Properties

Label 3808.2.a.e.1.5
Level $3808$
Weight $2$
Character 3808.1
Self dual yes
Analytic conductor $30.407$
Analytic rank $0$
Dimension $5$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [3808,2,Mod(1,3808)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(3808, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0, 0])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("3808.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 3808 = 2^{5} \cdot 7 \cdot 17 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 3808.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [5,0,0,0,-2,0,-5] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(7)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(30.4070330897\)
Analytic rank: \(0\)
Dimension: \(5\)
Coefficient field: 5.5.804272.1
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{5} - 9x^{3} - 6x^{2} + 3x + 2 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.5
Root \(3.24142\) of defining polynomial
Character \(\chi\) \(=\) 3808.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+3.24142 q^{3} +1.62440 q^{5} -1.00000 q^{7} +7.50679 q^{9} -4.09420 q^{11} +1.35392 q^{13} +5.26537 q^{15} -1.00000 q^{17} +2.21410 q^{19} -3.24142 q^{21} +9.44813 q^{23} -2.36131 q^{25} +14.6084 q^{27} -4.61365 q^{29} +8.18757 q^{31} -13.2710 q^{33} -1.62440 q^{35} +6.03699 q^{37} +4.38863 q^{39} +2.10159 q^{41} -11.2636 q^{43} +12.1941 q^{45} +13.3909 q^{47} +1.00000 q^{49} -3.24142 q^{51} -3.20334 q^{53} -6.65064 q^{55} +7.17682 q^{57} -9.76477 q^{59} +5.80716 q^{61} -7.50679 q^{63} +2.19932 q^{65} +11.3165 q^{67} +30.6253 q^{69} -5.22311 q^{71} -11.4529 q^{73} -7.65400 q^{75} +4.09420 q^{77} +3.61137 q^{79} +24.8315 q^{81} +16.8458 q^{83} -1.62440 q^{85} -14.9548 q^{87} +10.5918 q^{89} -1.35392 q^{91} +26.5393 q^{93} +3.59659 q^{95} -9.74339 q^{97} -30.7343 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 5 q - 2 q^{5} - 5 q^{7} + 3 q^{9} - 4 q^{11} - 6 q^{13} + 8 q^{15} - 5 q^{17} - 6 q^{19} + 18 q^{23} + 5 q^{25} + 18 q^{27} - 14 q^{29} + 16 q^{31} - 26 q^{33} + 2 q^{35} + 2 q^{37} + 6 q^{39} - 10 q^{41}+ \cdots - 8 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 3.24142 1.87143 0.935717 0.352753i \(-0.114754\pi\)
0.935717 + 0.352753i \(0.114754\pi\)
\(4\) 0 0
\(5\) 1.62440 0.726455 0.363228 0.931700i \(-0.381675\pi\)
0.363228 + 0.931700i \(0.381675\pi\)
\(6\) 0 0
\(7\) −1.00000 −0.377964
\(8\) 0 0
\(9\) 7.50679 2.50226
\(10\) 0 0
\(11\) −4.09420 −1.23445 −0.617224 0.786787i \(-0.711743\pi\)
−0.617224 + 0.786787i \(0.711743\pi\)
\(12\) 0 0
\(13\) 1.35392 0.375511 0.187755 0.982216i \(-0.439879\pi\)
0.187755 + 0.982216i \(0.439879\pi\)
\(14\) 0 0
\(15\) 5.26537 1.35951
\(16\) 0 0
\(17\) −1.00000 −0.242536
\(18\) 0 0
\(19\) 2.21410 0.507949 0.253974 0.967211i \(-0.418262\pi\)
0.253974 + 0.967211i \(0.418262\pi\)
\(20\) 0 0
\(21\) −3.24142 −0.707335
\(22\) 0 0
\(23\) 9.44813 1.97007 0.985035 0.172353i \(-0.0551371\pi\)
0.985035 + 0.172353i \(0.0551371\pi\)
\(24\) 0 0
\(25\) −2.36131 −0.472263
\(26\) 0 0
\(27\) 14.6084 2.81138
\(28\) 0 0
\(29\) −4.61365 −0.856733 −0.428366 0.903605i \(-0.640911\pi\)
−0.428366 + 0.903605i \(0.640911\pi\)
\(30\) 0 0
\(31\) 8.18757 1.47053 0.735266 0.677779i \(-0.237057\pi\)
0.735266 + 0.677779i \(0.237057\pi\)
\(32\) 0 0
\(33\) −13.2710 −2.31019
\(34\) 0 0
\(35\) −1.62440 −0.274574
\(36\) 0 0
\(37\) 6.03699 0.992475 0.496237 0.868187i \(-0.334715\pi\)
0.496237 + 0.868187i \(0.334715\pi\)
\(38\) 0 0
\(39\) 4.38863 0.702744
\(40\) 0 0
\(41\) 2.10159 0.328213 0.164107 0.986443i \(-0.447526\pi\)
0.164107 + 0.986443i \(0.447526\pi\)
\(42\) 0 0
\(43\) −11.2636 −1.71769 −0.858844 0.512238i \(-0.828817\pi\)
−0.858844 + 0.512238i \(0.828817\pi\)
\(44\) 0 0
\(45\) 12.1941 1.81778
\(46\) 0 0
\(47\) 13.3909 1.95327 0.976633 0.214915i \(-0.0689475\pi\)
0.976633 + 0.214915i \(0.0689475\pi\)
\(48\) 0 0
\(49\) 1.00000 0.142857
\(50\) 0 0
\(51\) −3.24142 −0.453889
\(52\) 0 0
\(53\) −3.20334 −0.440013 −0.220006 0.975498i \(-0.570608\pi\)
−0.220006 + 0.975498i \(0.570608\pi\)
\(54\) 0 0
\(55\) −6.65064 −0.896771
\(56\) 0 0
\(57\) 7.17682 0.950592
\(58\) 0 0
\(59\) −9.76477 −1.27126 −0.635632 0.771992i \(-0.719260\pi\)
