Properties

Label 3808.2.a.g.1.1
Level $3808$
Weight $2$
Character 3808.1
Self dual yes
Analytic conductor $30.407$
Analytic rank $1$
Dimension $6$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [3808,2,Mod(1,3808)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(3808, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("3808.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 3808 = 2^{5} \cdot 7 \cdot 17 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 3808.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(30.4070330897\)
Analytic rank: \(1\)
Dimension: \(6\)
Coefficient field: 6.6.147697840.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{6} - 2x^{5} - 10x^{4} + 10x^{3} + 18x^{2} - 16x + 3 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 2 \)
Twist minimal: yes
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.1
Root \(-2.18379\) of defining polynomial
Character \(\chi\) \(=\) 3808.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-3.18379 q^{3} -3.11205 q^{5} +1.00000 q^{7} +7.13652 q^{9} +1.84951 q^{11} -5.61227 q^{13} +9.90811 q^{15} +1.00000 q^{17} -4.50640 q^{19} -3.18379 q^{21} -6.03193 q^{23} +4.68484 q^{25} -13.1698 q^{27} +7.37503 q^{29} +0.507231 q^{31} -5.88844 q^{33} -3.11205 q^{35} +10.3544 q^{37} +17.8683 q^{39} +0.176337 q^{41} -2.57897 q^{43} -22.2092 q^{45} +9.01133 q^{47} +1.00000 q^{49} -3.18379 q^{51} +9.46796 q^{53} -5.75576 q^{55} +14.3474 q^{57} -3.36714 q^{59} +9.30246 q^{61} +7.13652 q^{63} +17.4657 q^{65} -3.89541 q^{67} +19.2044 q^{69} -9.87609 q^{71} -1.50777 q^{73} -14.9156 q^{75} +1.84951 q^{77} +11.8534 q^{79} +20.5204 q^{81} -1.70681 q^{83} -3.11205 q^{85} -23.4806 q^{87} -7.48581 q^{89} -5.61227 q^{91} -1.61492 q^{93} +14.0241 q^{95} +13.9046 q^{97} +13.1990 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 6 q - 4 q^{3} - 4 q^{5} + 6 q^{7} + 8 q^{9} - 8 q^{11} - 4 q^{13} + 6 q^{17} - 18 q^{19} - 4 q^{21} - 6 q^{23} + 12 q^{25} - 10 q^{27} + 4 q^{29} + 8 q^{31} - 6 q^{33} - 4 q^{35} - 8 q^{37} + 18 q^{39}+ \cdots - 32 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −3.18379 −1.83816 −0.919081 0.394068i \(-0.871067\pi\)
−0.919081 + 0.394068i \(0.871067\pi\)
\(4\) 0 0
\(5\) −3.11205 −1.39175 −0.695875 0.718163i \(-0.744983\pi\)
−0.695875 + 0.718163i \(0.744983\pi\)
\(6\) 0 0
\(7\) 1.00000 0.377964
\(8\) 0 0
\(9\) 7.13652 2.37884
\(10\) 0 0
\(11\) 1.84951 0.557647 0.278824 0.960342i \(-0.410055\pi\)
0.278824 + 0.960342i \(0.410055\pi\)
\(12\) 0 0
\(13\) −5.61227 −1.55656 −0.778282 0.627915i \(-0.783909\pi\)
−0.778282 + 0.627915i \(0.783909\pi\)
\(14\) 0 0
\(15\) 9.90811 2.55826
\(16\) 0 0
\(17\) 1.00000 0.242536
\(18\) 0 0
\(19\) −4.50640 −1.03384 −0.516920 0.856034i \(-0.672921\pi\)
−0.516920 + 0.856034i \(0.672921\pi\)
\(20\) 0 0
\(21\) −3.18379 −0.694760
\(22\) 0 0
\(23\) −6.03193 −1.25774 −0.628872 0.777509i \(-0.716483\pi\)
−0.628872 + 0.777509i \(0.716483\pi\)
\(24\) 0 0
\(25\) 4.68484 0.936969
\(26\) 0 0
\(27\) −13.1698 −2.53453
\(28\) 0 0
\(29\) 7.37503 1.36951 0.684755 0.728774i \(-0.259909\pi\)
0.684755 + 0.728774i \(0.259909\pi\)
\(30\) 0 0
\(31\) 0.507231 0.0911014 0.0455507 0.998962i \(-0.485496\pi\)
0.0455507 + 0.998962i \(0.485496\pi\)
\(32\) 0 0
\(33\) −5.88844 −1.02505
\(34\) 0 0
\(35\) −3.11205 −0.526032
\(36\) 0 0
\(37\) 10.3544 1.70226 0.851130 0.524955i \(-0.175918\pi\)
0.851130 + 0.524955i \(0.175918\pi\)
\(38\) 0 0
\(39\) 17.8683 2.86122
\(40\) 0 0
\(41\) 0.176337 0.0275392 0.0137696 0.999905i \(-0.495617\pi\)
0.0137696 + 0.999905i \(0.495617\pi\)
\(42\) 0 0
\(43\) −2.57897 −0.393290 −0.196645 0.980475i \(-0.563005\pi\)
−0.196645 + 0.980475i \(0.563005\pi\)
\(44\) 0 0
\(45\) −22.2092 −3.31075
\(46\) 0 0
\(47\) 9.01133 1.31444 0.657219 0.753700i \(-0.271733\pi\)
0.657219 + 0.753700i \(0.271733\pi\)
\(48\) 0 0
\(49\) 1.00000 0.142857
\(50\) 0 0
\(51\) −3.18379 −0.445820
\(52\) 0 0
\(53\) 9.46796 1.30052 0.650262 0.759710i \(-0.274659\pi\)
0.650262 + 0.759710i \(0.274659\pi\)
\(54\) 0 0
\(55\) −5.75576 −0.776106
\(56\) 0 0
\(57\) 14.3474 1.90036
\(58\) 0 0
\(59\) −3.36714 −0.438364 −0.219182 0.975684i \(-0.570339\pi\)
−0.219182 + 0.975684i \(0.570339\pi\)
\(60\) 0 0
