Properties

Label 3808.2.a.g.1.3
Level $3808$
Weight $2$
Character 3808.1
Self dual yes
Analytic conductor $30.407$
Analytic rank $1$
Dimension $6$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [3808,2,Mod(1,3808)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(3808, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("3808.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 3808 = 2^{5} \cdot 7 \cdot 17 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 3808.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(30.4070330897\)
Analytic rank: \(1\)
Dimension: \(6\)
Coefficient field: 6.6.147697840.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{6} - 2x^{5} - 10x^{4} + 10x^{3} + 18x^{2} - 16x + 3 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 2 \)
Twist minimal: yes
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.3
Root \(0.301346\) of defining polynomial
Character \(\chi\) \(=\) 3808.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-0.698654 q^{3} +3.66503 q^{5} +1.00000 q^{7} -2.51188 q^{9} -3.03767 q^{11} -2.40579 q^{13} -2.56059 q^{15} +1.00000 q^{17} -1.71816 q^{19} -0.698654 q^{21} -6.60508 q^{23} +8.43243 q^{25} +3.85090 q^{27} +5.84924 q^{29} +0.381122 q^{31} +2.12228 q^{33} +3.66503 q^{35} -6.48929 q^{37} +1.68081 q^{39} -5.75328 q^{41} -6.74480 q^{43} -9.20612 q^{45} -5.73345 q^{47} +1.00000 q^{49} -0.698654 q^{51} -4.98453 q^{53} -11.1331 q^{55} +1.20040 q^{57} +8.74432 q^{59} +0.822606 q^{61} -2.51188 q^{63} -8.81727 q^{65} -14.1170 q^{67} +4.61467 q^{69} -14.5830 q^{71} +9.22593 q^{73} -5.89135 q^{75} -3.03767 q^{77} -11.2231 q^{79} +4.84520 q^{81} -12.8269 q^{83} +3.66503 q^{85} -4.08660 q^{87} +10.6204 q^{89} -2.40579 q^{91} -0.266273 q^{93} -6.29712 q^{95} -3.08403 q^{97} +7.63027 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 6 q - 4 q^{3} - 4 q^{5} + 6 q^{7} + 8 q^{9} - 8 q^{11} - 4 q^{13} + 6 q^{17} - 18 q^{19} - 4 q^{21} - 6 q^{23} + 12 q^{25} - 10 q^{27} + 4 q^{29} + 8 q^{31} - 6 q^{33} - 4 q^{35} - 8 q^{37} + 18 q^{39}+ \cdots - 32 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −0.698654 −0.403368 −0.201684 0.979451i \(-0.564641\pi\)
−0.201684 + 0.979451i \(0.564641\pi\)
\(4\) 0 0
\(5\) 3.66503 1.63905 0.819525 0.573043i \(-0.194237\pi\)
0.819525 + 0.573043i \(0.194237\pi\)
\(6\) 0 0
\(7\) 1.00000 0.377964
\(8\) 0 0
\(9\) −2.51188 −0.837294
\(10\) 0 0
\(11\) −3.03767 −0.915892 −0.457946 0.888980i \(-0.651415\pi\)
−0.457946 + 0.888980i \(0.651415\pi\)
\(12\) 0 0
\(13\) −2.40579 −0.667245 −0.333623 0.942707i \(-0.608271\pi\)
−0.333623 + 0.942707i \(0.608271\pi\)
\(14\) 0 0
\(15\) −2.56059 −0.661141
\(16\) 0 0
\(17\) 1.00000 0.242536
\(18\) 0 0
\(19\) −1.71816 −0.394174 −0.197087 0.980386i \(-0.563148\pi\)
−0.197087 + 0.980386i \(0.563148\pi\)
\(20\) 0 0
\(21\) −0.698654 −0.152459
\(22\) 0 0
\(23\) −6.60508 −1.37725 −0.688627 0.725115i \(-0.741786\pi\)
−0.688627 + 0.725115i \(0.741786\pi\)
\(24\) 0 0
\(25\) 8.43243 1.68649
\(26\) 0 0
\(27\) 3.85090 0.741106
\(28\) 0 0
\(29\) 5.84924 1.08618 0.543089 0.839675i \(-0.317255\pi\)
0.543089 + 0.839675i \(0.317255\pi\)
\(30\) 0 0
\(31\) 0.381122 0.0684516 0.0342258 0.999414i \(-0.489103\pi\)
0.0342258 + 0.999414i \(0.489103\pi\)
\(32\) 0 0
\(33\) 2.12228 0.369442
\(34\) 0 0
\(35\) 3.66503 0.619503
\(36\) 0 0
\(37\) −6.48929 −1.06683 −0.533416 0.845853i \(-0.679092\pi\)
−0.533416 + 0.845853i \(0.679092\pi\)
\(38\) 0 0
\(39\) 1.68081 0.269145
\(40\) 0 0
\(41\) −5.75328 −0.898512 −0.449256 0.893403i \(-0.648311\pi\)
−0.449256 + 0.893403i \(0.648311\pi\)
\(42\) 0 0
\(43\) −6.74480 −1.02857 −0.514286 0.857618i \(-0.671943\pi\)
−0.514286 + 0.857618i \(0.671943\pi\)
\(44\) 0 0
\(45\) −9.20612 −1.37237
\(46\) 0 0
\(47\) −5.73345 −0.836310 −0.418155 0.908376i \(-0.637323\pi\)
−0.418155 + 0.908376i \(0.637323\pi\)
\(48\) 0 0
\(49\) 1.00000 0.142857
\(50\) 0 0
\(51\) −0.698654 −0.0978312
\(52\) 0 0
\(53\) −4.98453 −0.684678 −0.342339 0.939576i \(-0.611219\pi\)
−0.342339 + 0.939576i \(0.611219\pi\)
\(54\) 0 0
\(55\) −11.1331 −1.50119
\(56\) 0 0
\(57\) 1.20040 0.158997
\(58\) 0 0
\(59\) 8.74432 1.13841 0.569207 0.822194i \(-0.307250\pi\)
0.569207 + 0.822194i \(0.307250\pi\)
\(60\) 0 0