−0.635632 + 0.771992i \(0.719260\pi\)
\(60\) 0 0
\(61\) 5.80716 0.743531 0.371765 0.928327i \(-0.378753\pi\)
0.371765 + 0.928327i \(0.378753\pi\)
\(62\) 0 0
\(63\) −7.50679 −0.945766
\(64\) 0 0
\(65\) 2.19932 0.272792
\(66\) 0 0
\(67\) 11.3165 1.38253 0.691264 0.722602i \(-0.257054\pi\)
0.691264 + 0.722602i \(0.257054\pi\)
\(68\) 0 0
\(69\) 30.6253 3.68686
\(70\) 0 0
\(71\) −5.22311 −0.619869 −0.309935 0.950758i \(-0.600307\pi\)
−0.309935 + 0.950758i \(0.600307\pi\)
\(72\) 0 0
\(73\) −11.4529 −1.34047 −0.670233 0.742151i \(-0.733806\pi\)
−0.670233 + 0.742151i \(0.733806\pi\)
\(74\) 0 0
\(75\) −7.65400 −0.883808
\(76\) 0 0
\(77\) 4.09420 0.466578
\(78\) 0 0
\(79\) 3.61137 0.406311 0.203155 0.979147i \(-0.434880\pi\)
0.203155 + 0.979147i \(0.434880\pi\)
\(80\) 0 0
\(81\) 24.8315 2.75905
\(82\) 0 0
\(83\) 16.8458 1.84906 0.924532 0.381105i \(-0.124456\pi\)
0.924532 + 0.381105i \(0.124456\pi\)
\(84\) 0 0
\(85\) −1.62440 −0.176191
\(86\) 0 0
\(87\) −14.9548 −1.60332
\(88\) 0 0
\(89\) 10.5918 1.12273 0.561365 0.827568i \(-0.310276\pi\)
0.561365 + 0.827568i \(0.310276\pi\)
\(90\) 0 0
\(91\) −1.35392 −0.141930
\(92\) 0 0
\(93\) 26.5393 2.75200
\(94\) 0 0
\(95\) 3.59659 0.369002
\(96\) 0 0
\(97\) −9.74339 −0.989291 −0.494646 0.869095i \(-0.664702\pi\)
−0.494646 + 0.869095i \(0.664702\pi\)
\(98\) 0 0
\(99\) −30.7343 −3.08891
\(100\) 0 0
\(101\) −13.2925 −1.32266 −0.661328 0.750097i \(-0.730007\pi\)
−0.661328 + 0.750097i \(0.730007\pi\)
\(102\) 0 0
\(103\) −5.88466 −0.579833 −0.289917 0.957052i \(-0.593628\pi\)
−0.289917 + 0.957052i \(0.593628\pi\)
\(104\) 0 0
\(105\) −5.26537 −0.513847
\(106\) 0 0
\(107\) −3.83676 −0.370913 −0.185457 0.982652i \(-0.559376\pi\)
−0.185457 + 0.982652i \(0.559376\pi\)
\(108\) 0 0
\(109\) −13.3774 −1.28132 −0.640662 0.767823i \(-0.721340\pi\)
−0.640662 + 0.767823i \(0.721340\pi\)
\(110\) 0 0
\(111\) 19.5684 1.85735
\(112\) 0 0
\(113\) 6.03956 0.568154 0.284077 0.958801i \(-0.408313\pi\)
0.284077 + 0.958801i \(0.408313\pi\)
\(114\) 0 0
\(115\) 15.3476 1.43117
\(116\) 0 0
\(117\) 10.1636 0.939627
\(118\) 0 0
\(119\) 1.00000 0.0916698
\(120\) 0 0
\(121\) 5.76249 0.523863
\(122\) 0 0
\(123\) 6.81213 0.614229
\(124\) 0 0
\(125\) −11.9577 −1.06953
\(126\) 0 0
\(127\) −9.48337 −0.841513 −0.420757 0.907174i \(-0.638235\pi\)
−0.420757 + 0.907174i \(0.638235\pi\)
\(128\) 0 0
\(129\) −36.5101 −3.21454
\(130\) 0 0
\(131\) 18.2476 1.59430 0.797150 0.603781i \(-0.206340\pi\)
0.797150 + 0.603781i \(0.206340\pi\)
\(132\) 0 0
\(133\) −2.21410 −0.191987
\(134\) 0 0
\(135\) 23.7299 2.04234
\(136\) 0 0
\(137\) −15.8622 −1.35520 −0.677599 0.735432i \(-0.736979\pi\)
−0.677599 + 0.735432i \(0.736979\pi\)
\(138\) 0 0
\(139\) −0.230917 −0.0195861 −0.00979306 0.999952i \(-0.503117\pi\)
−0.00979306 + 0.999952i \(0.503117\pi\)
\(140\) 0 0
\(141\) 43.4055 3.65541
\(142\) 0 0
\(143\) −5.54324 −0.463549
\(144\) 0 0
\(145\) −7.49442 −0.622378
\(146\) 0 0
\(147\) 3.24142 0.267348
\(148\) 0 0
\(149\) 13.6523 1.11844 0.559218 0.829020i \(-0.311101\pi\)
0.559218 + 0.829020i \(0.311101\pi\)
\(150\) 0 0
\(151\) 4.65673 0.378960 0.189480 0.981885i \(-0.439320\pi\)
0.189480 + 0.981885i \(0.439320\pi\)
\(152\) 0 0
\(153\) −7.50679 −0.606888
\(154\) 0 0
\(155\) 13.2999 1.06828
\(156\) 0 0
\(157\) 14.0126 1.11833 0.559163 0.829058i \(-0.311123\pi\)
0.559163 + 0.829058i \(0.311123\pi\)
\(158\) 0 0
\(159\) −10.3834 −0.823454
\(160\) 0 0
\(161\) −9.44813 −0.744617
\(162\) 0 0
\(163\) −6.78657 −0.531566 −0.265783 0.964033i \(-0.585630\pi\)
−0.265783 + 0.964033i \(0.585630\pi\)
\(164\) 0 0
\(165\) −21.5575 −1.67825
\(166\) 0 0
\(167\) −9.09038 −0.703435 −0.351717 0.936106i \(-0.614402\pi\)
−0.351717 + 0.936106i \(0.614402\pi\)
\(168\) 0 0
\(169\) −11.1669 −0.858992
\(170\) 0 0
\(171\) 16.6208 1.27102
\(172\) 0 0
\(173\) −8.32312 −0.632795 −0.316398 0.948627i \(-0.602473\pi\)
−0.316398 + 0.948627i \(0.602473\pi\)
\(174\) 0 0
\(175\) 2.36131 0.178499
\(176\) 0 0
\(177\) −31.6517 −2.37909
\(178\) 0 0
\(179\) −15.0534 −1.12514 −0.562572 0.826748i \(-0.690188\pi\)
−0.562572 + 0.826748i \(0.690188\pi\)
\(180\) 0 0
\(181\) −4.34907 −0.323264 −0.161632 0.986851i \(-0.551676\pi\)
−0.161632 + 0.986851i \(0.551676\pi\)
\(182\) 0 0
\(183\) 18.8234 1.39147
\(184\) 0 0