\(61\) 9.30246 1.19106 0.595529 0.803334i \(-0.296942\pi\)
0.595529 + 0.803334i \(0.296942\pi\)
\(62\) 0 0
\(63\) 7.13652 0.899117
\(64\) 0 0
\(65\) 17.4657 2.16635
\(66\) 0 0
\(67\) −3.89541 −0.475900 −0.237950 0.971277i \(-0.576475\pi\)
−0.237950 + 0.971277i \(0.576475\pi\)
\(68\) 0 0
\(69\) 19.2044 2.31194
\(70\) 0 0
\(71\) −9.87609 −1.17208 −0.586038 0.810284i \(-0.699313\pi\)
−0.586038 + 0.810284i \(0.699313\pi\)
\(72\) 0 0
\(73\) −1.50777 −0.176471 −0.0882356 0.996100i \(-0.528123\pi\)
−0.0882356 + 0.996100i \(0.528123\pi\)
\(74\) 0 0
\(75\) −14.9156 −1.72230
\(76\) 0 0
\(77\) 1.84951 0.210771
\(78\) 0 0
\(79\) 11.8534 1.33361 0.666805 0.745232i \(-0.267661\pi\)
0.666805 + 0.745232i \(0.267661\pi\)
\(80\) 0 0
\(81\) 20.5204 2.28004
\(82\) 0 0
\(83\) −1.70681 −0.187347 −0.0936733 0.995603i \(-0.529861\pi\)
−0.0936733 + 0.995603i \(0.529861\pi\)
\(84\) 0 0
\(85\) −3.11205 −0.337549
\(86\) 0 0
\(87\) −23.4806 −2.51738
\(88\) 0 0
\(89\) −7.48581 −0.793494 −0.396747 0.917928i \(-0.629861\pi\)
−0.396747 + 0.917928i \(0.629861\pi\)
\(90\) 0 0
\(91\) −5.61227 −0.588326
\(92\) 0 0
\(93\) −1.61492 −0.167459
\(94\) 0 0
\(95\) 14.0241 1.43885
\(96\) 0 0
\(97\) 13.9046 1.41180 0.705901 0.708311i \(-0.250542\pi\)
0.705901 + 0.708311i \(0.250542\pi\)
\(98\) 0 0
\(99\) 13.1990 1.32655
\(100\) 0 0
\(101\) 12.4295 1.23678 0.618391 0.785870i \(-0.287785\pi\)
0.618391 + 0.785870i \(0.287785\pi\)
\(102\) 0 0
\(103\) 15.3495 1.51244 0.756218 0.654320i \(-0.227045\pi\)
0.756218 + 0.654320i \(0.227045\pi\)
\(104\) 0 0
\(105\) 9.90811 0.966933
\(106\) 0 0
\(107\) −14.4365 −1.39563 −0.697815 0.716278i \(-0.745844\pi\)
−0.697815 + 0.716278i \(0.745844\pi\)
\(108\) 0 0
\(109\) 3.25636 0.311903 0.155952 0.987765i \(-0.450156\pi\)
0.155952 + 0.987765i \(0.450156\pi\)
\(110\) 0 0
\(111\) −32.9664 −3.12903
\(112\) 0 0
\(113\) −12.3428 −1.16111 −0.580555 0.814221i \(-0.697164\pi\)
−0.580555 + 0.814221i \(0.697164\pi\)
\(114\) 0 0
\(115\) 18.7717 1.75047
\(116\) 0 0
\(117\) −40.0521 −3.70282
\(118\) 0 0
\(119\) 1.00000 0.0916698
\(120\) 0 0
\(121\) −7.57932 −0.689029
\(122\) 0 0
\(123\) −0.561419 −0.0506214
\(124\) 0 0
\(125\) 0.980779 0.0877235
\(126\) 0 0
\(127\) −13.3797 −1.18726 −0.593630 0.804738i \(-0.702306\pi\)
−0.593630 + 0.804738i \(0.702306\pi\)
\(128\) 0 0
\(129\) 8.21091 0.722930
\(130\) 0 0
\(131\) 21.3868 1.86857 0.934287 0.356521i \(-0.116037\pi\)
0.934287 + 0.356521i \(0.116037\pi\)
\(132\) 0 0
\(133\) −4.50640 −0.390754
\(134\) 0 0
\(135\) 40.9851 3.52744
\(136\) 0 0
\(137\) −18.2721 −1.56109 −0.780546 0.625098i \(-0.785059\pi\)
−0.780546 + 0.625098i \(0.785059\pi\)
\(138\) 0 0
\(139\) 6.82534 0.578918 0.289459 0.957190i \(-0.406525\pi\)
0.289459 + 0.957190i \(0.406525\pi\)
\(140\) 0 0
\(141\) −28.6902 −2.41615
\(142\) 0 0
\(143\) −10.3799 −0.868014
\(144\) 0 0
\(145\) −22.9515 −1.90602
\(146\) 0 0
\(147\) −3.18379 −0.262595
\(148\) 0 0
\(149\) −1.31560 −0.107778 −0.0538891 0.998547i \(-0.517162\pi\)
−0.0538891 + 0.998547i \(0.517162\pi\)
\(150\) 0 0
\(151\) −14.6945 −1.19582 −0.597911 0.801562i \(-0.704003\pi\)
−0.597911 + 0.801562i \(0.704003\pi\)
\(152\) 0 0
\(153\) 7.13652 0.576954
\(154\) 0 0
\(155\) −1.57853 −0.126790
\(156\) 0 0
\(157\) −24.7087 −1.97197 −0.985984 0.166840i \(-0.946644\pi\)
−0.985984 + 0.166840i \(0.946644\pi\)
\(158\) 0 0
\(159\) −30.1440 −2.39057
\(160\) 0 0
\(161\) −6.03193 −0.475382
\(162\) 0 0
\(163\) −8.34355 −0.653517 −0.326759 0.945108i \(-0.605956\pi\)
−0.326759 + 0.945108i \(0.605956\pi\)
\(164\) 0 0
\(165\) 18.3251 1.42661
\(166\) 0 0
\(167\) −17.6987 −1.36957 −0.684785 0.728745i \(-0.740104\pi\)
−0.684785 + 0.728745i \(0.740104\pi\)
\(168\) 0 0
\(169\) 18.4976 1.42289
\(170\) 0 0
\(171\) −32.1600 −2.45934
\(172\) 0 0
\(173\) 8.68450 0.660271 0.330135 0.943934i \(-0.392906\pi\)
0.330135 + 0.943934i \(0.392906\pi\)
\(174\) 0 0
\(175\) 4.68484 0.354141
\(176\) 0 0
\(177\) 10.7203 0.805784
\(178\) 0 0
\(179\) −13.2652 −0.991487 −0.495743 0.868469i \(-0.665104\pi\)
−0.495743 + 0.868469i \(0.665104\pi\)
\(180\) 0 0
\(181\) 4.48091 0.333063 0.166532 0.986036i \(-0.446743\pi\)
0.166532 + 0.986036i \(0.446743\pi\)
\(182\) 0 0
\(183\) −29.6171 −2.18936
\(184\) 0 0
\(185\) −32.2235 −2.36912
\(186\) 0 0