\(61\) 0.822606 0.105324 0.0526619 0.998612i \(-0.483229\pi\)
0.0526619 + 0.998612i \(0.483229\pi\)
\(62\) 0 0
\(63\) −2.51188 −0.316467
\(64\) 0 0
\(65\) −8.81727 −1.09365
\(66\) 0 0
\(67\) −14.1170 −1.72466 −0.862331 0.506345i \(-0.830996\pi\)
−0.862331 + 0.506345i \(0.830996\pi\)
\(68\) 0 0
\(69\) 4.61467 0.555541
\(70\) 0 0
\(71\) −14.5830 −1.73069 −0.865343 0.501181i \(-0.832899\pi\)
−0.865343 + 0.501181i \(0.832899\pi\)
\(72\) 0 0
\(73\) 9.22593 1.07981 0.539907 0.841725i \(-0.318459\pi\)
0.539907 + 0.841725i \(0.318459\pi\)
\(74\) 0 0
\(75\) −5.89135 −0.680274
\(76\) 0 0
\(77\) −3.03767 −0.346175
\(78\) 0 0
\(79\) −11.2231 −1.26269 −0.631346 0.775501i \(-0.717497\pi\)
−0.631346 + 0.775501i \(0.717497\pi\)
\(80\) 0 0
\(81\) 4.84520 0.538356
\(82\) 0 0
\(83\) −12.8269 −1.40793 −0.703965 0.710234i \(-0.748589\pi\)
−0.703965 + 0.710234i \(0.748589\pi\)
\(84\) 0 0
\(85\) 3.66503 0.397528
\(86\) 0 0
\(87\) −4.08660 −0.438129
\(88\) 0 0
\(89\) 10.6204 1.12576 0.562878 0.826540i \(-0.309694\pi\)
0.562878 + 0.826540i \(0.309694\pi\)
\(90\) 0 0
\(91\) −2.40579 −0.252195
\(92\) 0 0
\(93\) −0.266273 −0.0276112
\(94\) 0 0
\(95\) −6.29712 −0.646071
\(96\) 0 0
\(97\) −3.08403 −0.313136 −0.156568 0.987667i \(-0.550043\pi\)
−0.156568 + 0.987667i \(0.550043\pi\)
\(98\) 0 0
\(99\) 7.63027 0.766871
\(100\) 0 0
\(101\) −13.6872 −1.36193 −0.680965 0.732316i \(-0.738440\pi\)
−0.680965 + 0.732316i \(0.738440\pi\)
\(102\) 0 0
\(103\) 14.6679 1.44528 0.722638 0.691227i \(-0.242929\pi\)
0.722638 + 0.691227i \(0.242929\pi\)
\(104\) 0 0
\(105\) −2.56059 −0.249888
\(106\) 0 0
\(107\) 15.3769 1.48654 0.743272 0.668990i \(-0.233273\pi\)
0.743272 + 0.668990i \(0.233273\pi\)
\(108\) 0 0
\(109\) 7.72529 0.739949 0.369974 0.929042i \(-0.379366\pi\)
0.369974 + 0.929042i \(0.379366\pi\)
\(110\) 0 0
\(111\) 4.53377 0.430326
\(112\) 0 0
\(113\) 7.20610 0.677893 0.338947 0.940806i \(-0.389929\pi\)
0.338947 + 0.940806i \(0.389929\pi\)
\(114\) 0 0
\(115\) −24.2078 −2.25739
\(116\) 0 0
\(117\) 6.04305 0.558680
\(118\) 0 0
\(119\) 1.00000 0.0916698
\(120\) 0 0
\(121\) −1.77255 −0.161141
\(122\) 0 0
\(123\) 4.01955 0.362431
\(124\) 0 0
\(125\) 12.5799 1.12518
\(126\) 0 0
\(127\) 3.67319 0.325943 0.162971 0.986631i \(-0.447892\pi\)
0.162971 + 0.986631i \(0.447892\pi\)
\(128\) 0 0
\(129\) 4.71229 0.414894
\(130\) 0 0
\(131\) 12.2574 1.07094 0.535468 0.844556i \(-0.320135\pi\)
0.535468 + 0.844556i \(0.320135\pi\)
\(132\) 0 0
\(133\) −1.71816 −0.148984
\(134\) 0 0
\(135\) 14.1137 1.21471
\(136\) 0 0
\(137\) −14.0620 −1.20139 −0.600697 0.799477i \(-0.705110\pi\)
−0.600697 + 0.799477i \(0.705110\pi\)
\(138\) 0 0
\(139\) −0.150965 −0.0128047 −0.00640233 0.999980i \(-0.502038\pi\)
−0.00640233 + 0.999980i \(0.502038\pi\)
\(140\) 0 0
\(141\) 4.00570 0.337341
\(142\) 0 0
\(143\) 7.30799 0.611125
\(144\) 0 0
\(145\) 21.4376 1.78030
\(146\) 0 0
\(147\) −0.698654 −0.0576240
\(148\) 0 0
\(149\) −4.70920 −0.385793 −0.192896 0.981219i \(-0.561788\pi\)
−0.192896 + 0.981219i \(0.561788\pi\)
\(150\) 0 0
\(151\) 1.62694 0.132399 0.0661993 0.997806i \(-0.478913\pi\)
0.0661993 + 0.997806i \(0.478913\pi\)
\(152\) 0 0
\(153\) −2.51188 −0.203074
\(154\) 0 0
\(155\) 1.39682 0.112196
\(156\) 0 0
\(157\) 5.13471 0.409794 0.204897 0.978783i \(-0.434314\pi\)
0.204897 + 0.978783i \(0.434314\pi\)
\(158\) 0 0
\(159\) 3.48247 0.276177
\(160\) 0 0
\(161\) −6.60508 −0.520553
\(162\) 0 0
\(163\) −13.3858 −1.04846 −0.524228 0.851578i \(-0.675646\pi\)
−0.524228 + 0.851578i \(0.675646\pi\)
\(164\) 0 0
\(165\) 7.77822 0.605534
\(166\) 0 0
\(167\) −0.637938 −0.0493651 −0.0246826 0.999695i \(-0.507858\pi\)
−0.0246826 + 0.999695i \(0.507858\pi\)
\(168\) 0 0
\(169\) −7.21219 −0.554784
\(170\) 0 0
\(171\) 4.31583 0.330040
\(172\) 0 0
\(173\) −5.01784 −0.381499 −0.190750 0.981639i \(-0.561092\pi\)
−0.190750 + 0.981639i \(0.561092\pi\)
\(174\) 0 0
\(175\) 8.43243 0.637431
\(176\) 0 0
\(177\) −6.10926 −0.459200
\(178\) 0 0
\(179\) −13.2331 −0.989091 −0.494545 0.869152i \(-0.664665\pi\)
−0.494545 + 0.869152i \(0.664665\pi\)
\(180\) 0 0
\(181\) 2.53687 0.188564 0.0942819 0.995546i \(-0.469945\pi\)
0.0942819 + 0.995546i \(0.469945\pi\)
\(182\) 0 0
\(183\) −0.574717 −0.0424843
\(184\) 0 0
\(185\) −23.7834 −1.74859
\(186\) 0 0
