Properties

Label 3808.2.a.e.1.4
Level $3808$
Weight $2$
Character 3808.1
Self dual yes
Analytic conductor $30.407$
Analytic rank $0$
Dimension $5$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [3808,2,Mod(1,3808)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(3808, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("3808.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 3808 = 2^{5} \cdot 7 \cdot 17 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 3808.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(30.4070330897\)
Analytic rank: \(0\)
Dimension: \(5\)
Coefficient field: 5.5.804272.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{5} - 9x^{3} - 6x^{2} + 3x + 2 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.4
Root \(0.582493\) of defining polynomial
Character \(\chi\) \(=\) 3808.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+0.582493 q^{3} -3.85102 q^{5} -1.00000 q^{7} -2.66070 q^{9} -4.64792 q^{11} -2.54585 q^{13} -2.24319 q^{15} -1.00000 q^{17} -6.76496 q^{19} -0.582493 q^{21} +6.10208 q^{23} +9.83039 q^{25} -3.29732 q^{27} +3.73962 q^{29} -0.0519437 q^{31} -2.70738 q^{33} +3.85102 q^{35} -10.1597 q^{37} -1.48294 q^{39} -5.63662 q^{41} -8.99193 q^{43} +10.2464 q^{45} -6.70550 q^{47} +1.00000 q^{49} -0.582493 q^{51} +8.65356 q^{53} +17.8993 q^{55} -3.94054 q^{57} -0.380646 q^{59} +4.49425 q^{61} +2.66070 q^{63} +9.80413 q^{65} +1.65889 q^{67} +3.55442 q^{69} -4.35876 q^{71} +4.29514 q^{73} +5.72613 q^{75} +4.64792 q^{77} +9.48294 q^{79} +6.06144 q^{81} +15.7429 q^{83} +3.85102 q^{85} +2.17830 q^{87} -10.7562 q^{89} +2.54585 q^{91} -0.0302568 q^{93} +26.0520 q^{95} -9.31901 q^{97} +12.3667 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 5 q - 2 q^{5} - 5 q^{7} + 3 q^{9} - 4 q^{11} - 6 q^{13} + 8 q^{15} - 5 q^{17} - 6 q^{19} + 18 q^{23} + 5 q^{25} + 18 q^{27} - 14 q^{29} + 16 q^{31} - 26 q^{33} + 2 q^{35} + 2 q^{37} + 6 q^{39} - 10 q^{41}+ \cdots - 8 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0.582493 0.336302 0.168151 0.985761i \(-0.446220\pi\)
0.168151 + 0.985761i \(0.446220\pi\)
\(4\) 0 0
\(5\) −3.85102 −1.72223 −0.861115 0.508410i \(-0.830234\pi\)
−0.861115 + 0.508410i \(0.830234\pi\)
\(6\) 0 0
\(7\) −1.00000 −0.377964
\(8\) 0 0
\(9\) −2.66070 −0.886901
\(10\) 0 0
\(11\) −4.64792 −1.40140 −0.700701 0.713455i \(-0.747129\pi\)
−0.700701 + 0.713455i \(0.747129\pi\)
\(12\) 0 0
\(13\) −2.54585 −0.706091 −0.353046 0.935606i \(-0.614854\pi\)
−0.353046 + 0.935606i \(0.614854\pi\)
\(14\) 0 0
\(15\) −2.24319 −0.579190
\(16\) 0 0
\(17\) −1.00000 −0.242536
\(18\) 0 0
\(19\) −6.76496 −1.55199 −0.775994 0.630740i \(-0.782751\pi\)