\(187\) 1.84951 0.135249
\(188\) 0 0
\(189\) −13.1698 −0.957963
\(190\) 0 0
\(191\) 4.47473 0.323780 0.161890 0.986809i \(-0.448241\pi\)
0.161890 + 0.986809i \(0.448241\pi\)
\(192\) 0 0
\(193\) −7.97711 −0.574205 −0.287103 0.957900i \(-0.592692\pi\)
−0.287103 + 0.957900i \(0.592692\pi\)
\(194\) 0 0
\(195\) −55.6070 −3.98210
\(196\) 0 0
\(197\) −12.2507 −0.872825 −0.436412 0.899747i \(-0.643751\pi\)
−0.436412 + 0.899747i \(0.643751\pi\)
\(198\) 0 0
\(199\) 8.82009 0.625240 0.312620 0.949878i \(-0.398793\pi\)
0.312620 + 0.949878i \(0.398793\pi\)
\(200\) 0 0
\(201\) 12.4022 0.874781
\(202\) 0 0
\(203\) 7.37503 0.517626
\(204\) 0 0
\(205\) −0.548768 −0.0383276
\(206\) 0 0
\(207\) −43.0470 −2.99197
\(208\) 0 0
\(209\) −8.33462 −0.576518
\(210\) 0 0
\(211\) 3.37102 0.232070 0.116035 0.993245i \(-0.462981\pi\)
0.116035 + 0.993245i \(0.462981\pi\)
\(212\) 0 0
\(213\) 31.4434 2.15447
\(214\) 0 0
\(215\) 8.02589 0.547361
\(216\) 0 0
\(217\) 0.507231 0.0344331
\(218\) 0 0
\(219\) 4.80042 0.324383
\(220\) 0 0
\(221\) −5.61227 −0.377522
\(222\) 0 0
\(223\) 19.5883 1.31173 0.655866 0.754877i \(-0.272303\pi\)
0.655866 + 0.754877i \(0.272303\pi\)
\(224\) 0 0
\(225\) 33.4335 2.22890
\(226\) 0 0
\(227\) 6.89634 0.457726 0.228863 0.973459i \(-0.426499\pi\)
0.228863 + 0.973459i \(0.426499\pi\)
\(228\) 0 0
\(229\) 13.1425 0.868478 0.434239 0.900798i \(-0.357017\pi\)
0.434239 + 0.900798i \(0.357017\pi\)
\(230\) 0 0
\(231\) −5.88844 −0.387431
\(232\) 0 0
\(233\) 18.9448 1.24111 0.620557 0.784161i \(-0.286906\pi\)
0.620557 + 0.784161i \(0.286906\pi\)
\(234\) 0 0
\(235\) −28.0437 −1.82937
\(236\) 0 0
\(237\) −37.7387 −2.45139
\(238\) 0 0
\(239\) 7.26079 0.469661 0.234831 0.972036i \(-0.424546\pi\)
0.234831 + 0.972036i \(0.424546\pi\)
\(240\) 0 0
\(241\) −6.38077 −0.411021 −0.205511 0.978655i \(-0.565886\pi\)
−0.205511 + 0.978655i \(0.565886\pi\)
\(242\) 0 0
\(243\) −25.8231 −1.65655
\(244\) 0 0
\(245\) −3.11205 −0.198821
\(246\) 0 0
\(247\) 25.2911 1.60924
\(248\) 0 0
\(249\) 5.43412 0.344373
\(250\) 0 0
\(251\) −26.1642 −1.65147 −0.825736 0.564057i \(-0.809240\pi\)
−0.825736 + 0.564057i \(0.809240\pi\)
\(252\) 0 0
\(253\) −11.1561 −0.701378
\(254\) 0 0
\(255\) 9.90811 0.620470
\(256\) 0 0
\(257\) 10.1670 0.634198 0.317099 0.948392i \(-0.397291\pi\)
0.317099 + 0.948392i \(0.397291\pi\)
\(258\) 0 0
\(259\) 10.3544 0.643394
\(260\) 0 0
\(261\) 52.6321 3.25785
\(262\) 0 0
\(263\) −24.4026 −1.50473 −0.752365 0.658747i \(-0.771087\pi\)
−0.752365 + 0.658747i \(0.771087\pi\)
\(264\) 0 0
\(265\) −29.4647 −1.81000
\(266\) 0 0
\(267\) 23.8332 1.45857
\(268\) 0 0
\(269\) −11.4364 −0.697292 −0.348646 0.937254i \(-0.613358\pi\)
−0.348646 + 0.937254i \(0.613358\pi\)
\(270\) 0 0
\(271\) 4.11951 0.250242 0.125121 0.992141i \(-0.460068\pi\)
0.125121 + 0.992141i \(0.460068\pi\)
\(272\) 0 0
\(273\) 17.8683 1.08144
\(274\) 0 0
\(275\) 8.66465 0.522498
\(276\) 0 0
\(277\) −17.5133 −1.05227 −0.526135 0.850401i \(-0.676360\pi\)
−0.526135 + 0.850401i \(0.676360\pi\)
\(278\) 0 0
\(279\) 3.61987 0.216716
\(280\) 0 0
\(281\) −20.3210 −1.21225 −0.606125 0.795370i \(-0.707277\pi\)
−0.606125 + 0.795370i \(0.707277\pi\)
\(282\) 0 0
\(283\) −2.90331 −0.172584 −0.0862919 0.996270i \(-0.527502\pi\)
−0.0862919 + 0.996270i \(0.527502\pi\)
\(284\) 0 0
\(285\) −44.6499 −2.64483
\(286\) 0 0
\(287\) 0.176337 0.0104088
\(288\) 0 0
\(289\) 1.00000 0.0588235
\(290\) 0 0
\(291\) −44.2694 −2.59512
\(292\) 0 0
\(293\) −22.4801 −1.31330 −0.656651 0.754194i \(-0.728028\pi\)
−0.656651 + 0.754194i \(0.728028\pi\)
\(294\) 0 0
\(295\) 10.4787 0.610093
\(296\) 0 0
\(297\) −24.3577 −1.41338
\(298\) 0 0
\(299\) 33.8528 1.95776
\(300\) 0 0
\(301\) −2.57897 −0.148650
\(302\) 0 0
\(303\) −39.5730 −2.27341
\(304\) 0 0
\(305\) −28.9497 −1.65766
\(306\) 0 0
\(307\) 4.06046 0.231743 0.115871 0.993264i \(-0.463034\pi\)
0.115871 + 0.993264i \(0.463034\pi\)
\(308\) 0 0
\(309\) −48.8697 −2.78010
\(310\) 0 0
\(311\) −25.0053 −1.41792 −0.708959 0.705250i \(-0.750835\pi\)
−0.708959 + 0.705250i \(0.750835\pi\)
\(312\) 0 0
\(313\) −18.7763 −1.06130 −0.530650 0.847591i \(-0.678052\pi\)
−0.530650 + 0.847591i \(0.678052\pi\)
\(314\) 0 0
\(315\) −22.2092 −1.25135
\(316\) 0 0