\(185\) 9.80651 0.720989
\(186\) 0 0
\(187\) 4.09420 0.299398
\(188\) 0 0
\(189\) −14.6084 −1.06260
\(190\) 0 0
\(191\) −15.9697 −1.15553 −0.577763 0.816204i \(-0.696074\pi\)
−0.577763 + 0.816204i \(0.696074\pi\)
\(192\) 0 0
\(193\) −13.2046 −0.950484 −0.475242 0.879855i \(-0.657640\pi\)
−0.475242 + 0.879855i \(0.657640\pi\)
\(194\) 0 0
\(195\) 7.12891 0.510512
\(196\) 0 0
\(197\) −1.01159 −0.0720727 −0.0360363 0.999350i \(-0.511473\pi\)
−0.0360363 + 0.999350i \(0.511473\pi\)
\(198\) 0 0
\(199\) 5.35418 0.379548 0.189774 0.981828i \(-0.439225\pi\)
0.189774 + 0.981828i \(0.439225\pi\)
\(200\) 0 0
\(201\) 36.6814 2.58731
\(202\) 0 0
\(203\) 4.61365 0.323815
\(204\) 0 0
\(205\) 3.41383 0.238432
\(206\) 0 0
\(207\) 70.9251 4.92963
\(208\) 0 0
\(209\) −9.06496 −0.627037
\(210\) 0 0
\(211\) −7.67244 −0.528193 −0.264096 0.964496i \(-0.585074\pi\)
−0.264096 + 0.964496i \(0.585074\pi\)
\(212\) 0 0
\(213\) −16.9303 −1.16004
\(214\) 0 0
\(215\) −18.2967 −1.24782
\(216\) 0 0
\(217\) −8.18757 −0.555809
\(218\) 0 0
\(219\) −37.1238 −2.50859
\(220\) 0 0
\(221\) −1.35392 −0.0910748
\(222\) 0 0
\(223\) 14.5413 0.973760 0.486880 0.873469i \(-0.338135\pi\)
0.486880 + 0.873469i \(0.338135\pi\)
\(224\) 0 0
\(225\) −17.7259 −1.18173
\(226\) 0 0
\(227\) −20.5194 −1.36192 −0.680959 0.732321i \(-0.738437\pi\)
−0.680959 + 0.732321i \(0.738437\pi\)
\(228\) 0 0
\(229\) −6.16014 −0.407073 −0.203537 0.979067i \(-0.565244\pi\)
−0.203537 + 0.979067i \(0.565244\pi\)
\(230\) 0 0
\(231\) 13.2710 0.873169
\(232\) 0 0
\(233\) 19.7323 1.29271 0.646354 0.763038i \(-0.276293\pi\)
0.646354 + 0.763038i \(0.276293\pi\)
\(234\) 0 0
\(235\) 21.7522 1.41896
\(236\) 0 0
\(237\) 11.7059 0.760383
\(238\) 0 0
\(239\) −1.49538 −0.0967278 −0.0483639 0.998830i \(-0.515401\pi\)
−0.0483639 + 0.998830i \(0.515401\pi\)
\(240\) 0 0
\(241\) −1.45403 −0.0936623 −0.0468311 0.998903i \(-0.514912\pi\)
−0.0468311 + 0.998903i \(0.514912\pi\)
\(242\) 0 0
\(243\) 36.6641 2.35200
\(244\) 0 0
\(245\) 1.62440 0.103779
\(246\) 0 0
\(247\) 2.99772 0.190740
\(248\) 0 0
\(249\) 54.6042 3.46040
\(250\) 0 0
\(251\) 13.2196 0.834416 0.417208 0.908811i \(-0.363009\pi\)
0.417208 + 0.908811i \(0.363009\pi\)
\(252\) 0 0
\(253\) −38.6825 −2.43195
\(254\) 0 0
\(255\) −5.26537 −0.329730
\(256\) 0 0
\(257\) −11.2710 −0.703067 −0.351533 0.936175i \(-0.614340\pi\)
−0.351533 + 0.936175i \(0.614340\pi\)
\(258\) 0 0
\(259\) −6.03699 −0.375120
\(260\) 0 0
\(261\) −34.6337 −2.14377
\(262\) 0 0
\(263\) −5.79789 −0.357513 −0.178757 0.983893i \(-0.557207\pi\)
−0.178757 + 0.983893i \(0.557207\pi\)
\(264\) 0 0
\(265\) −5.20352 −0.319650
\(266\) 0 0
\(267\) 34.3325 2.10111
\(268\) 0 0
\(269\) 1.00228 0.0611101 0.0305550 0.999533i \(-0.490273\pi\)
0.0305550 + 0.999533i \(0.490273\pi\)
\(270\) 0 0
\(271\) −2.73679 −0.166248 −0.0831242 0.996539i \(-0.526490\pi\)
−0.0831242 + 0.996539i \(0.526490\pi\)
\(272\) 0 0
\(273\) −4.38863 −0.265612
\(274\) 0 0
\(275\) 9.66769 0.582984
\(276\) 0 0
\(277\) −27.6507 −1.66137 −0.830685 0.556742i \(-0.812051\pi\)
−0.830685 + 0.556742i \(0.812051\pi\)
\(278\) 0 0
\(279\) 61.4624 3.67966
\(280\) 0 0
\(281\) 2.34156 0.139686 0.0698429 0.997558i \(-0.477750\pi\)
0.0698429 + 0.997558i \(0.477750\pi\)
\(282\) 0 0
\(283\) −13.4033 −0.796741 −0.398370 0.917225i \(-0.630424\pi\)
−0.398370 + 0.917225i \(0.630424\pi\)
\(284\) 0 0
\(285\) 11.6580 0.690563
\(286\) 0 0
\(287\) −2.10159 −0.124053
\(288\) 0 0
\(289\) 1.00000 0.0588235
\(290\) 0 0
\(291\) −31.5824 −1.85139
\(292\) 0 0
\(293\) −18.2617 −1.06686 −0.533430 0.845845i \(-0.679097\pi\)
−0.533430 + 0.845845i \(0.679097\pi\)
\(294\) 0 0
\(295\) −15.8619 −0.923517
\(296\) 0 0
\(297\) −59.8096 −3.47051
\(298\) 0 0
\(299\) 12.7920 0.739783
\(300\) 0 0
\(301\) 11.2636 0.649225
\(302\) 0 0
\(303\) −43.0866 −2.47526
\(304\) 0 0
\(305\) 9.43317 0.540142
\(306\) 0 0
\(307\) −1.21053 −0.0690885 −0.0345443 0.999403i \(-0.510998\pi\)
−0.0345443 + 0.999403i \(0.510998\pi\)
\(308\) 0 0
\(309\) −19.0747 −1.08512
\(310\) 0 0
\(311\) 32.4812 1.84184 0.920919 0.389754i \(-0.127440\pi\)
0.920919 + 0.389754i \(0.127440\pi\)
\(312\) 0 0
\(313\) 6.92111 0.391205 0.195602 0.980683i \(-0.437334\pi\)
0.195602 + 0.980683i \(0.437334\pi\)
\(314\) 0 0