\(187\) −3.03767 −0.222137
\(188\) 0 0
\(189\) 3.85090 0.280112
\(190\) 0 0
\(191\) 8.88951 0.643223 0.321611 0.946872i \(-0.395776\pi\)
0.321611 + 0.946872i \(0.395776\pi\)
\(192\) 0 0
\(193\) −15.6913 −1.12948 −0.564742 0.825268i \(-0.691024\pi\)
−0.564742 + 0.825268i \(0.691024\pi\)
\(194\) 0 0
\(195\) 6.16022 0.441143
\(196\) 0 0
\(197\) −8.29063 −0.590683 −0.295342 0.955392i \(-0.595433\pi\)
−0.295342 + 0.955392i \(0.595433\pi\)
\(198\) 0 0
\(199\) −6.88404 −0.487997 −0.243998 0.969776i \(-0.578459\pi\)
−0.243998 + 0.969776i \(0.578459\pi\)
\(200\) 0 0
\(201\) 9.86288 0.695674
\(202\) 0 0
\(203\) 5.84924 0.410536
\(204\) 0 0
\(205\) −21.0859 −1.47271
\(206\) 0 0
\(207\) 16.5912 1.15317
\(208\) 0 0
\(209\) 5.21922 0.361021
\(210\) 0 0
\(211\) −26.9297 −1.85392 −0.926959 0.375163i \(-0.877587\pi\)
−0.926959 + 0.375163i \(0.877587\pi\)
\(212\) 0 0
\(213\) 10.1885 0.698103
\(214\) 0 0
\(215\) −24.7199 −1.68588
\(216\) 0 0
\(217\) 0.381122 0.0258723
\(218\) 0 0
\(219\) −6.44574 −0.435563
\(220\) 0 0
\(221\) −2.40579 −0.161831
\(222\) 0 0
\(223\) 16.0856 1.07717 0.538587 0.842570i \(-0.318958\pi\)
0.538587 + 0.842570i \(0.318958\pi\)
\(224\) 0 0
\(225\) −21.1813 −1.41208
\(226\) 0 0
\(227\) −25.3913 −1.68528 −0.842639 0.538478i \(-0.818999\pi\)
−0.842639 + 0.538478i \(0.818999\pi\)
\(228\) 0 0
\(229\) 19.6992 1.30176 0.650880 0.759180i \(-0.274400\pi\)
0.650880 + 0.759180i \(0.274400\pi\)
\(230\) 0 0
\(231\) 2.12228 0.139636
\(232\) 0 0
\(233\) 21.3725 1.40016 0.700080 0.714064i \(-0.253148\pi\)
0.700080 + 0.714064i \(0.253148\pi\)
\(234\) 0 0
\(235\) −21.0133 −1.37075
\(236\) 0 0
\(237\) 7.84104 0.509330
\(238\) 0 0
\(239\) 17.7954 1.15109 0.575545 0.817770i \(-0.304790\pi\)
0.575545 + 0.817770i \(0.304790\pi\)
\(240\) 0 0
\(241\) 8.64503 0.556875 0.278438 0.960454i \(-0.410183\pi\)
0.278438 + 0.960454i \(0.410183\pi\)
\(242\) 0 0
\(243\) −14.9378 −0.958261
\(244\) 0 0
\(245\) 3.66503 0.234150
\(246\) 0 0
\(247\) 4.13354 0.263011
\(248\) 0 0
\(249\) 8.96154 0.567914
\(250\) 0 0
\(251\) 17.0342 1.07519 0.537596 0.843203i \(-0.319333\pi\)
0.537596 + 0.843203i \(0.319333\pi\)
\(252\) 0 0
\(253\) 20.0641 1.26142
\(254\) 0 0
\(255\) −2.56059 −0.160350
\(256\) 0 0
\(257\) 20.8027 1.29764 0.648818 0.760944i \(-0.275264\pi\)
0.648818 + 0.760944i \(0.275264\pi\)
\(258\) 0 0
\(259\) −6.48929 −0.403225
\(260\) 0 0
\(261\) −14.6926 −0.909450
\(262\) 0 0
\(263\) 22.7749 1.40436 0.702180 0.711999i \(-0.252210\pi\)
0.702180 + 0.711999i \(0.252210\pi\)
\(264\) 0 0
\(265\) −18.2685 −1.12222
\(266\) 0 0
\(267\) −7.41996 −0.454094
\(268\) 0 0
\(269\) −31.4642 −1.91841 −0.959204 0.282714i \(-0.908765\pi\)
−0.959204 + 0.282714i \(0.908765\pi\)
\(270\) 0 0
\(271\) 9.97927 0.606197 0.303099 0.952959i \(-0.401979\pi\)
0.303099 + 0.952959i \(0.401979\pi\)
\(272\) 0 0
\(273\) 1.68081 0.101727
\(274\) 0 0
\(275\) −25.6149 −1.54464
\(276\) 0 0
\(277\) −23.2836 −1.39897 −0.699487 0.714645i \(-0.746588\pi\)
−0.699487 + 0.714645i \(0.746588\pi\)
\(278\) 0 0
\(279\) −0.957334 −0.0573141
\(280\) 0 0
\(281\) −15.6648 −0.934483 −0.467241 0.884130i \(-0.654752\pi\)
−0.467241 + 0.884130i \(0.654752\pi\)
\(282\) 0 0
\(283\) 1.95968 0.116491 0.0582454 0.998302i \(-0.481449\pi\)
0.0582454 + 0.998302i \(0.481449\pi\)
\(284\) 0 0
\(285\) 4.39951 0.260605
\(286\) 0 0
\(287\) −5.75328 −0.339605
\(288\) 0 0
\(289\) 1.00000 0.0588235
\(290\) 0 0
\(291\) 2.15467 0.126309
\(292\) 0 0
\(293\) 4.05503 0.236897 0.118449 0.992960i \(-0.462208\pi\)
0.118449 + 0.992960i \(0.462208\pi\)
\(294\) 0 0
\(295\) 32.0482 1.86592
\(296\) 0 0
\(297\) −11.6978 −0.678773
\(298\) 0 0
\(299\) 15.8904 0.918966
\(300\) 0 0
\(301\) −6.74480 −0.388764
\(302\) 0 0
\(303\) 9.56264 0.549359
\(304\) 0 0
\(305\) 3.01487 0.172631
\(306\) 0 0
\(307\) −26.2543 −1.49841 −0.749207 0.662336i \(-0.769565\pi\)
−0.749207 + 0.662336i \(0.769565\pi\)
\(308\) 0 0
\(309\) −10.2478 −0.582978
\(310\) 0 0
\(311\) −6.31056 −0.357839 −0.178919 0.983864i \(-0.557260\pi\)
−0.178919 + 0.983864i \(0.557260\pi\)
\(312\) 0 0
\(313\) 26.9937 1.52577 0.762886 0.646533i \(-0.223782\pi\)
0.762886 + 0.646533i \(0.223782\pi\)
\(314\) 0 0
\(315\) −9.20612 −0.518706
\(316\) 0 0
\(317\) −5.47914 −0.307739 −0.153870 0.988091i \(-0.549174\pi\)