\(317\) 23.6062 1.32586 0.662929 0.748682i \(-0.269313\pi\)
0.662929 + 0.748682i \(0.269313\pi\)
\(318\) 0 0
\(319\) 13.6402 0.763703
\(320\) 0 0
\(321\) 45.9629 2.56540
\(322\) 0 0
\(323\) −4.50640 −0.250743
\(324\) 0 0
\(325\) −26.2926 −1.45845
\(326\) 0 0
\(327\) −10.3676 −0.573329
\(328\) 0 0
\(329\) 9.01133 0.496811
\(330\) 0 0
\(331\) −9.00795 −0.495122 −0.247561 0.968872i \(-0.579629\pi\)
−0.247561 + 0.968872i \(0.579629\pi\)
\(332\) 0 0
\(333\) 73.8947 4.04940
\(334\) 0 0
\(335\) 12.1227 0.662333
\(336\) 0 0
\(337\) 12.8813 0.701689 0.350844 0.936434i \(-0.385895\pi\)
0.350844 + 0.936434i \(0.385895\pi\)
\(338\) 0 0
\(339\) 39.2968 2.13431
\(340\) 0 0
\(341\) 0.938128 0.0508025
\(342\) 0 0
\(343\) 1.00000 0.0539949
\(344\) 0 0
\(345\) −59.7650 −3.21764
\(346\) 0 0
\(347\) 4.92381 0.264324 0.132162 0.991228i \(-0.457808\pi\)
0.132162 + 0.991228i \(0.457808\pi\)
\(348\) 0 0
\(349\) −12.8085 −0.685622 −0.342811 0.939404i \(-0.611379\pi\)
−0.342811 + 0.939404i \(0.611379\pi\)
\(350\) 0 0
\(351\) 73.9126 3.94516
\(352\) 0 0
\(353\) 5.80004 0.308705 0.154352 0.988016i \(-0.450671\pi\)
0.154352 + 0.988016i \(0.450671\pi\)
\(354\) 0 0
\(355\) 30.7349 1.63124
\(356\) 0 0
\(357\) −3.18379 −0.168504
\(358\) 0 0
\(359\) 21.6651 1.14344 0.571719 0.820450i \(-0.306277\pi\)
0.571719 + 0.820450i \(0.306277\pi\)
\(360\) 0 0
\(361\) 1.30764 0.0688231
\(362\) 0 0
\(363\) 24.1310 1.26655
\(364\) 0 0
\(365\) 4.69225 0.245604
\(366\) 0 0
\(367\) −4.80370 −0.250751 −0.125375 0.992109i \(-0.540014\pi\)
−0.125375 + 0.992109i \(0.540014\pi\)
\(368\) 0 0
\(369\) 1.25843 0.0655113
\(370\) 0 0
\(371\) 9.46796 0.491552
\(372\) 0 0
\(373\) −8.56349 −0.443401 −0.221700 0.975115i \(-0.571161\pi\)
−0.221700 + 0.975115i \(0.571161\pi\)
\(374\) 0 0
\(375\) −3.12259 −0.161250
\(376\) 0 0
\(377\) −41.3907 −2.13173
\(378\) 0 0
\(379\) 21.9474 1.12736 0.563681 0.825992i \(-0.309385\pi\)
0.563681 + 0.825992i \(0.309385\pi\)
\(380\) 0 0
\(381\) 42.5983 2.18238
\(382\) 0 0
\(383\) −37.0174 −1.89150 −0.945751 0.324892i \(-0.894672\pi\)
−0.945751 + 0.324892i \(0.894672\pi\)
\(384\) 0 0
\(385\) −5.75576 −0.293340
\(386\) 0 0
\(387\) −18.4049 −0.935574
\(388\) 0 0
\(389\) 23.2409 1.17836 0.589181 0.808001i \(-0.299451\pi\)
0.589181 + 0.808001i \(0.299451\pi\)
\(390\) 0 0
\(391\) −6.03193 −0.305048
\(392\) 0 0
\(393\) −68.0911 −3.43474
\(394\) 0 0
\(395\) −36.8883 −1.85605
\(396\) 0 0
\(397\) −5.62311 −0.282216 −0.141108 0.989994i \(-0.545066\pi\)
−0.141108 + 0.989994i \(0.545066\pi\)
\(398\) 0 0
\(399\) 14.3474 0.718270
\(400\) 0 0
\(401\) 20.3066 1.01406 0.507032 0.861927i \(-0.330742\pi\)
0.507032 + 0.861927i \(0.330742\pi\)
\(402\) 0 0
\(403\) −2.84672 −0.141805
\(404\) 0 0
\(405\) −63.8604 −3.17325
\(406\) 0 0
\(407\) 19.1506 0.949261
\(408\) 0 0
\(409\) 14.5104 0.717492 0.358746 0.933435i \(-0.383204\pi\)
0.358746 + 0.933435i \(0.383204\pi\)
\(410\) 0 0
\(411\) 58.1746 2.86954
\(412\) 0 0
\(413\) −3.36714 −0.165686
\(414\) 0 0
\(415\) 5.31167 0.260740
\(416\) 0 0
\(417\) −21.7305 −1.06415
\(418\) 0 0
\(419\) −32.3875 −1.58223 −0.791116 0.611667i \(-0.790499\pi\)
−0.791116 + 0.611667i \(0.790499\pi\)
\(420\) 0 0
\(421\) 5.30325 0.258464 0.129232 0.991614i \(-0.458749\pi\)
0.129232 + 0.991614i \(0.458749\pi\)
\(422\) 0 0
\(423\) 64.3096 3.12684
\(424\) 0 0
\(425\) 4.68484 0.227248
\(426\) 0 0
\(427\) 9.30246 0.450178
\(428\) 0 0
\(429\) 33.0475 1.59555
\(430\) 0 0
\(431\) 24.3623 1.17349 0.586746 0.809771i \(-0.300409\pi\)
0.586746 + 0.809771i \(0.300409\pi\)
\(432\) 0 0
\(433\) 19.0987 0.917826 0.458913 0.888481i \(-0.348239\pi\)
0.458913 + 0.888481i \(0.348239\pi\)
\(434\) 0 0
\(435\) 73.0727 3.50357
\(436\) 0 0
\(437\) 27.1823 1.30030
\(438\) 0 0
\(439\) 34.9043 1.66589 0.832946 0.553354i \(-0.186652\pi\)
0.832946 + 0.553354i \(0.186652\pi\)
\(440\) 0 0
\(441\) 7.13652 0.339834
\(442\) 0 0
\(443\) −39.1983 −1.86237 −0.931183 0.364552i \(-0.881222\pi\)
−0.931183 + 0.364552i \(0.881222\pi\)
\(444\) 0 0
\(445\) 23.2962 1.10435
\(446\) 0 0
\(447\) 4.18860 0.198114
\(448\) 0 0
\(449\) −18.4030 −0.868493 −0.434246 0.900794i \(-0.642985\pi\)
−0.434246 + 0.900794i \(0.642985\pi\)
\(450\) 0 0
\(451\) 0.326136 0.0153571
\(452\) 0 0
\(453\) 46.7843 2.19812