\(315\) −12.1941 −0.687057
\(316\) 0 0
\(317\) −26.8899 −1.51029 −0.755143 0.655560i \(-0.772433\pi\)
−0.755143 + 0.655560i \(0.772433\pi\)
\(318\) 0 0
\(319\) 18.8892 1.05759
\(320\) 0 0
\(321\) −12.4365 −0.694140
\(322\) 0 0
\(323\) −2.21410 −0.123196
\(324\) 0 0
\(325\) −3.19704 −0.177340
\(326\) 0 0
\(327\) −43.3618 −2.39791
\(328\) 0 0
\(329\) −13.3909 −0.738265
\(330\) 0 0
\(331\) −30.4343 −1.67282 −0.836409 0.548106i \(-0.815349\pi\)
−0.836409 + 0.548106i \(0.815349\pi\)
\(332\) 0 0
\(333\) 45.3184 2.48343
\(334\) 0 0
\(335\) 18.3825 1.00435
\(336\) 0 0
\(337\) −1.25586 −0.0684110 −0.0342055 0.999415i \(-0.510890\pi\)
−0.0342055 + 0.999415i \(0.510890\pi\)
\(338\) 0 0
\(339\) 19.5767 1.06326
\(340\) 0 0
\(341\) −33.5216 −1.81529
\(342\) 0 0
\(343\) −1.00000 −0.0539949
\(344\) 0 0
\(345\) 49.7479 2.67834
\(346\) 0 0
\(347\) −19.0615 −1.02327 −0.511637 0.859202i \(-0.670961\pi\)
−0.511637 + 0.859202i \(0.670961\pi\)
\(348\) 0 0
\(349\) 32.4482 1.73691 0.868456 0.495765i \(-0.165112\pi\)
0.868456 + 0.495765i \(0.165112\pi\)
\(350\) 0 0
\(351\) 19.7786 1.05571
\(352\) 0 0
\(353\) 12.0907 0.643524 0.321762 0.946821i \(-0.395725\pi\)
0.321762 + 0.946821i \(0.395725\pi\)
\(354\) 0 0
\(355\) −8.48444 −0.450307
\(356\) 0 0
\(357\) 3.24142 0.171554
\(358\) 0 0
\(359\) −1.88383 −0.0994248 −0.0497124 0.998764i \(-0.515830\pi\)
−0.0497124 + 0.998764i \(0.515830\pi\)
\(360\) 0 0
\(361\) −14.0978 −0.741988
\(362\) 0 0
\(363\) 18.6786 0.980374
\(364\) 0 0
\(365\) −18.6042 −0.973788
\(366\) 0 0
\(367\) 23.7651 1.24053 0.620264 0.784393i \(-0.287025\pi\)
0.620264 + 0.784393i \(0.287025\pi\)
\(368\) 0 0
\(369\) 15.7762 0.821276
\(370\) 0 0
\(371\) 3.20334 0.166309
\(372\) 0 0
\(373\) 2.80740 0.145362 0.0726808 0.997355i \(-0.476845\pi\)
0.0726808 + 0.997355i \(0.476845\pi\)
\(374\) 0 0
\(375\) −38.7600 −2.00156
\(376\) 0 0
\(377\) −6.24653 −0.321713
\(378\) 0 0
\(379\) −21.7445 −1.11694 −0.558471 0.829524i \(-0.688612\pi\)
−0.558471 + 0.829524i \(0.688612\pi\)
\(380\) 0 0
\(381\) −30.7396 −1.57484
\(382\) 0 0
\(383\) −15.0120 −0.767076 −0.383538 0.923525i \(-0.625294\pi\)
−0.383538 + 0.923525i \(0.625294\pi\)
\(384\) 0 0
\(385\) 6.65064 0.338948
\(386\) 0 0
\(387\) −84.5537 −4.29810
\(388\) 0 0
\(389\) 3.71823 0.188522 0.0942608 0.995548i \(-0.469951\pi\)
0.0942608 + 0.995548i \(0.469951\pi\)
\(390\) 0 0
\(391\) −9.44813 −0.477812
\(392\) 0 0
\(393\) 59.1481 2.98363
\(394\) 0 0
\(395\) 5.86632 0.295166
\(396\) 0 0
\(397\) −20.4693 −1.02732 −0.513662 0.857993i \(-0.671711\pi\)
−0.513662 + 0.857993i \(0.671711\pi\)
\(398\) 0 0
\(399\) −7.17682 −0.359290
\(400\) 0 0
\(401\) −29.1262 −1.45449 −0.727247 0.686376i \(-0.759200\pi\)
−0.727247 + 0.686376i \(0.759200\pi\)
\(402\) 0 0
\(403\) 11.0854 0.552201
\(404\) 0 0
\(405\) 40.3364 2.00433
\(406\) 0 0
\(407\) −24.7166 −1.22516
\(408\) 0 0
\(409\) 0.929890 0.0459801 0.0229901 0.999736i \(-0.492681\pi\)
0.0229901 + 0.999736i \(0.492681\pi\)
\(410\) 0 0
\(411\) −51.4159 −2.53616
\(412\) 0 0
\(413\) 9.76477 0.480493
\(414\) 0 0
\(415\) 27.3643 1.34326
\(416\) 0 0
\(417\) −0.748498 −0.0366541
\(418\) 0 0
\(419\) 17.0047 0.830734 0.415367 0.909654i \(-0.363653\pi\)
0.415367 + 0.909654i \(0.363653\pi\)
\(420\) 0 0
\(421\) 27.4283 1.33677 0.668387 0.743813i \(-0.266985\pi\)
0.668387 + 0.743813i \(0.266985\pi\)
\(422\) 0 0
\(423\) 100.523 4.88758
\(424\) 0 0
\(425\) 2.36131 0.114541
\(426\) 0 0
\(427\) −5.80716 −0.281028
\(428\) 0 0
\(429\) −17.9679 −0.867501
\(430\) 0 0
\(431\) 32.4402 1.56259 0.781294 0.624163i \(-0.214560\pi\)
0.781294 + 0.624163i \(0.214560\pi\)
\(432\) 0 0
\(433\) −12.6152 −0.606249 −0.303125 0.952951i \(-0.598030\pi\)
−0.303125 + 0.952951i \(0.598030\pi\)
\(434\) 0 0
\(435\) −24.2926 −1.16474
\(436\) 0 0
\(437\) 20.9191 1.00070
\(438\) 0 0
\(439\) 7.95275 0.379564 0.189782 0.981826i \(-0.439222\pi\)
0.189782 + 0.981826i \(0.439222\pi\)
\(440\) 0 0
\(441\) 7.50679 0.357466
\(442\) 0 0
\(443\) 33.1406 1.57456 0.787279 0.616597i \(-0.211489\pi\)
0.787279 + 0.616597i \(0.211489\pi\)
\(444\) 0 0
\(445\) 17.2054 0.815613
\(446\) 0 0
\(447\) 44.2527 2.09308
\(448\) 0 0
\(449\) −31.4955 −1.48636 −0.743182 0.669089i \(-0.766684\pi\)
−0.743182 + 0.669089i \(0.766684\pi\)
\(450\) 0 0