−0.153870 + 0.988091i \(0.549174\pi\)
\(318\) 0 0
\(319\) −17.7681 −0.994822
\(320\) 0 0
\(321\) −10.7432 −0.599624
\(322\) 0 0
\(323\) −1.71816 −0.0956013
\(324\) 0 0
\(325\) −20.2866 −1.12530
\(326\) 0 0
\(327\) −5.39731 −0.298472
\(328\) 0 0
\(329\) −5.73345 −0.316095
\(330\) 0 0
\(331\) 28.0056 1.53933 0.769663 0.638450i \(-0.220424\pi\)
0.769663 + 0.638450i \(0.220424\pi\)
\(332\) 0 0
\(333\) 16.3003 0.893252
\(334\) 0 0
\(335\) −51.7391 −2.82681
\(336\) 0 0
\(337\) −12.7267 −0.693269 −0.346634 0.938000i \(-0.612676\pi\)
−0.346634 + 0.938000i \(0.612676\pi\)
\(338\) 0 0
\(339\) −5.03457 −0.273441
\(340\) 0 0
\(341\) −1.15772 −0.0626943
\(342\) 0 0
\(343\) 1.00000 0.0539949
\(344\) 0 0
\(345\) 16.9129 0.910559
\(346\) 0 0
\(347\) −27.8442 −1.49476 −0.747378 0.664399i \(-0.768688\pi\)
−0.747378 + 0.664399i \(0.768688\pi\)
\(348\) 0 0
\(349\) −30.2329 −1.61833 −0.809165 0.587582i \(-0.800080\pi\)
−0.809165 + 0.587582i \(0.800080\pi\)
\(350\) 0 0
\(351\) −9.26444 −0.494499
\(352\) 0 0
\(353\) −0.967067 −0.0514718 −0.0257359 0.999669i \(-0.508193\pi\)
−0.0257359 + 0.999669i \(0.508193\pi\)
\(354\) 0 0
\(355\) −53.4471 −2.83668
\(356\) 0 0
\(357\) −0.698654 −0.0369767
\(358\) 0 0
\(359\) 16.4556 0.868495 0.434247 0.900794i \(-0.357014\pi\)
0.434247 + 0.900794i \(0.357014\pi\)
\(360\) 0 0
\(361\) −16.0479 −0.844627
\(362\) 0 0
\(363\) 1.23840 0.0649992
\(364\) 0 0
\(365\) 33.8133 1.76987
\(366\) 0 0
\(367\) 7.27078 0.379532 0.189766 0.981829i \(-0.439227\pi\)
0.189766 + 0.981829i \(0.439227\pi\)
\(368\) 0 0
\(369\) 14.4516 0.752319
\(370\) 0 0
\(371\) −4.98453 −0.258784
\(372\) 0 0
\(373\) −10.9544 −0.567198 −0.283599 0.958943i \(-0.591528\pi\)
−0.283599 + 0.958943i \(0.591528\pi\)
\(374\) 0 0
\(375\) −8.78902 −0.453863
\(376\) 0 0
\(377\) −14.0720 −0.724747
\(378\) 0 0
\(379\) 5.57491 0.286364 0.143182 0.989696i \(-0.454267\pi\)
0.143182 + 0.989696i \(0.454267\pi\)
\(380\) 0 0
\(381\) −2.56629 −0.131475
\(382\) 0 0
\(383\) 19.4301 0.992834 0.496417 0.868084i \(-0.334649\pi\)
0.496417 + 0.868084i \(0.334649\pi\)
\(384\) 0 0
\(385\) −11.1331 −0.567398
\(386\) 0 0
\(387\) 16.9422 0.861218
\(388\) 0 0
\(389\) 4.00596 0.203110 0.101555 0.994830i \(-0.467618\pi\)
0.101555 + 0.994830i \(0.467618\pi\)
\(390\) 0 0
\(391\) −6.60508 −0.334033
\(392\) 0 0
\(393\) −8.56370 −0.431981
\(394\) 0 0
\(395\) −41.1328 −2.06962
\(396\) 0 0
\(397\) −2.45964 −0.123446 −0.0617230 0.998093i \(-0.519660\pi\)
−0.0617230 + 0.998093i \(0.519660\pi\)
\(398\) 0 0
\(399\) 1.20040 0.0600953
\(400\) 0 0
\(401\) 6.90723 0.344931 0.172465 0.985016i \(-0.444827\pi\)
0.172465 + 0.985016i \(0.444827\pi\)
\(402\) 0 0
\(403\) −0.916899 −0.0456740
\(404\) 0 0
\(405\) 17.7578 0.882392
\(406\) 0 0
\(407\) 19.7123 0.977104
\(408\) 0 0
\(409\) −16.7759 −0.829513 −0.414756 0.909932i \(-0.636133\pi\)
−0.414756 + 0.909932i \(0.636133\pi\)
\(410\) 0 0
\(411\) 9.82445 0.484604
\(412\) 0 0
\(413\) 8.74432 0.430280
\(414\) 0 0
\(415\) −47.0108 −2.30767
\(416\) 0 0
\(417\) 0.105472 0.00516499
\(418\) 0 0
\(419\) −35.7475 −1.74638 −0.873191 0.487379i \(-0.837953\pi\)
−0.873191 + 0.487379i \(0.837953\pi\)
\(420\) 0 0
\(421\) 21.4145 1.04368 0.521839 0.853044i \(-0.325246\pi\)
0.521839 + 0.853044i \(0.325246\pi\)
\(422\) 0 0
\(423\) 14.4018 0.700237
\(424\) 0 0
\(425\) 8.43243 0.409033
\(426\) 0 0
\(427\) 0.822606 0.0398087
\(428\) 0 0
\(429\) −5.10576 −0.246508
\(430\) 0 0
\(431\) 18.1043 0.872052 0.436026 0.899934i \(-0.356386\pi\)
0.436026 + 0.899934i \(0.356386\pi\)
\(432\) 0 0
\(433\) −24.5870 −1.18158 −0.590789 0.806826i \(-0.701183\pi\)
−0.590789 + 0.806826i \(0.701183\pi\)
\(434\) 0 0
\(435\) −14.9775 −0.718116
\(436\) 0 0
\(437\) 11.3486 0.542878
\(438\) 0 0
\(439\) −4.54640 −0.216988 −0.108494 0.994097i \(-0.534603\pi\)
−0.108494 + 0.994097i \(0.534603\pi\)
\(440\) 0 0
\(441\) −2.51188 −0.119613
\(442\) 0 0
\(443\) −9.03838 −0.429426 −0.214713 0.976677i \(-0.568882\pi\)
−0.214713 + 0.976677i \(0.568882\pi\)
\(444\) 0 0
\(445\) 38.9239 1.84517
\(446\) 0 0
\(447\) 3.29010 0.155617
\(448\) 0 0
\(449\) 27.6166 1.30331 0.651653 0.758517i \(-0.274076\pi\)
0.651653 + 0.758517i \(0.274076\pi\)
\(450\) 0 0
\(451\) 17.4766 0.822940