\(454\) 0 0
\(455\) 17.4657 0.818803
\(456\) 0 0
\(457\) −11.7635 −0.550271 −0.275136 0.961405i \(-0.588723\pi\)
−0.275136 + 0.961405i \(0.588723\pi\)
\(458\) 0 0
\(459\) −13.1698 −0.614715
\(460\) 0 0
\(461\) −33.2983 −1.55086 −0.775428 0.631436i \(-0.782466\pi\)
−0.775428 + 0.631436i \(0.782466\pi\)
\(462\) 0 0
\(463\) −5.68338 −0.264129 −0.132065 0.991241i \(-0.542161\pi\)
−0.132065 + 0.991241i \(0.542161\pi\)
\(464\) 0 0
\(465\) 5.02570 0.233061
\(466\) 0 0
\(467\) −38.3971 −1.77681 −0.888403 0.459064i \(-0.848185\pi\)
−0.888403 + 0.459064i \(0.848185\pi\)
\(468\) 0 0
\(469\) −3.89541 −0.179873
\(470\) 0 0
\(471\) 78.6673 3.62480
\(472\) 0 0
\(473\) −4.76983 −0.219317
\(474\) 0 0
\(475\) −21.1118 −0.968675
\(476\) 0 0
\(477\) 67.5683 3.09374
\(478\) 0 0
\(479\) −3.56259 −0.162779 −0.0813893 0.996682i \(-0.525936\pi\)
−0.0813893 + 0.996682i \(0.525936\pi\)
\(480\) 0 0
\(481\) −58.1119 −2.64968
\(482\) 0 0
\(483\) 19.2044 0.873830
\(484\) 0 0
\(485\) −43.2719 −1.96488
\(486\) 0 0
\(487\) 23.5851 1.06874 0.534371 0.845250i \(-0.320548\pi\)
0.534371 + 0.845250i \(0.320548\pi\)
\(488\) 0 0
\(489\) 26.5641 1.20127
\(490\) 0 0
\(491\) −14.1037 −0.636492 −0.318246 0.948008i \(-0.603094\pi\)
−0.318246 + 0.948008i \(0.603094\pi\)
\(492\) 0 0
\(493\) 7.37503 0.332155
\(494\) 0 0
\(495\) −41.0761 −1.84623
\(496\) 0 0
\(497\) −9.87609 −0.443003
\(498\) 0 0
\(499\) 32.3990 1.45038 0.725188 0.688551i \(-0.241753\pi\)
0.725188 + 0.688551i \(0.241753\pi\)
\(500\) 0 0
\(501\) 56.3491 2.51749
\(502\) 0 0
\(503\) −16.5150 −0.736367 −0.368184 0.929753i \(-0.620020\pi\)
−0.368184 + 0.929753i \(0.620020\pi\)
\(504\) 0 0
\(505\) −38.6812 −1.72129
\(506\) 0 0
\(507\) −58.8924 −2.61551
\(508\) 0 0
\(509\) 30.9498 1.37183 0.685913 0.727684i \(-0.259403\pi\)
0.685913 + 0.727684i \(0.259403\pi\)
\(510\) 0 0
\(511\) −1.50777 −0.0666998
\(512\) 0 0
\(513\) 59.3485 2.62030
\(514\) 0 0
\(515\) −47.7685 −2.10493
\(516\) 0 0
\(517\) 16.6665 0.732993
\(518\) 0 0
\(519\) −27.6496 −1.21368
\(520\) 0 0
\(521\) −33.4868 −1.46708 −0.733541 0.679645i \(-0.762134\pi\)
−0.733541 + 0.679645i \(0.762134\pi\)
\(522\) 0 0
\(523\) 10.9080 0.476974 0.238487 0.971146i \(-0.423348\pi\)
0.238487 + 0.971146i \(0.423348\pi\)
\(524\) 0 0
\(525\) −14.9156 −0.650969
\(526\) 0 0
\(527\) 0.507231 0.0220953
\(528\) 0 0
\(529\) 13.3842 0.581920
\(530\) 0 0
\(531\) −24.0296 −1.04280
\(532\) 0 0
\(533\) −0.989649 −0.0428664
\(534\) 0 0
\(535\) 44.9271 1.94237
\(536\) 0 0
\(537\) 42.2336 1.82251
\(538\) 0 0
\(539\) 1.84951 0.0796639
\(540\) 0 0
\(541\) −39.9806 −1.71890 −0.859450 0.511219i \(-0.829194\pi\)
−0.859450 + 0.511219i \(0.829194\pi\)
\(542\) 0 0
\(543\) −14.2663 −0.612224
\(544\) 0 0
\(545\) −10.1340 −0.434091
\(546\) 0 0
\(547\) −14.2550 −0.609502 −0.304751 0.952432i \(-0.598573\pi\)
−0.304751 + 0.952432i \(0.598573\pi\)
\(548\) 0 0
\(549\) 66.3872 2.83334
\(550\) 0 0
\(551\) −33.2349 −1.41585
\(552\) 0 0
\(553\) 11.8534 0.504057
\(554\) 0 0
\(555\) 102.593 4.35483
\(556\) 0 0
\(557\) −31.5818 −1.33817 −0.669083 0.743188i \(-0.733313\pi\)
−0.669083 + 0.743188i \(0.733313\pi\)
\(558\) 0 0
\(559\) 14.4739 0.612181
\(560\) 0 0
\(561\) −5.88844 −0.248610
\(562\) 0 0
\(563\) −38.5652 −1.62533 −0.812665 0.582732i \(-0.801984\pi\)
−0.812665 + 0.582732i \(0.801984\pi\)
\(564\) 0 0
\(565\) 38.4113 1.61598
\(566\) 0 0
\(567\) 20.5204 0.861775
\(568\) 0 0
\(569\) −7.83080 −0.328284 −0.164142 0.986437i \(-0.552486\pi\)
−0.164142 + 0.986437i \(0.552486\pi\)
\(570\) 0 0
\(571\) −5.40294 −0.226106 −0.113053 0.993589i \(-0.536063\pi\)
−0.113053 + 0.993589i \(0.536063\pi\)
\(572\) 0 0
\(573\) −14.2466 −0.595160
\(574\) 0 0
\(575\) −28.2586 −1.17847
\(576\) 0 0
\(577\) 37.9284 1.57898 0.789489 0.613764i \(-0.210345\pi\)
0.789489 + 0.613764i \(0.210345\pi\)
\(578\) 0 0
\(579\) 25.3975 1.05548
\(580\) 0 0
\(581\) −1.70681 −0.0708103
\(582\) 0 0
\(583\) 17.5111 0.725234
\(584\) 0 0
\(585\) 124.644 5.15340
\(586\) 0 0
\(587\) 30.2997 1.25060 0.625302 0.780383i \(-0.284976\pi\)
0.625302 + 0.780383i \(0.284976\pi\)
\(588\) 0 0
\(589\) −2.28579 −0.0941842
\(590\) 0 0
\(591\) 39.0036 1.60439
\(592\) 0 0
\(593\) −3.82803 −0.157198 −0.0785992 0.996906i \(-0.525045\pi\)