\(451\) −8.60434 −0.405162
\(452\) 0 0
\(453\) 15.0944 0.709198
\(454\) 0 0
\(455\) −2.19932 −0.103106
\(456\) 0 0
\(457\) −18.1593 −0.849456 −0.424728 0.905321i \(-0.639630\pi\)
−0.424728 + 0.905321i \(0.639630\pi\)
\(458\) 0 0
\(459\) −14.6084 −0.681861
\(460\) 0 0
\(461\) −13.0704 −0.608750 −0.304375 0.952552i \(-0.598448\pi\)
−0.304375 + 0.952552i \(0.598448\pi\)
\(462\) 0 0
\(463\) −24.2777 −1.12828 −0.564141 0.825679i \(-0.690792\pi\)
−0.564141 + 0.825679i \(0.690792\pi\)
\(464\) 0 0
\(465\) 43.1106 1.99921
\(466\) 0 0
\(467\) 3.72413 0.172332 0.0861661 0.996281i \(-0.472538\pi\)
0.0861661 + 0.996281i \(0.472538\pi\)
\(468\) 0 0
\(469\) −11.3165 −0.522547
\(470\) 0 0
\(471\) 45.4206 2.09287
\(472\) 0 0
\(473\) 46.1156 2.12040
\(474\) 0 0
\(475\) −5.22818 −0.239885
\(476\) 0 0
\(477\) −24.0468 −1.10103
\(478\) 0 0
\(479\) −2.09832 −0.0958748 −0.0479374 0.998850i \(-0.515265\pi\)
−0.0479374 + 0.998850i \(0.515265\pi\)
\(480\) 0 0
\(481\) 8.17362 0.372685
\(482\) 0 0
\(483\) −30.6253 −1.39350
\(484\) 0 0
\(485\) −15.8272 −0.718676
\(486\) 0 0
\(487\) 6.20278 0.281075 0.140537 0.990075i \(-0.455117\pi\)
0.140537 + 0.990075i \(0.455117\pi\)
\(488\) 0 0
\(489\) −21.9981 −0.994789
\(490\) 0 0
\(491\) −4.27086 −0.192741 −0.0963706 0.995346i \(-0.530723\pi\)
−0.0963706 + 0.995346i \(0.530723\pi\)
\(492\) 0 0
\(493\) 4.61365 0.207788
\(494\) 0 0
\(495\) −49.9249 −2.24396
\(496\) 0 0
\(497\) 5.22311 0.234289
\(498\) 0 0
\(499\) −10.5594 −0.472703 −0.236352 0.971668i \(-0.575952\pi\)
−0.236352 + 0.971668i \(0.575952\pi\)
\(500\) 0 0
\(501\) −29.4657 −1.31643
\(502\) 0 0
\(503\) 35.4808 1.58201 0.791005 0.611809i \(-0.209558\pi\)
0.791005 + 0.611809i \(0.209558\pi\)
\(504\) 0 0
\(505\) −21.5924 −0.960851
\(506\) 0 0
\(507\) −36.1966 −1.60755
\(508\) 0 0
\(509\) 8.18931 0.362985 0.181492 0.983392i \(-0.441907\pi\)
0.181492 + 0.983392i \(0.441907\pi\)
\(510\) 0 0
\(511\) 11.4529 0.506648
\(512\) 0 0
\(513\) 32.3444 1.42804
\(514\) 0 0
\(515\) −9.55907 −0.421223
\(516\) 0 0
\(517\) −54.8251 −2.41121
\(518\) 0 0
\(519\) −26.9787 −1.18423
\(520\) 0 0
\(521\) −13.6179 −0.596612 −0.298306 0.954470i \(-0.596422\pi\)
−0.298306 + 0.954470i \(0.596422\pi\)
\(522\) 0 0
\(523\) 28.3223 1.23845 0.619223 0.785215i \(-0.287448\pi\)
0.619223 + 0.785215i \(0.287448\pi\)
\(524\) 0 0
\(525\) 7.65400 0.334048
\(526\) 0 0
\(527\) −8.18757 −0.356656
\(528\) 0 0
\(529\) 66.2671 2.88118
\(530\) 0 0
\(531\) −73.3020 −3.18104
\(532\) 0 0
\(533\) 2.84539 0.123248
\(534\) 0 0
\(535\) −6.23244 −0.269452
\(536\) 0 0
\(537\) −48.7943 −2.10563
\(538\) 0 0
\(539\) −4.09420 −0.176350
\(540\) 0 0
\(541\) 0.161634 0.00694919 0.00347460 0.999994i \(-0.498894\pi\)
0.00347460 + 0.999994i \(0.498894\pi\)
\(542\) 0 0
\(543\) −14.0972 −0.604967
\(544\) 0 0
\(545\) −21.7303 −0.930825
\(546\) 0 0
\(547\) 14.7419 0.630320 0.315160 0.949039i \(-0.397942\pi\)
0.315160 + 0.949039i \(0.397942\pi\)
\(548\) 0 0
\(549\) 43.5931 1.86051
\(550\) 0 0
\(551\) −10.2151 −0.435176
\(552\) 0 0
\(553\) −3.61137 −0.153571
\(554\) 0 0
\(555\) 31.7870 1.34928
\(556\) 0 0
\(557\) −37.9015 −1.60594 −0.802968 0.596022i \(-0.796747\pi\)
−0.802968 + 0.596022i \(0.796747\pi\)
\(558\) 0 0
\(559\) −15.2501 −0.645010
\(560\) 0 0
\(561\) 13.2710 0.560303
\(562\) 0 0
\(563\) 25.3900 1.07006 0.535031 0.844833i \(-0.320300\pi\)
0.535031 + 0.844833i \(0.320300\pi\)
\(564\) 0 0
\(565\) 9.81069 0.412739
\(566\) 0 0
\(567\) −24.8315 −1.04282
\(568\) 0 0
\(569\) −11.2373 −0.471090 −0.235545 0.971863i \(-0.575688\pi\)
−0.235545 + 0.971863i \(0.575688\pi\)
\(570\) 0 0
\(571\) 46.4722 1.94480 0.972400 0.233321i \(-0.0749593\pi\)
0.972400 + 0.233321i \(0.0749593\pi\)
\(572\) 0 0
\(573\) −51.7644 −2.16249
\(574\) 0 0
\(575\) −22.3100 −0.930391
\(576\) 0 0
\(577\) 25.3878 1.05691 0.528454 0.848962i \(-0.322772\pi\)
0.528454 + 0.848962i \(0.322772\pi\)
\(578\) 0 0
\(579\) −42.8015 −1.77877
\(580\) 0 0
\(581\) −16.8458 −0.698880
\(582\) 0 0
\(583\) 13.1151 0.543173
\(584\) 0 0
\(585\) 16.5098 0.682597
\(586\) 0 0
\(587\) 33.7564 1.39328 0.696638 0.717422i \(-0.254678\pi\)
0.696638 + 0.717422i \(0.254678\pi\)
\(588\) 0 0
\(589\) 18.1281 0.746955
\(590\) 0 0
\(591\) −3.27898 −0.134879
\(592\) 0 0