\(452\) 0 0
\(453\) −1.13667 −0.0534054
\(454\) 0 0
\(455\) −8.81727 −0.413360
\(456\) 0 0
\(457\) 30.8579 1.44347 0.721736 0.692168i \(-0.243344\pi\)
0.721736 + 0.692168i \(0.243344\pi\)
\(458\) 0 0
\(459\) 3.85090 0.179745
\(460\) 0 0
\(461\) −35.7213 −1.66371 −0.831853 0.554996i \(-0.812720\pi\)
−0.831853 + 0.554996i \(0.812720\pi\)
\(462\) 0 0
\(463\) −0.262644 −0.0122061 −0.00610304 0.999981i \(-0.501943\pi\)
−0.00610304 + 0.999981i \(0.501943\pi\)
\(464\) 0 0
\(465\) −0.975897 −0.0452561
\(466\) 0 0
\(467\) 27.0367 1.25111 0.625555 0.780180i \(-0.284873\pi\)
0.625555 + 0.780180i \(0.284873\pi\)
\(468\) 0 0
\(469\) −14.1170 −0.651861
\(470\) 0 0
\(471\) −3.58739 −0.165298
\(472\) 0 0
\(473\) 20.4885 0.942062
\(474\) 0 0
\(475\) −14.4883 −0.664769
\(476\) 0 0
\(477\) 12.5206 0.573277
\(478\) 0 0
\(479\) 14.3121 0.653939 0.326969 0.945035i \(-0.393973\pi\)
0.326969 + 0.945035i \(0.393973\pi\)
\(480\) 0 0
\(481\) 15.6118 0.711839
\(482\) 0 0
\(483\) 4.61467 0.209975
\(484\) 0 0
\(485\) −11.3031 −0.513245
\(486\) 0 0
\(487\) −17.6507 −0.799828 −0.399914 0.916553i \(-0.630960\pi\)
−0.399914 + 0.916553i \(0.630960\pi\)
\(488\) 0 0
\(489\) 9.35204 0.422914
\(490\) 0 0
\(491\) −4.47987 −0.202174 −0.101087 0.994878i \(-0.532232\pi\)
−0.101087 + 0.994878i \(0.532232\pi\)
\(492\) 0 0
\(493\) 5.84924 0.263437
\(494\) 0 0
\(495\) 27.9652 1.25694
\(496\) 0 0
\(497\) −14.5830 −0.654138
\(498\) 0 0
\(499\) −29.6589 −1.32772 −0.663858 0.747859i \(-0.731082\pi\)
−0.663858 + 0.747859i \(0.731082\pi\)
\(500\) 0 0
\(501\) 0.445698 0.0199123
\(502\) 0 0
\(503\) 19.9897 0.891295 0.445647 0.895209i \(-0.352974\pi\)
0.445647 + 0.895209i \(0.352974\pi\)
\(504\) 0 0
\(505\) −50.1641 −2.23227
\(506\) 0 0
\(507\) 5.03883 0.223782
\(508\) 0 0
\(509\) −18.7636 −0.831680 −0.415840 0.909438i \(-0.636512\pi\)
−0.415840 + 0.909438i \(0.636512\pi\)
\(510\) 0 0
\(511\) 9.22593 0.408131
\(512\) 0 0
\(513\) −6.61648 −0.292125
\(514\) 0 0
\(515\) 53.7584 2.36888
\(516\) 0 0
\(517\) 17.4163 0.765970
\(518\) 0 0
\(519\) 3.50574 0.153885
\(520\) 0 0
\(521\) −2.72185 −0.119246 −0.0596231 0.998221i \(-0.518990\pi\)
−0.0596231 + 0.998221i \(0.518990\pi\)
\(522\) 0 0
\(523\) −9.48211 −0.414624 −0.207312 0.978275i \(-0.566471\pi\)
−0.207312 + 0.978275i \(0.566471\pi\)
\(524\) 0 0
\(525\) −5.89135 −0.257120
\(526\) 0 0
\(527\) 0.381122 0.0166019
\(528\) 0 0
\(529\) 20.6271 0.896830
\(530\) 0 0
\(531\) −21.9647 −0.953187
\(532\) 0 0
\(533\) 13.8412 0.599527
\(534\) 0 0
\(535\) 56.3568 2.43652
\(536\) 0 0
\(537\) 9.24538 0.398968
\(538\) 0 0
\(539\) −3.03767 −0.130842
\(540\) 0 0
\(541\) 0.877989 0.0377477 0.0188738 0.999822i \(-0.493992\pi\)
0.0188738 + 0.999822i \(0.493992\pi\)
\(542\) 0 0
\(543\) −1.77239 −0.0760606
\(544\) 0 0
\(545\) 28.3134 1.21281
\(546\) 0 0
\(547\) 19.4730 0.832605 0.416303 0.909226i \(-0.363326\pi\)
0.416303 + 0.909226i \(0.363326\pi\)
\(548\) 0 0
\(549\) −2.06629 −0.0881870
\(550\) 0 0
\(551\) −10.0500 −0.428143
\(552\) 0 0
\(553\) −11.2231 −0.477253
\(554\) 0 0
\(555\) 16.6164 0.705326
\(556\) 0 0
\(557\) 17.8746 0.757369 0.378685 0.925526i \(-0.376377\pi\)
0.378685 + 0.925526i \(0.376377\pi\)
\(558\) 0 0
\(559\) 16.2266 0.686310
\(560\) 0 0
\(561\) 2.12228 0.0896028
\(562\) 0 0
\(563\) −0.137928 −0.00581295 −0.00290648 0.999996i \(-0.500925\pi\)
−0.00290648 + 0.999996i \(0.500925\pi\)
\(564\) 0 0
\(565\) 26.4106 1.11110
\(566\) 0 0
\(567\) 4.84520 0.203479
\(568\) 0 0
\(569\) 19.9320 0.835591 0.417796 0.908541i \(-0.362803\pi\)
0.417796 + 0.908541i \(0.362803\pi\)
\(570\) 0 0
\(571\) 24.3246 1.01795 0.508977 0.860780i \(-0.330024\pi\)
0.508977 + 0.860780i \(0.330024\pi\)
\(572\) 0 0
\(573\) −6.21070 −0.259456
\(574\) 0 0
\(575\) −55.6969 −2.32272
\(576\) 0 0
\(577\) 30.7677 1.28088 0.640439 0.768009i \(-0.278753\pi\)
0.640439 + 0.768009i \(0.278753\pi\)
\(578\) 0 0
\(579\) 10.9628 0.455598
\(580\) 0 0
\(581\) −12.8269 −0.532148
\(582\) 0 0
\(583\) 15.1414 0.627092
\(584\) 0 0
\(585\) 22.1480 0.915705
\(586\) 0 0
\(587\) 10.2883 0.424643 0.212321 0.977200i \(-0.431898\pi\)
0.212321 + 0.977200i \(0.431898\pi\)
\(588\) 0 0
\(589\) −0.654831 −0.0269818
\(590\) 0 0
\(591\) 5.79229 0.238263
\(592\) 0 0
\(593\) −28.5600 −1.17282 −0.586409 0.810015i \(-0.699459\pi\)