−0.0785992 + 0.996906i \(0.525045\pi\)
\(594\) 0 0
\(595\) −3.11205 −0.127582
\(596\) 0 0
\(597\) −28.0813 −1.14929
\(598\) 0 0
\(599\) 23.6279 0.965409 0.482704 0.875783i \(-0.339655\pi\)
0.482704 + 0.875783i \(0.339655\pi\)
\(600\) 0 0
\(601\) 5.61162 0.228903 0.114451 0.993429i \(-0.463489\pi\)
0.114451 + 0.993429i \(0.463489\pi\)
\(602\) 0 0
\(603\) −27.7996 −1.13209
\(604\) 0 0
\(605\) 23.5872 0.958957
\(606\) 0 0
\(607\) −31.5340 −1.27992 −0.639962 0.768406i \(-0.721050\pi\)
−0.639962 + 0.768406i \(0.721050\pi\)
\(608\) 0 0
\(609\) −23.4806 −0.951481
\(610\) 0 0
\(611\) −50.5741 −2.04601
\(612\) 0 0
\(613\) 31.4283 1.26938 0.634689 0.772767i \(-0.281128\pi\)
0.634689 + 0.772767i \(0.281128\pi\)
\(614\) 0 0
\(615\) 1.74716 0.0704524
\(616\) 0 0
\(617\) −14.2555 −0.573905 −0.286952 0.957945i \(-0.592642\pi\)
−0.286952 + 0.957945i \(0.592642\pi\)
\(618\) 0 0
\(619\) −6.08036 −0.244390 −0.122195 0.992506i \(-0.538993\pi\)
−0.122195 + 0.992506i \(0.538993\pi\)
\(620\) 0 0
\(621\) 79.4394 3.18779
\(622\) 0 0
\(623\) −7.48581 −0.299913
\(624\) 0 0
\(625\) −26.4765 −1.05906
\(626\) 0 0
\(627\) 26.5357 1.05973
\(628\) 0 0
\(629\) 10.3544 0.412859
\(630\) 0 0
\(631\) 5.88983 0.234470 0.117235 0.993104i \(-0.462597\pi\)
0.117235 + 0.993104i \(0.462597\pi\)
\(632\) 0 0
\(633\) −10.7326 −0.426583
\(634\) 0 0
\(635\) 41.6384 1.65237
\(636\) 0 0
\(637\) −5.61227 −0.222366
\(638\) 0 0
\(639\) −70.4809 −2.78818
\(640\) 0 0
\(641\) 6.12352 0.241865 0.120932 0.992661i \(-0.461412\pi\)
0.120932 + 0.992661i \(0.461412\pi\)
\(642\) 0 0
\(643\) 37.6734 1.48569 0.742847 0.669462i \(-0.233475\pi\)
0.742847 + 0.669462i \(0.233475\pi\)
\(644\) 0 0
\(645\) −25.5528 −1.00614
\(646\) 0 0
\(647\) −40.5122 −1.59270 −0.796350 0.604836i \(-0.793239\pi\)
−0.796350 + 0.604836i \(0.793239\pi\)
\(648\) 0 0
\(649\) −6.22754 −0.244452
\(650\) 0 0
\(651\) −1.61492 −0.0632936
\(652\) 0 0
\(653\) 11.2530 0.440365 0.220183 0.975459i \(-0.429335\pi\)
0.220183 + 0.975459i \(0.429335\pi\)
\(654\) 0 0
\(655\) −66.5568 −2.60059
\(656\) 0 0
\(657\) −10.7602 −0.419797
\(658\) 0 0
\(659\) −25.0186 −0.974587 −0.487294 0.873238i \(-0.662016\pi\)
−0.487294 + 0.873238i \(0.662016\pi\)
\(660\) 0 0
\(661\) 35.1914 1.36879 0.684393 0.729113i \(-0.260067\pi\)
0.684393 + 0.729113i \(0.260067\pi\)
\(662\) 0 0
\(663\) 17.8683 0.693947
\(664\) 0 0
\(665\) 14.0241 0.543833
\(666\) 0 0
\(667\) −44.4857 −1.72249
\(668\) 0 0
\(669\) −62.3652 −2.41118
\(670\) 0 0
\(671\) 17.2050 0.664190
\(672\) 0 0
\(673\) −19.5402 −0.753221 −0.376610 0.926372i \(-0.622910\pi\)
−0.376610 + 0.926372i \(0.622910\pi\)
\(674\) 0 0
\(675\) −61.6986 −2.37478
\(676\) 0 0
\(677\) −29.7159 −1.14208 −0.571038 0.820923i \(-0.693459\pi\)
−0.571038 + 0.820923i \(0.693459\pi\)
\(678\) 0 0
\(679\) 13.9046 0.533611
\(680\) 0 0
\(681\) −21.9565 −0.841375
\(682\) 0 0
\(683\) −26.0686 −0.997486 −0.498743 0.866750i \(-0.666205\pi\)
−0.498743 + 0.866750i \(0.666205\pi\)
\(684\) 0 0
\(685\) 56.8637 2.17265
\(686\) 0 0
\(687\) −41.8429 −1.59640
\(688\) 0 0
\(689\) −53.1367 −2.02435
\(690\) 0 0
\(691\) 39.2377 1.49267 0.746335 0.665570i \(-0.231812\pi\)
0.746335 + 0.665570i \(0.231812\pi\)
\(692\) 0 0
\(693\) 13.1990 0.501390
\(694\) 0 0
\(695\) −21.2408 −0.805709
\(696\) 0 0
\(697\) 0.176337 0.00667922
\(698\) 0 0
\(699\) −60.3163 −2.28137
\(700\) 0 0
\(701\) 2.30117 0.0869141 0.0434570 0.999055i \(-0.486163\pi\)
0.0434570 + 0.999055i \(0.486163\pi\)
\(702\) 0 0
\(703\) −46.6613 −1.75986
\(704\) 0 0
\(705\) 89.2853 3.36268
\(706\) 0 0
\(707\) 12.4295 0.467460
\(708\) 0 0
\(709\) −2.18085 −0.0819035 −0.0409518 0.999161i \(-0.513039\pi\)
−0.0409518 + 0.999161i \(0.513039\pi\)
\(710\) 0 0
\(711\) 84.5920 3.17245
\(712\) 0 0
\(713\) −3.05958 −0.114582
\(714\) 0 0
\(715\) 32.3029 1.20806
\(716\) 0 0
\(717\) −23.1168 −0.863313
\(718\) 0 0
\(719\) 9.06273 0.337983 0.168991 0.985618i \(-0.445949\pi\)
0.168991 + 0.985618i \(0.445949\pi\)
\(720\) 0 0
\(721\) 15.3495 0.571647
\(722\) 0 0
\(723\) 20.3150 0.755524
\(724\) 0 0
\(725\) 34.5509 1.28319
\(726\) 0 0
\(727\) −47.6743 −1.76814 −0.884070 0.467354i \(-0.845207\pi\)
−0.884070 + 0.467354i \(0.845207\pi\)
\(728\) 0 0
\(729\) 20.6543 0.764974