\(593\) 38.6382 1.58668 0.793341 0.608778i \(-0.208340\pi\)
0.793341 + 0.608778i \(0.208340\pi\)
\(594\) 0 0
\(595\) 1.62440 0.0665940
\(596\) 0 0
\(597\) 17.3551 0.710298
\(598\) 0 0
\(599\) 6.98723 0.285490 0.142745 0.989759i \(-0.454407\pi\)
0.142745 + 0.989759i \(0.454407\pi\)
\(600\) 0 0
\(601\) 32.3708 1.32043 0.660217 0.751075i \(-0.270464\pi\)
0.660217 + 0.751075i \(0.270464\pi\)
\(602\) 0 0
\(603\) 84.9504 3.45945
\(604\) 0 0
\(605\) 9.36060 0.380563
\(606\) 0 0
\(607\) −6.22386 −0.252619 −0.126309 0.991991i \(-0.540313\pi\)
−0.126309 + 0.991991i \(0.540313\pi\)
\(608\) 0 0
\(609\) 14.9548 0.605997
\(610\) 0 0
\(611\) 18.1303 0.733473
\(612\) 0 0
\(613\) −6.77332 −0.273572 −0.136786 0.990601i \(-0.543677\pi\)
−0.136786 + 0.990601i \(0.543677\pi\)
\(614\) 0 0
\(615\) 11.0657 0.446210
\(616\) 0 0
\(617\) 29.1688 1.17429 0.587146 0.809481i \(-0.300252\pi\)
0.587146 + 0.809481i \(0.300252\pi\)
\(618\) 0 0
\(619\) −18.1270 −0.728587 −0.364293 0.931284i \(-0.618689\pi\)
−0.364293 + 0.931284i \(0.618689\pi\)
\(620\) 0 0
\(621\) 138.022 5.53862
\(622\) 0 0
\(623\) −10.5918 −0.424352
\(624\) 0 0
\(625\) −7.61763 −0.304705
\(626\) 0 0
\(627\) −29.3833 −1.17346
\(628\) 0 0
\(629\) −6.03699 −0.240711
\(630\) 0 0
\(631\) 5.05518 0.201243 0.100622 0.994925i \(-0.467917\pi\)
0.100622 + 0.994925i \(0.467917\pi\)
\(632\) 0 0
\(633\) −24.8696 −0.988477
\(634\) 0 0
\(635\) −15.4048 −0.611322
\(636\) 0 0
\(637\) 1.35392 0.0536444
\(638\) 0 0
\(639\) −39.2088 −1.55108
\(640\) 0 0
\(641\) 44.7693 1.76828 0.884141 0.467221i \(-0.154745\pi\)
0.884141 + 0.467221i \(0.154745\pi\)
\(642\) 0 0
\(643\) −17.0710 −0.673216 −0.336608 0.941645i \(-0.609280\pi\)
−0.336608 + 0.941645i \(0.609280\pi\)
\(644\) 0 0
\(645\) −59.3072 −2.33522
\(646\) 0 0
\(647\) 34.2438 1.34626 0.673132 0.739523i \(-0.264949\pi\)
0.673132 + 0.739523i \(0.264949\pi\)
\(648\) 0 0
\(649\) 39.9789 1.56931
\(650\) 0 0
\(651\) −26.5393 −1.04016
\(652\) 0 0
\(653\) 11.3503 0.444171 0.222085 0.975027i \(-0.428714\pi\)
0.222085 + 0.975027i \(0.428714\pi\)
\(654\) 0 0
\(655\) 29.6415 1.15819
\(656\) 0 0
\(657\) −85.9748 −3.35420
\(658\) 0 0
\(659\) −24.0841 −0.938184 −0.469092 0.883149i \(-0.655419\pi\)
−0.469092 + 0.883149i \(0.655419\pi\)
\(660\) 0 0
\(661\) −13.3308 −0.518508 −0.259254 0.965809i \(-0.583477\pi\)
−0.259254 + 0.965809i \(0.583477\pi\)
\(662\) 0 0
\(663\) −4.38863 −0.170440
\(664\) 0 0
\(665\) −3.59659 −0.139470
\(666\) 0 0
\(667\) −43.5903 −1.68782
\(668\) 0 0
\(669\) 47.1345 1.82233
\(670\) 0 0
\(671\) −23.7757 −0.917850
\(672\) 0 0
\(673\) −40.8553 −1.57485 −0.787427 0.616407i \(-0.788588\pi\)
−0.787427 + 0.616407i \(0.788588\pi\)
\(674\) 0 0
\(675\) −34.4950 −1.32771
\(676\) 0 0
\(677\) 12.6455 0.486005 0.243003 0.970026i \(-0.421868\pi\)
0.243003 + 0.970026i \(0.421868\pi\)
\(678\) 0 0
\(679\) 9.74339 0.373917
\(680\) 0 0
\(681\) −66.5118 −2.54874
\(682\) 0 0
\(683\) −5.62494 −0.215232 −0.107616 0.994193i \(-0.534322\pi\)
−0.107616 + 0.994193i \(0.534322\pi\)
\(684\) 0 0
\(685\) −25.7666 −0.984490
\(686\) 0 0
\(687\) −19.9676 −0.761810
\(688\) 0 0
\(689\) −4.33708 −0.165230
\(690\) 0 0
\(691\) 2.55299 0.0971204 0.0485602 0.998820i \(-0.484537\pi\)
0.0485602 + 0.998820i \(0.484537\pi\)
\(692\) 0 0
\(693\) 30.7343 1.16750
\(694\) 0 0
\(695\) −0.375102 −0.0142284
\(696\) 0 0
\(697\) −2.10159 −0.0796034
\(698\) 0 0
\(699\) 63.9607 2.41922
\(700\) 0 0
\(701\) −6.32431 −0.238866 −0.119433 0.992842i \(-0.538108\pi\)
−0.119433 + 0.992842i \(0.538108\pi\)
\(702\) 0 0
\(703\) 13.3665 0.504126
\(704\) 0 0
\(705\) 70.5081 2.65549
\(706\) 0 0
\(707\) 13.2925 0.499917
\(708\) 0 0
\(709\) 17.0885 0.641773 0.320887 0.947118i \(-0.396019\pi\)
0.320887 + 0.947118i \(0.396019\pi\)
\(710\) 0 0
\(711\) 27.1098 1.01670
\(712\) 0 0
\(713\) 77.3572 2.89705
\(714\) 0 0
\(715\) −9.00446 −0.336748
\(716\) 0 0
\(717\) −4.84714 −0.181020
\(718\) 0 0
\(719\) −18.7941 −0.700903 −0.350451 0.936581i \(-0.613972\pi\)
−0.350451 + 0.936581i \(0.613972\pi\)
\(720\) 0 0
\(721\) 5.88466 0.219156
\(722\) 0 0
\(723\) −4.71312 −0.175283
\(724\) 0 0
\(725\) 10.8943 0.404603
\(726\) 0 0
\(727\) 4.62746 0.171623 0.0858115 0.996311i \(-0.472652\pi\)
0.0858115 + 0.996311i \(0.472652\pi\)
\(728\) 0 0