−0.586409 + 0.810015i \(0.699459\pi\)
\(594\) 0 0
\(595\) 3.66503 0.150251
\(596\) 0 0
\(597\) 4.80956 0.196842
\(598\) 0 0
\(599\) −41.2052 −1.68360 −0.841799 0.539791i \(-0.818503\pi\)
−0.841799 + 0.539791i \(0.818503\pi\)
\(600\) 0 0
\(601\) 24.7782 1.01073 0.505363 0.862907i \(-0.331359\pi\)
0.505363 + 0.862907i \(0.331359\pi\)
\(602\) 0 0
\(603\) 35.4602 1.44405
\(604\) 0 0
\(605\) −6.49645 −0.264118
\(606\) 0 0
\(607\) −7.45090 −0.302423 −0.151211 0.988501i \(-0.548317\pi\)
−0.151211 + 0.988501i \(0.548317\pi\)
\(608\) 0 0
\(609\) −4.08660 −0.165597
\(610\) 0 0
\(611\) 13.7935 0.558024
\(612\) 0 0
\(613\) 35.5222 1.43473 0.717364 0.696699i \(-0.245349\pi\)
0.717364 + 0.696699i \(0.245349\pi\)
\(614\) 0 0
\(615\) 14.7318 0.594043
\(616\) 0 0
\(617\) −43.9746 −1.77035 −0.885175 0.465259i \(-0.845961\pi\)
−0.885175 + 0.465259i \(0.845961\pi\)
\(618\) 0 0
\(619\) −0.523028 −0.0210223 −0.0105111 0.999945i \(-0.503346\pi\)
−0.0105111 + 0.999945i \(0.503346\pi\)
\(620\) 0 0
\(621\) −25.4355 −1.02069
\(622\) 0 0
\(623\) 10.6204 0.425496
\(624\) 0 0
\(625\) 3.94367 0.157747
\(626\) 0 0
\(627\) −3.64643 −0.145624
\(628\) 0 0
\(629\) −6.48929 −0.258745
\(630\) 0 0
\(631\) 22.0261 0.876845 0.438423 0.898769i \(-0.355537\pi\)
0.438423 + 0.898769i \(0.355537\pi\)
\(632\) 0 0
\(633\) 18.8146 0.747811
\(634\) 0 0
\(635\) 13.4623 0.534236
\(636\) 0 0
\(637\) −2.40579 −0.0953207
\(638\) 0 0
\(639\) 36.6308 1.44909
\(640\) 0 0
\(641\) −28.9669 −1.14412 −0.572062 0.820210i \(-0.693856\pi\)
−0.572062 + 0.820210i \(0.693856\pi\)
\(642\) 0 0
\(643\) 18.0983 0.713729 0.356864 0.934156i \(-0.383846\pi\)
0.356864 + 0.934156i \(0.383846\pi\)
\(644\) 0 0
\(645\) 17.2707 0.680031
\(646\) 0 0
\(647\) −10.7062 −0.420904 −0.210452 0.977604i \(-0.567493\pi\)
−0.210452 + 0.977604i \(0.567493\pi\)
\(648\) 0 0
\(649\) −26.5624 −1.04266
\(650\) 0 0
\(651\) −0.266273 −0.0104360
\(652\) 0 0
\(653\) 5.07346 0.198540 0.0992700 0.995061i \(-0.468349\pi\)
0.0992700 + 0.995061i \(0.468349\pi\)
\(654\) 0 0
\(655\) 44.9238 1.75532
\(656\) 0 0
\(657\) −23.1745 −0.904122
\(658\) 0 0
\(659\) 48.4215 1.88623 0.943117 0.332461i \(-0.107879\pi\)
0.943117 + 0.332461i \(0.107879\pi\)
\(660\) 0 0
\(661\) −21.2675 −0.827209 −0.413605 0.910457i \(-0.635730\pi\)
−0.413605 + 0.910457i \(0.635730\pi\)
\(662\) 0 0
\(663\) 1.68081 0.0652774
\(664\) 0 0
\(665\) −6.29712 −0.244192
\(666\) 0 0
\(667\) −38.6347 −1.49594
\(668\) 0 0
\(669\) −11.2383 −0.434497
\(670\) 0 0
\(671\) −2.49881 −0.0964653
\(672\) 0 0
\(673\) −33.6347 −1.29652 −0.648260 0.761419i \(-0.724503\pi\)
−0.648260 + 0.761419i \(0.724503\pi\)
\(674\) 0 0
\(675\) 32.4724 1.24986
\(676\) 0 0
\(677\) 30.9105 1.18799 0.593994 0.804469i \(-0.297550\pi\)
0.593994 + 0.804469i \(0.297550\pi\)
\(678\) 0 0
\(679\) −3.08403 −0.118354
\(680\) 0 0
\(681\) 17.7397 0.679788
\(682\) 0 0
\(683\) −2.49537 −0.0954828 −0.0477414 0.998860i \(-0.515202\pi\)
−0.0477414 + 0.998860i \(0.515202\pi\)
\(684\) 0 0
\(685\) −51.5375 −1.96915
\(686\) 0 0
\(687\) −13.7629 −0.525089
\(688\) 0 0
\(689\) 11.9917 0.456848
\(690\) 0 0
\(691\) 35.9955 1.36933 0.684667 0.728856i \(-0.259948\pi\)
0.684667 + 0.728856i \(0.259948\pi\)
\(692\) 0 0
\(693\) 7.63027 0.289850
\(694\) 0 0
\(695\) −0.553290 −0.0209875
\(696\) 0 0
\(697\) −5.75328 −0.217921
\(698\) 0 0
\(699\) −14.9320 −0.564780
\(700\) 0 0
\(701\) −23.4220 −0.884638 −0.442319 0.896858i \(-0.645844\pi\)
−0.442319 + 0.896858i \(0.645844\pi\)
\(702\) 0 0
\(703\) 11.1497 0.420518
\(704\) 0 0
\(705\) 14.6810 0.552918
\(706\) 0 0
\(707\) −13.6872 −0.514761
\(708\) 0 0
\(709\) 41.5410 1.56011 0.780053 0.625713i \(-0.215192\pi\)
0.780053 + 0.625713i \(0.215192\pi\)
\(710\) 0 0
\(711\) 28.1910 1.05725
\(712\) 0 0
\(713\) −2.51734 −0.0942753
\(714\) 0 0
\(715\) 26.7840 1.00166
\(716\) 0 0
\(717\) −12.4328 −0.464313
\(718\) 0 0
\(719\) −14.9152 −0.556242 −0.278121 0.960546i \(-0.589712\pi\)
−0.278121 + 0.960546i \(0.589712\pi\)
\(720\) 0 0
\(721\) 14.6679 0.546263
\(722\) 0 0
\(723\) −6.03989 −0.224626
\(724\) 0 0
\(725\) 49.3233 1.83182
\(726\) 0 0
\(727\) −6.06227 −0.224837 −0.112419 0.993661i \(-0.535860\pi\)
−0.112419 + 0.993661i \(0.535860\pi\)
\(728\) 0 0