\(730\) 0 0
\(731\) −2.57897 −0.0953868
\(732\) 0 0
\(733\) −17.1971 −0.635189 −0.317594 0.948227i \(-0.602875\pi\)
−0.317594 + 0.948227i \(0.602875\pi\)
\(734\) 0 0
\(735\) 9.90811 0.365466
\(736\) 0 0
\(737\) −7.20458 −0.265384
\(738\) 0 0
\(739\) −5.99838 −0.220654 −0.110327 0.993895i \(-0.535190\pi\)
−0.110327 + 0.993895i \(0.535190\pi\)
\(740\) 0 0
\(741\) −80.5217 −2.95804
\(742\) 0 0
\(743\) 2.05061 0.0752296 0.0376148 0.999292i \(-0.488024\pi\)
0.0376148 + 0.999292i \(0.488024\pi\)
\(744\) 0 0
\(745\) 4.09421 0.150000
\(746\) 0 0
\(747\) −12.1807 −0.445668
\(748\) 0 0
\(749\) −14.4365 −0.527499
\(750\) 0 0
\(751\) −33.7674 −1.23219 −0.616096 0.787671i \(-0.711287\pi\)
−0.616096 + 0.787671i \(0.711287\pi\)
\(752\) 0 0
\(753\) 83.3014 3.03567
\(754\) 0 0
\(755\) 45.7300 1.66429
\(756\) 0 0
\(757\) 13.9018 0.505269 0.252635 0.967562i \(-0.418703\pi\)
0.252635 + 0.967562i \(0.418703\pi\)
\(758\) 0 0
\(759\) 35.5187 1.28925
\(760\) 0 0
\(761\) 26.9919 0.978456 0.489228 0.872156i \(-0.337279\pi\)
0.489228 + 0.872156i \(0.337279\pi\)
\(762\) 0 0
\(763\) 3.25636 0.117888
\(764\) 0 0
\(765\) −22.2092 −0.802975
\(766\) 0 0
\(767\) 18.8973 0.682341
\(768\) 0 0
\(769\) −41.3033 −1.48944 −0.744718 0.667379i \(-0.767416\pi\)
−0.744718 + 0.667379i \(0.767416\pi\)
\(770\) 0 0
\(771\) −32.3695 −1.16576
\(772\) 0 0
\(773\) 18.0477 0.649130 0.324565 0.945863i \(-0.394782\pi\)
0.324565 + 0.945863i \(0.394782\pi\)
\(774\) 0 0
\(775\) 2.37630 0.0853592
\(776\) 0 0
\(777\) −32.9664 −1.18266
\(778\) 0 0
\(779\) −0.794643 −0.0284710
\(780\) 0 0
\(781\) −18.2659 −0.653605
\(782\) 0 0
\(783\) −97.1279 −3.47107
\(784\) 0 0
\(785\) 76.8946 2.74449
\(786\) 0 0
\(787\) 2.45217 0.0874105 0.0437053 0.999044i \(-0.486084\pi\)
0.0437053 + 0.999044i \(0.486084\pi\)
\(788\) 0 0
\(789\) 77.6928 2.76594
\(790\) 0 0
\(791\) −12.3428 −0.438858
\(792\) 0 0
\(793\) −52.2079 −1.85396
\(794\) 0 0
\(795\) 93.8095 3.32708
\(796\) 0 0
\(797\) −33.8480 −1.19896 −0.599478 0.800391i \(-0.704625\pi\)
−0.599478 + 0.800391i \(0.704625\pi\)
\(798\) 0 0
\(799\) 9.01133 0.318798
\(800\) 0 0
\(801\) −53.4226 −1.88760
\(802\) 0 0
\(803\) −2.78863 −0.0984087
\(804\) 0 0
\(805\) 18.7717 0.661614
\(806\) 0 0
\(807\) 36.4112 1.28174
\(808\) 0 0
\(809\) 23.5930 0.829484 0.414742 0.909939i \(-0.363872\pi\)
0.414742 + 0.909939i \(0.363872\pi\)
\(810\) 0 0
\(811\) −3.55235 −0.124740 −0.0623700 0.998053i \(-0.519866\pi\)
−0.0623700 + 0.998053i \(0.519866\pi\)
\(812\) 0 0
\(813\) −13.1157 −0.459986
\(814\) 0 0
\(815\) 25.9655 0.909533
\(816\) 0 0
\(817\) 11.6219 0.406598
\(818\) 0 0
\(819\) −40.0521 −1.39953
\(820\) 0 0
\(821\) −37.4720 −1.30778 −0.653891 0.756589i \(-0.726865\pi\)
−0.653891 + 0.756589i \(0.726865\pi\)
\(822\) 0 0
\(823\) 43.3752 1.51196 0.755982 0.654592i \(-0.227160\pi\)
0.755982 + 0.654592i \(0.227160\pi\)
\(824\) 0 0
\(825\) −27.5864 −0.960437
\(826\) 0 0
\(827\) −13.5519 −0.471246 −0.235623 0.971844i \(-0.575713\pi\)
−0.235623 + 0.971844i \(0.575713\pi\)
\(828\) 0 0
\(829\) −18.0498 −0.626895 −0.313447 0.949606i \(-0.601484\pi\)
−0.313447 + 0.949606i \(0.601484\pi\)
\(830\) 0 0
\(831\) 55.7586 1.93424
\(832\) 0 0
\(833\) 1.00000 0.0346479
\(834\) 0 0
\(835\) 55.0793 1.90610
\(836\) 0 0
\(837\) −6.68014 −0.230900
\(838\) 0 0
\(839\) −56.6173 −1.95465 −0.977323 0.211754i \(-0.932083\pi\)
−0.977323 + 0.211754i \(0.932083\pi\)
\(840\) 0 0
\(841\) 25.3911 0.875557
\(842\) 0 0
\(843\) 64.6978 2.22831
\(844\) 0 0
\(845\) −57.5654 −1.98031
\(846\) 0 0
\(847\) −7.57932 −0.260429
\(848\) 0 0
\(849\) 9.24353 0.317237
\(850\) 0 0
\(851\) −62.4572 −2.14101
\(852\) 0 0
\(853\) −11.9233 −0.408245 −0.204122 0.978945i \(-0.565434\pi\)
−0.204122 + 0.978945i \(0.565434\pi\)
\(854\) 0 0
\(855\) 100.084 3.42278
\(856\) 0 0
\(857\) 4.17512 0.142619 0.0713097 0.997454i \(-0.477282\pi\)
0.0713097 + 0.997454i \(0.477282\pi\)
\(858\) 0 0
\(859\) 12.8623 0.438855 0.219428 0.975629i \(-0.429581\pi\)
0.219428 + 0.975629i \(0.429581\pi\)
\(860\) 0 0
\(861\) −0.561419 −0.0191331
\(862\) 0 0
\(863\) 53.6300 1.82559 0.912794 0.408420i \(-0.133920\pi\)
0.912794 + 0.408420i \(0.133920\pi\)
\(864\) 0 0
\(865\) −27.0266 −0.918932
\(866\) 0 0
\(867\) −3.18379 −0.108127