\(729\) 44.3492 1.64256
\(730\) 0 0
\(731\) 11.2636 0.416600
\(732\) 0 0
\(733\) 36.1332 1.33461 0.667306 0.744784i \(-0.267447\pi\)
0.667306 + 0.744784i \(0.267447\pi\)
\(734\) 0 0
\(735\) 5.26537 0.194216
\(736\) 0 0
\(737\) −46.3320 −1.70666
\(738\) 0 0
\(739\) −15.3540 −0.564808 −0.282404 0.959296i \(-0.591132\pi\)
−0.282404 + 0.959296i \(0.591132\pi\)
\(740\) 0 0
\(741\) 9.71686 0.356958
\(742\) 0 0
\(743\) 7.92951 0.290905 0.145453 0.989365i \(-0.453536\pi\)
0.145453 + 0.989365i \(0.453536\pi\)
\(744\) 0 0
\(745\) 22.1768 0.812494
\(746\) 0 0
\(747\) 126.458 4.62684
\(748\) 0 0
\(749\) 3.83676 0.140192
\(750\) 0 0
\(751\) −1.98294 −0.0723584 −0.0361792 0.999345i \(-0.511519\pi\)
−0.0361792 + 0.999345i \(0.511519\pi\)
\(752\) 0 0
\(753\) 42.8503 1.56155
\(754\) 0 0
\(755\) 7.56442 0.275297
\(756\) 0 0
\(757\) −42.4999 −1.54469 −0.772343 0.635205i \(-0.780915\pi\)
−0.772343 + 0.635205i \(0.780915\pi\)
\(758\) 0 0
\(759\) −125.386 −4.55123
\(760\) 0 0
\(761\) −1.06912 −0.0387555 −0.0193778 0.999812i \(-0.506169\pi\)
−0.0193778 + 0.999812i \(0.506169\pi\)
\(762\) 0 0
\(763\) 13.3774 0.484295
\(764\) 0 0
\(765\) −12.1941 −0.440877
\(766\) 0 0
\(767\) −13.2208 −0.477374
\(768\) 0 0
\(769\) 41.9408 1.51242 0.756211 0.654328i \(-0.227048\pi\)
0.756211 + 0.654328i \(0.227048\pi\)
\(770\) 0 0
\(771\) −36.5341 −1.31574
\(772\) 0 0
\(773\) −26.8593 −0.966063 −0.483032 0.875603i \(-0.660464\pi\)
−0.483032 + 0.875603i \(0.660464\pi\)
\(774\) 0 0
\(775\) −19.3334 −0.694477
\(776\) 0 0
\(777\) −19.5684 −0.702012
\(778\) 0 0
\(779\) 4.65313 0.166716
\(780\) 0 0
\(781\) 21.3845 0.765197
\(782\) 0 0
\(783\) −67.3979 −2.40860
\(784\) 0 0
\(785\) 22.7621 0.812414
\(786\) 0 0
\(787\) −42.3511 −1.50966 −0.754828 0.655923i \(-0.772279\pi\)
−0.754828 + 0.655923i \(0.772279\pi\)
\(788\) 0 0
\(789\) −18.7934 −0.669062
\(790\) 0 0
\(791\) −6.03956 −0.214742
\(792\) 0 0
\(793\) 7.86245 0.279204
\(794\) 0 0
\(795\) −16.8668 −0.598203
\(796\) 0 0
\(797\) 37.5313 1.32943 0.664713 0.747099i \(-0.268554\pi\)
0.664713 + 0.747099i \(0.268554\pi\)
\(798\) 0 0
\(799\) −13.3909 −0.473736
\(800\) 0 0
\(801\) 79.5105 2.80937
\(802\) 0 0
\(803\) 46.8907 1.65474
\(804\) 0 0
\(805\) −15.3476 −0.540931
\(806\) 0 0
\(807\) 3.24881 0.114363
\(808\) 0 0
\(809\) −9.69463 −0.340845 −0.170423 0.985371i \(-0.554513\pi\)
−0.170423 + 0.985371i \(0.554513\pi\)
\(810\) 0 0
\(811\) −11.0051 −0.386442 −0.193221 0.981155i \(-0.561893\pi\)
−0.193221 + 0.981155i \(0.561893\pi\)
\(812\) 0 0
\(813\) −8.87109 −0.311123
\(814\) 0 0
\(815\) −11.0241 −0.386159
\(816\) 0 0
\(817\) −24.9388 −0.872497
\(818\) 0 0
\(819\) −10.1636 −0.355146
\(820\) 0 0
\(821\) 25.4707 0.888934 0.444467 0.895795i \(-0.353393\pi\)
0.444467 + 0.895795i \(0.353393\pi\)
\(822\) 0 0
\(823\) −41.4662 −1.44542 −0.722710 0.691151i \(-0.757104\pi\)
−0.722710 + 0.691151i \(0.757104\pi\)
\(824\) 0 0
\(825\) 31.3370 1.09102
\(826\) 0 0
\(827\) 16.2258 0.564225 0.282113 0.959381i \(-0.408965\pi\)
0.282113 + 0.959381i \(0.408965\pi\)
\(828\) 0 0
\(829\) −5.82578 −0.202338 −0.101169 0.994869i \(-0.532258\pi\)
−0.101169 + 0.994869i \(0.532258\pi\)
\(830\) 0 0
\(831\) −89.6275 −3.10914
\(832\) 0 0
\(833\) −1.00000 −0.0346479
\(834\) 0 0
\(835\) −14.7664 −0.511014
\(836\) 0 0
\(837\) 119.607 4.13423
\(838\) 0 0
\(839\) 17.0624 0.589059 0.294529 0.955642i \(-0.404837\pi\)
0.294529 + 0.955642i \(0.404837\pi\)
\(840\) 0 0
\(841\) −7.71427 −0.266009
\(842\) 0 0
\(843\) 7.58997 0.261413
\(844\) 0 0
\(845\) −18.1395 −0.624019
\(846\) 0 0
\(847\) −5.76249 −0.198001
\(848\) 0 0
\(849\) −43.4455 −1.49105
\(850\) 0 0
\(851\) 57.0382 1.95525
\(852\) 0 0
\(853\) −15.4224 −0.528054 −0.264027 0.964515i \(-0.585051\pi\)
−0.264027 + 0.964515i \(0.585051\pi\)
\(854\) 0 0
\(855\) 26.9988 0.923340
\(856\) 0 0
\(857\) −30.2969 −1.03492 −0.517461 0.855707i \(-0.673123\pi\)
−0.517461 + 0.855707i \(0.673123\pi\)
\(858\) 0 0
\(859\) −46.7848 −1.59628 −0.798138 0.602475i \(-0.794181\pi\)
−0.798138 + 0.602475i \(0.794181\pi\)
\(860\) 0 0
\(861\) −6.81213 −0.232157
\(862\) 0 0
\(863\) −54.8342 −1.86658 −0.933289 0.359126i \(-0.883075\pi\)
−0.933289 + 0.359126i \(0.883075\pi\)
\(864\) 0 0
\(865\) −13.5201 −0.459697
\(866\) 0 0
\(867\) 3.24142 0.110084
