 3808.2.a.g.1.4 6
4.3 odd 2 3808.2.a.o.1.3 yes 6
8.3 odd 2 7616.2.a.bv.1.4 6
8.5 even 2 7616.2.a.cd.1.3 6
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
3808.2.a.g.1.4 6 1.1 even 1 trivial
3808.2.a.o.1.3 yes 6 4.3 odd 2
7616.2.a.bv.1.4 6 8.3 odd 2
7616.2.a.cd.1.3 6 8.5 even 2