\(868\) 0 0
\(869\) 21.9229 0.743684
\(870\) 0 0
\(871\) 21.8621 0.740768
\(872\) 0 0
\(873\) 99.2307 3.35845
\(874\) 0 0
\(875\) 0.980779 0.0331564
\(876\) 0 0
\(877\) −17.8774 −0.603677 −0.301838 0.953359i \(-0.597600\pi\)
−0.301838 + 0.953359i \(0.597600\pi\)
\(878\) 0 0
\(879\) 71.5720 2.41406
\(880\) 0 0
\(881\) −36.4616 −1.22842 −0.614211 0.789142i \(-0.710526\pi\)
−0.614211 + 0.789142i \(0.710526\pi\)
\(882\) 0 0
\(883\) −22.3975 −0.753737 −0.376869 0.926267i \(-0.622999\pi\)
−0.376869 + 0.926267i \(0.622999\pi\)
\(884\) 0 0
\(885\) −33.3619 −1.12145
\(886\) 0 0
\(887\) 48.6911 1.63489 0.817443 0.576010i \(-0.195391\pi\)
0.817443 + 0.576010i \(0.195391\pi\)
\(888\) 0 0
\(889\) −13.3797 −0.448742
\(890\) 0 0
\(891\) 37.9526 1.27146
\(892\) 0 0
\(893\) −40.6087 −1.35892
\(894\) 0 0
\(895\) 41.2819 1.37990
\(896\) 0 0
\(897\) −107.780 −3.59868
\(898\) 0 0
\(899\) 3.74085 0.124764
\(900\) 0 0
\(901\) 9.46796 0.315423
\(902\) 0 0
\(903\) 8.21091 0.273242
\(904\) 0 0
\(905\) −13.9448 −0.463541
\(906\) 0 0
\(907\) 34.5972 1.14878 0.574391 0.818581i \(-0.305239\pi\)
0.574391 + 0.818581i \(0.305239\pi\)
\(908\) 0 0
\(909\) 88.7035 2.94211
\(910\) 0 0
\(911\) 0.0140640 0.000465962 0 0.000232981 1.00000i \(-0.499926\pi\)
0.000232981 1.00000i \(0.499926\pi\)
\(912\) 0 0
\(913\) −3.15675 −0.104473
\(914\) 0 0
\(915\) 92.1698 3.04704
\(916\) 0 0
\(917\) 21.3868 0.706255
\(918\) 0 0
\(919\) 43.9804 1.45078 0.725389 0.688339i \(-0.241660\pi\)
0.725389 + 0.688339i \(0.241660\pi\)
\(920\) 0 0
\(921\) −12.9277 −0.425981
\(922\) 0 0
\(923\) 55.4273 1.82441
\(924\) 0 0
\(925\) 48.5089 1.59496
\(926\) 0 0
\(927\) 109.542 3.59784
\(928\) 0 0
\(929\) −28.5407 −0.936389 −0.468194 0.883625i \(-0.655095\pi\)
−0.468194 + 0.883625i \(0.655095\pi\)
\(930\) 0 0
\(931\) −4.50640 −0.147691
\(932\) 0 0
\(933\) 79.6115 2.60636
\(934\) 0 0
\(935\) −5.75576 −0.188233
\(936\) 0 0
\(937\) 19.5088 0.637323 0.318662 0.947869i \(-0.396767\pi\)
0.318662 + 0.947869i \(0.396767\pi\)
\(938\) 0 0
\(939\) 59.7798 1.95084
\(940\) 0 0
\(941\) −14.5421 −0.474059 −0.237029 0.971502i \(-0.576174\pi\)
−0.237029 + 0.971502i \(0.576174\pi\)
\(942\) 0 0
\(943\) −1.06365 −0.0346372
\(944\) 0 0
\(945\) 40.9851 1.33325
\(946\) 0 0
\(947\) 18.5613 0.603162 0.301581 0.953441i \(-0.402486\pi\)
0.301581 + 0.953441i \(0.402486\pi\)
\(948\) 0 0
\(949\) 8.46201 0.274689
\(950\) 0 0
\(951\) −75.1573 −2.43714
\(952\) 0 0
\(953\) 45.7471 1.48189 0.740947 0.671564i \(-0.234377\pi\)
0.740947 + 0.671564i \(0.234377\pi\)
\(954\) 0 0
\(955\) −13.9256 −0.450621
\(956\) 0 0
\(957\) −43.4275 −1.40381
\(958\) 0 0
\(959\) −18.2721 −0.590038
\(960\) 0 0
\(961\) −30.7427 −0.991701
\(962\) 0 0
\(963\) −103.027 −3.31998
\(964\) 0 0
\(965\) 24.8252 0.799150
\(966\) 0 0
\(967\) −2.41688 −0.0777216 −0.0388608 0.999245i \(-0.512373\pi\)
−0.0388608 + 0.999245i \(0.512373\pi\)
\(968\) 0 0
\(969\) 14.3474 0.460906
\(970\) 0 0
\(971\) 11.1280 0.357115 0.178558 0.983929i \(-0.442857\pi\)
0.178558 + 0.983929i \(0.442857\pi\)
\(972\) 0 0
\(973\) 6.82534 0.218810
\(974\) 0 0
\(975\) 83.7102 2.68087
\(976\) 0 0
\(977\) 57.6117 1.84316 0.921580 0.388188i \(-0.126899\pi\)
0.921580 + 0.388188i \(0.126899\pi\)
\(978\) 0 0
\(979\) −13.8451 −0.442490
\(980\) 0 0
\(981\) 23.2391 0.741968
\(982\) 0 0
\(983\) −1.07381 −0.0342491 −0.0171245 0.999853i \(-0.505451\pi\)
−0.0171245 + 0.999853i \(0.505451\pi\)
\(984\) 0 0
\(985\) 38.1247 1.21475
\(986\) 0 0
\(987\) −28.6902 −0.913219
\(988\) 0 0
\(989\) 15.5562 0.494658
\(990\) 0 0
\(991\) −24.8448 −0.789222 −0.394611 0.918848i \(-0.629121\pi\)
−0.394611 + 0.918848i \(0.629121\pi\)
\(992\) 0 0
\(993\) 28.6794 0.910114
\(994\) 0 0
\(995\) −27.4485 −0.870177
\(996\) 0 0
\(997\) −14.1344 −0.447641 −0.223821 0.974630i \(-0.571853\pi\)
−0.223821 + 0.974630i \(0.571853\pi\)
\(998\) 0 0
\(999\) −136.366 −4.31443
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 3808.2.a.g.1.1 6
4.3 odd 2 3808.2.a.o.1.6 yes 6
8.3 odd 2 7616.2.a.bv.1.1 6
8.5 even 2 7616.2.a.cd.1.6 6
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
3808.2.a.g.1.1 6 1.1 even 1 trivial
3808.2.a.o.1.6 yes 6 4.3 odd 2
7616.2.a.bv.1.1 6 8.3 odd 2
7616.2.a.cd.1.6 6 8.5 even 2