\(868\) 0 0
\(869\) −14.7857 −0.501569
\(870\) 0 0
\(871\) 15.3217 0.519155
\(872\) 0 0
\(873\) −73.1415 −2.47547
\(874\) 0 0
\(875\) 11.9577 0.404245
\(876\) 0 0
\(877\) −18.5624 −0.626807 −0.313403 0.949620i \(-0.601469\pi\)
−0.313403 + 0.949620i \(0.601469\pi\)
\(878\) 0 0
\(879\) −59.1937 −1.99656
\(880\) 0 0
\(881\) −40.8016 −1.37464 −0.687321 0.726354i \(-0.741213\pi\)
−0.687321 + 0.726354i \(0.741213\pi\)
\(882\) 0 0
\(883\) 24.8705 0.836959 0.418480 0.908226i \(-0.362563\pi\)
0.418480 + 0.908226i \(0.362563\pi\)
\(884\) 0 0
\(885\) −51.4151 −1.72830
\(886\) 0 0
\(887\) 11.5951 0.389327 0.194663 0.980870i \(-0.437639\pi\)
0.194663 + 0.980870i \(0.437639\pi\)
\(888\) 0 0
\(889\) 9.48337 0.318062
\(890\) 0 0
\(891\) −101.665 −3.40591
\(892\) 0 0
\(893\) 29.6488 0.992159
\(894\) 0 0
\(895\) −24.4528 −0.817366
\(896\) 0 0
\(897\) 41.4644 1.38445
\(898\) 0 0
\(899\) −37.7746 −1.25985
\(900\) 0 0
\(901\) 3.20334 0.106719
\(902\) 0 0
\(903\) 36.5101 1.21498
\(904\) 0 0
\(905\) −7.06465 −0.234837
\(906\) 0 0
\(907\) 7.10890 0.236047 0.118024 0.993011i \(-0.462344\pi\)
0.118024 + 0.993011i \(0.462344\pi\)
\(908\) 0 0
\(909\) −99.7842 −3.30963
\(910\) 0 0
\(911\) −2.86216 −0.0948276 −0.0474138 0.998875i \(-0.515098\pi\)
−0.0474138 + 0.998875i \(0.515098\pi\)
\(912\) 0 0
\(913\) −68.9700 −2.28257
\(914\) 0 0
\(915\) 30.5768 1.01084
\(916\) 0 0
\(917\) −18.2476 −0.602589
\(918\) 0 0
\(919\) 34.3235 1.13223 0.566114 0.824327i \(-0.308446\pi\)
0.566114 + 0.824327i \(0.308446\pi\)
\(920\) 0 0
\(921\) −3.92383 −0.129295
\(922\) 0 0
\(923\) −7.07170 −0.232768
\(924\) 0 0
\(925\) −14.2552 −0.468709
\(926\) 0 0
\(927\) −44.1749 −1.45089
\(928\) 0 0
\(929\) −8.79083 −0.288418 −0.144209 0.989547i \(-0.546064\pi\)
−0.144209 + 0.989547i \(0.546064\pi\)
\(930\) 0 0
\(931\) 2.21410 0.0725641
\(932\) 0 0
\(933\) 105.285 3.44688
\(934\) 0 0
\(935\) 6.65064 0.217499
\(936\) 0 0
\(937\) 33.0259 1.07891 0.539455 0.842014i \(-0.318630\pi\)
0.539455 + 0.842014i \(0.318630\pi\)
\(938\) 0 0
\(939\) 22.4342 0.732113
\(940\) 0 0
\(941\) −20.7139 −0.675255 −0.337628 0.941280i \(-0.609624\pi\)
−0.337628 + 0.941280i \(0.609624\pi\)
\(942\) 0 0
\(943\) 19.8561 0.646603
\(944\) 0 0
\(945\) −23.7299 −0.771934
\(946\) 0 0
\(947\) 3.48351 0.113199 0.0565994 0.998397i \(-0.481974\pi\)
0.0565994 + 0.998397i \(0.481974\pi\)
\(948\) 0 0
\(949\) −15.5064 −0.503359
\(950\) 0 0
\(951\) −87.1614 −2.82640
\(952\) 0 0
\(953\) 32.4814 1.05218 0.526088 0.850430i \(-0.323658\pi\)
0.526088 + 0.850430i \(0.323658\pi\)
\(954\) 0 0
\(955\) −25.9412 −0.839438
\(956\) 0 0
\(957\) 61.2278 1.97921
\(958\) 0 0
\(959\) 15.8622 0.512216
\(960\) 0 0
\(961\) 36.0363 1.16246
\(962\) 0 0
\(963\) −28.8017 −0.928123
\(964\) 0 0
\(965\) −21.4495 −0.690484
\(966\) 0 0
\(967\) −4.50312 −0.144811 −0.0724053 0.997375i \(-0.523068\pi\)
−0.0724053 + 0.997375i \(0.523068\pi\)
\(968\) 0 0
\(969\) −7.17682 −0.230553
\(970\) 0 0
\(971\) −50.6585 −1.62571 −0.812854 0.582467i \(-0.802088\pi\)
−0.812854 + 0.582467i \(0.802088\pi\)
\(972\) 0 0
\(973\) 0.230917 0.00740286
\(974\) 0 0
\(975\) −10.3629 −0.331880
\(976\) 0 0
\(977\) −25.9677 −0.830779 −0.415390 0.909644i \(-0.636355\pi\)
−0.415390 + 0.909644i \(0.636355\pi\)
\(978\) 0 0
\(979\) −43.3650 −1.38595
\(980\) 0 0
\(981\) −100.421 −3.20621
\(982\) 0 0
\(983\) 40.0810 1.27838 0.639192 0.769047i \(-0.279269\pi\)
0.639192 + 0.769047i \(0.279269\pi\)
\(984\) 0 0
\(985\) −1.64323 −0.0523576
\(986\) 0 0
\(987\) −43.4055 −1.38161
\(988\) 0 0
\(989\) −106.420 −3.38396
\(990\) 0 0
\(991\) −5.14278 −0.163366 −0.0816829 0.996658i \(-0.526029\pi\)
−0.0816829 + 0.996658i \(0.526029\pi\)
\(992\) 0 0
\(993\) −98.6502 −3.13057
\(994\) 0 0
\(995\) 8.69735 0.275725
\(996\) 0 0
\(997\) −13.0029 −0.411806 −0.205903 0.978572i \(-0.566013\pi\)
−0.205903 + 0.978572i \(0.566013\pi\)
\(998\) 0 0
\(999\) 88.1906 2.79023
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 3808.2.a.e.1.5 5
4.3 odd 2 3808.2.a.f.1.1 yes 5
8.3 odd 2 7616.2.a.bs.1.5 5
8.5 even 2 7616.2.a.br.1.1 5
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
3808.2.a.e.1.5 5 1.1 even 1 trivial
3808.2.a.f.1.1 yes 5 4.3 odd 2
7616.2.a.br.1.1 5 8.5 even 2
7616.2.a.bs.1.5 5 8.3 odd 2