\(729\) −4.09923 −0.151823
\(730\) 0 0
\(731\) −6.74480 −0.249466
\(732\) 0 0
\(733\) −20.4569 −0.755592 −0.377796 0.925889i \(-0.623318\pi\)
−0.377796 + 0.925889i \(0.623318\pi\)
\(734\) 0 0
\(735\) −2.56059 −0.0944487
\(736\) 0 0
\(737\) 42.8827 1.57960
\(738\) 0 0
\(739\) −2.95860 −0.108834 −0.0544170 0.998518i \(-0.517330\pi\)
−0.0544170 + 0.998518i \(0.517330\pi\)
\(740\) 0 0
\(741\) −2.88791 −0.106090
\(742\) 0 0
\(743\) 1.63220 0.0598798 0.0299399 0.999552i \(-0.490468\pi\)
0.0299399 + 0.999552i \(0.490468\pi\)
\(744\) 0 0
\(745\) −17.2594 −0.632334
\(746\) 0 0
\(747\) 32.2196 1.17885
\(748\) 0 0
\(749\) 15.3769 0.561861
\(750\) 0 0
\(751\) 46.5443 1.69843 0.849213 0.528051i \(-0.177077\pi\)
0.849213 + 0.528051i \(0.177077\pi\)
\(752\) 0 0
\(753\) −11.9010 −0.433698
\(754\) 0 0
\(755\) 5.96278 0.217008
\(756\) 0 0
\(757\) 30.5528 1.11046 0.555231 0.831696i \(-0.312630\pi\)
0.555231 + 0.831696i \(0.312630\pi\)
\(758\) 0 0
\(759\) −14.0178 −0.508816
\(760\) 0 0
\(761\) −42.4738 −1.53967 −0.769836 0.638241i \(-0.779662\pi\)
−0.769836 + 0.638241i \(0.779662\pi\)
\(762\) 0 0
\(763\) 7.72529 0.279674
\(764\) 0 0
\(765\) −9.20612 −0.332848
\(766\) 0 0
\(767\) −21.0370 −0.759601
\(768\) 0 0
\(769\) −23.2387 −0.838009 −0.419004 0.907984i \(-0.637621\pi\)
−0.419004 + 0.907984i \(0.637621\pi\)
\(770\) 0 0
\(771\) −14.5339 −0.523425
\(772\) 0 0
\(773\) −32.3609 −1.16394 −0.581970 0.813211i \(-0.697718\pi\)
−0.581970 + 0.813211i \(0.697718\pi\)
\(774\) 0 0
\(775\) 3.21379 0.115443
\(776\) 0 0
\(777\) 4.53377 0.162648
\(778\) 0 0
\(779\) 9.88509 0.354170
\(780\) 0 0
\(781\) 44.2984 1.58512
\(782\) 0 0
\(783\) 22.5249 0.804973
\(784\) 0 0
\(785\) 18.8189 0.671674
\(786\) 0 0
\(787\) 35.2401 1.25618 0.628088 0.778143i \(-0.283838\pi\)
0.628088 + 0.778143i \(0.283838\pi\)
\(788\) 0 0
\(789\) −15.9118 −0.566474
\(790\) 0 0
\(791\) 7.20610 0.256220
\(792\) 0 0
\(793\) −1.97901 −0.0702768
\(794\) 0 0
\(795\) 12.7633 0.452669
\(796\) 0 0
\(797\) −13.3278 −0.472094 −0.236047 0.971742i \(-0.575852\pi\)
−0.236047 + 0.971742i \(0.575852\pi\)
\(798\) 0 0
\(799\) −5.73345 −0.202835
\(800\) 0 0
\(801\) −26.6771 −0.942589
\(802\) 0 0
\(803\) −28.0254 −0.988993
\(804\) 0 0
\(805\) −24.2078 −0.853213
\(806\) 0 0
\(807\) 21.9826 0.773825
\(808\) 0 0
\(809\) 24.0642 0.846052 0.423026 0.906118i \(-0.360968\pi\)
0.423026 + 0.906118i \(0.360968\pi\)
\(810\) 0 0
\(811\) 33.4787 1.17559 0.587797 0.809008i \(-0.299995\pi\)
0.587797 + 0.809008i \(0.299995\pi\)
\(812\) 0 0
\(813\) −6.97206 −0.244521
\(814\) 0 0
\(815\) −49.0593 −1.71847
\(816\) 0 0
\(817\) 11.5887 0.405437
\(818\) 0 0
\(819\) 6.04305 0.211161
\(820\) 0 0
\(821\) 47.0944 1.64361 0.821803 0.569772i \(-0.192968\pi\)
0.821803 + 0.569772i \(0.192968\pi\)
\(822\) 0 0
\(823\) 33.9685 1.18407 0.592035 0.805913i \(-0.298325\pi\)
0.592035 + 0.805913i \(0.298325\pi\)
\(824\) 0 0
\(825\) 17.8960 0.623058
\(826\) 0 0
\(827\) 7.72016 0.268456 0.134228 0.990950i \(-0.457145\pi\)
0.134228 + 0.990950i \(0.457145\pi\)
\(828\) 0 0
\(829\) −5.77689 −0.200640 −0.100320 0.994955i \(-0.531987\pi\)
−0.100320 + 0.994955i \(0.531987\pi\)
\(830\) 0 0
\(831\) 16.2672 0.564302
\(832\) 0 0
\(833\) 1.00000 0.0346479
\(834\) 0 0
\(835\) −2.33806 −0.0809119
\(836\) 0 0
\(837\) 1.46766 0.0507299
\(838\) 0 0
\(839\) 27.9051 0.963392 0.481696 0.876338i \(-0.340021\pi\)
0.481696 + 0.876338i \(0.340021\pi\)
\(840\) 0 0
\(841\) 5.21366 0.179781
\(842\) 0 0
\(843\) 10.9443 0.376941
\(844\) 0 0
\(845\) −26.4329 −0.909319
\(846\) 0 0
\(847\) −1.77255 −0.0609056
\(848\) 0 0
\(849\) −1.36914 −0.0469887
\(850\) 0 0
\(851\) 42.8623 1.46930
\(852\) 0 0
\(853\) −15.8720 −0.543448 −0.271724 0.962375i \(-0.587594\pi\)
−0.271724 + 0.962375i \(0.587594\pi\)
\(854\) 0 0
\(855\) 15.8176 0.540951
\(856\) 0 0
\(857\) −51.7170 −1.76662 −0.883309 0.468791i \(-0.844690\pi\)
−0.883309 + 0.468791i \(0.844690\pi\)
\(858\) 0 0
\(859\) −4.55167 −0.155301 −0.0776506 0.996981i \(-0.524742\pi\)
−0.0776506 + 0.996981i \(0.524742\pi\)
\(860\) 0 0
\(861\) 4.01955 0.136986
\(862\) 0 0
\(863\) −16.4356 −0.559474 −0.279737 0.960077i \(-0.590247\pi\)
−0.279737 + 0.960077i \(0.590247\pi\)
\(864\) 0 0
\(865\) −18.3905 −0.625297
\(866\) 0 0
\(867\) −0.698654 −0.0237275
\(868\) 0 0
\(869\) 34.0920 1.15649
\(870\) 0 0
\(871\) 33.9624 1.15077
\(872\) 0 0
\(873\) 7.74672 0.262187
\(874\) 0 0
\(875\) 12.5799 0.425279
\(876\) 0 0
\(877\) −4.47537 −0.151122 −0.0755612 0.997141i \(-0.524075\pi\)
−0.0755612 + 0.997141i \(0.524075\pi\)
\(878\) 0 0
\(879\) −2.83306 −0.0955568
\(880\) 0 0
\(881\) 21.3197 0.718280 0.359140 0.933284i \(-0.383070\pi\)
0.359140 + 0.933284i \(0.383070\pi\)
\(882\) 0 0
\(883\) 32.6860 1.09997 0.549986 0.835174i \(-0.314633\pi\)
0.549986 + 0.835174i \(0.314633\pi\)
\(884\) 0 0
\(885\) −22.3906 −0.752651
\(886\) 0 0
\(887\) −36.1878 −1.21507 −0.607533 0.794294i \(-0.707841\pi\)
−0.607533 + 0.794294i \(0.707841\pi\)
\(888\) 0 0
\(889\) 3.67319 0.123195
\(890\) 0 0
\(891\) −14.7181 −0.493076
\(892\) 0 0
\(893\) 9.85102 0.329652
\(894\) 0 0
\(895\) −48.4998 −1.62117
\(896\) 0 0
\(897\) −11.1019 −0.370682
\(898\) 0 0
\(899\) 2.22928 0.0743506
\(900\) 0 0
\(901\) −4.98453 −0.166059
\(902\) 0 0
\(903\) 4.71229 0.156815
\(904\) 0 0
\(905\) 9.29768 0.309065
\(906\) 0 0
\(907\) 3.20778 0.106513 0.0532563 0.998581i \(-0.483040\pi\)
0.0532563 + 0.998581i \(0.483040\pi\)
\(908\) 0 0
\(909\) 34.3807 1.14034
\(910\) 0 0
\(911\) 33.1202 1.09732 0.548660 0.836045i \(-0.315138\pi\)
0.548660 + 0.836045i \(0.315138\pi\)
\(912\) 0 0
\(913\) 38.9638 1.28951
\(914\) 0 0
\(915\) −2.10635 −0.0696339
\(916\) 0 0
\(917\) 12.2574 0.404776
\(918\) 0 0
\(919\) 2.78562 0.0918893 0.0459446 0.998944i \(-0.485370\pi\)
0.0459446 + 0.998944i \(0.485370\pi\)
\(920\) 0 0
\(921\) 18.3427 0.604412
\(922\) 0 0
\(923\) 35.0836 1.15479
\(924\) 0 0
\(925\) −54.7204 −1.79920
\(926\) 0 0
\(927\) −36.8442 −1.21012
\(928\) 0 0
\(929\) 36.3760 1.19346 0.596728 0.802443i \(-0.296467\pi\)
0.596728 + 0.802443i \(0.296467\pi\)
\(930\) 0 0
\(931\) −1.71816 −0.0563106
\(932\) 0 0
\(933\) 4.40890 0.144341
\(934\) 0 0
\(935\) −11.1331 −0.364093
\(936\) 0 0
\(937\) 27.7698 0.907199 0.453600 0.891206i \(-0.350140\pi\)
0.453600 + 0.891206i \(0.350140\pi\)
\(938\) 0 0
\(939\) −18.8592 −0.615448
\(940\) 0 0
\(941\) 28.9593 0.944047 0.472023 0.881586i \(-0.343524\pi\)
0.472023 + 0.881586i \(0.343524\pi\)
\(942\) 0 0
\(943\) 38.0009 1.23748
\(944\) 0 0
\(945\) 14.1137 0.459117
\(946\) 0 0
\(947\) −1.67668 −0.0544849 −0.0272425 0.999629i \(-0.508673\pi\)
−0.0272425 + 0.999629i \(0.508673\pi\)
\(948\) 0 0
\(949\) −22.1956 −0.720500
\(950\) 0 0
\(951\) 3.82802 0.124132
\(952\) 0 0
\(953\) −48.0897 −1.55778 −0.778889 0.627162i \(-0.784217\pi\)
−0.778889 + 0.627162i \(0.784217\pi\)
\(954\) 0 0
\(955\) 32.5803 1.05427
\(956\) 0 0
\(957\) 12.4137 0.401279
\(958\) 0 0
\(959\) −14.0620 −0.454084
\(960\) 0 0
\(961\) −30.8547 −0.995314
\(962\) 0 0
\(963\) −38.6250 −1.24467
\(964\) 0 0
\(965\) −57.5090 −1.85128
\(966\) 0 0
\(967\) 18.2687 0.587480 0.293740 0.955885i \(-0.405100\pi\)
0.293740 + 0.955885i \(0.405100\pi\)
\(968\) 0 0
\(969\) 1.20040 0.0385625
\(970\) 0 0
\(971\) −34.3321 −1.10177 −0.550885 0.834581i \(-0.685710\pi\)
−0.550885 + 0.834581i \(0.685710\pi\)
\(972\) 0 0
\(973\) −0.150965 −0.00483971
\(974\) 0 0
\(975\) 14.1733 0.453910
\(976\) 0 0
\(977\) 31.1256 0.995795 0.497897 0.867236i \(-0.334106\pi\)
0.497897 + 0.867236i \(0.334106\pi\)
\(978\) 0 0
\(979\) −32.2612 −1.03107
\(980\) 0 0
\(981\) −19.4050 −0.619555
\(982\) 0 0
\(983\) −15.5467 −0.495863 −0.247931 0.968778i \(-0.579751\pi\)
−0.247931 + 0.968778i \(0.579751\pi\)
\(984\) 0 0
\(985\) −30.3854 −0.968159
\(986\) 0 0
\(987\) 4.00570 0.127503
\(988\) 0 0
\(989\) 44.5500 1.41661
\(990\) 0 0
\(991\) −15.5023 −0.492446 −0.246223 0.969213i \(-0.579190\pi\)
−0.246223 + 0.969213i \(0.579190\pi\)
\(992\) 0 0
\(993\) −19.5662 −0.620915
\(994\) 0 0
\(995\) −25.2302 −0.799851
\(996\) 0 0
\(997\) −41.9042 −1.32712 −0.663560 0.748123i \(-0.730955\pi\)
−0.663560 + 0.748123i \(0.730955\pi\)
\(998\) 0 0
\(999\) −24.9896 −0.790636
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 3808.2.a.g.1.3 6
4.3 odd 2 3808.2.a.o.1.4 yes 6
8.3 odd 2 7616.2.a.bv.1.3 6
8.5 even 2 7616.2.a.cd.1.4 6
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
3808.2.a.g.1.3 6 1.1 even 1 trivial
3808.2.a.o.1.4 yes 6 4.3 odd 2
7616.2.a.bv.1.3 6 8.3 odd 2
7616.2.a.cd.1.4 6 8.5 even 2