−0.775994 + 0.630740i \(0.782751\pi\)
\(20\) 0 0
\(21\) −0.582493 −0.127110
\(22\) 0 0
\(23\) 6.10208 1.27237 0.636185 0.771536i \(-0.280511\pi\)
0.636185 + 0.771536i \(0.280511\pi\)
\(24\) 0 0
\(25\) 9.83039 1.96608
\(26\) 0 0
\(27\) −3.29732 −0.634569
\(28\) 0 0
\(29\) 3.73962 0.694430 0.347215 0.937785i \(-0.387127\pi\)
0.347215 + 0.937785i \(0.387127\pi\)
\(30\) 0 0
\(31\) −0.0519437 −0.00932936 −0.00466468 0.999989i \(-0.501485\pi\)
−0.00466468 + 0.999989i \(0.501485\pi\)
\(32\) 0 0
\(33\) −2.70738 −0.471295
\(34\) 0 0
\(35\) 3.85102 0.650942
\(36\) 0 0
\(37\) −10.1597 −1.67024 −0.835118 0.550071i \(-0.814601\pi\)
−0.835118 + 0.550071i \(0.814601\pi\)
\(38\) 0 0
\(39\) −1.48294 −0.237460
\(40\) 0 0
\(41\) −5.63662 −0.880292 −0.440146 0.897926i \(-0.645073\pi\)
−0.440146 + 0.897926i \(0.645073\pi\)
\(42\) 0 0
\(43\) −8.99193 −1.37126 −0.685628 0.727952i \(-0.740472\pi\)
−0.685628 + 0.727952i \(0.740472\pi\)
\(44\) 0 0
\(45\) 10.2464 1.52745
\(46\) 0 0
\(47\) −6.70550 −0.978098 −0.489049 0.872256i \(-0.662656\pi\)
−0.489049 + 0.872256i \(0.662656\pi\)
\(48\) 0 0
\(49\) 1.00000 0.142857
\(50\) 0 0
\(51\) −0.582493 −0.0815653
\(52\) 0 0
\(53\) 8.65356 1.18866 0.594329 0.804222i \(-0.297418\pi\)
0.594329 + 0.804222i \(0.297418\pi\)
\(54\) 0 0
\(55\) 17.8993 2.41354
\(56\) 0 0
\(57\) −3.94054 −0.521937
\(58\) 0 0
\(59\) −0.380646 −0.0495558 −0.0247779 0.999693i \(-0.507888\pi\)
−0.0247779 + 0.999693i \(0.507888\pi\)
\(60\) 0 0
\(61\) 4.49425 0.575429 0.287715 0.957716i \(-0.407105\pi\)
0.287715 + 0.957716i \(0.407105\pi\)
\(62\) 0 0
\(63\) 2.66070 0.335217
\(64\) 0 0
\(65\) 9.80413 1.21605
\(66\) 0 0
\(67\) 1.65889 0.202666 0.101333 0.994853i \(-0.467689\pi\)
0.101333 + 0.994853i \(0.467689\pi\)
\(68\) 0 0
\(69\) 3.55442 0.427901
\(70\) 0 0
\(71\) −4.35876 −0.517290 −0.258645 0.965972i \(-0.583276\pi\)
−0.258645 + 0.965972i \(0.583276\pi\)
\(72\) 0 0
\(73\) 4.29514 0.502708 0.251354 0.967895i \(-0.419124\pi\)
0.251354 + 0.967895i \(0.419124\pi\)
\(74\) 0 0
\(75\) 5.72613 0.661197
\(76\) 0 0
\(77\) 4.64792 0.529680
\(78\) 0 0
\(79\) 9.48294 1.06691 0.533457 0.845827i \(-0.320893\pi\)
0.533457 + 0.845827i \(0.320893\pi\)
\(80\) 0 0
\(81\) 6.06144 0.673493
\(82\) 0 0
\(83\) 15.7429 1.72800 0.864001 0.503489i \(-0.167951\pi\)
0.864001 + 0.503489i \(0.167951\pi\)
\(84\) 0 0
\(85\) 3.85102 0.417702
\(86\) 0 0
\(87\) 2.17830 0.233539
\(88\) 0 0
\(89\) −10.7562 −1.14015 −0.570076 0.821592i \(-0.693086\pi\)
−0.570076 + 0.821592i \(0.693086\pi\)
\(90\) 0 0
\(91\) 2.54585 0.266877
\(92\) 0 0
\(93\) −0.0302568 −0.00313749
\(94\) 0 0
\(95\) 26.0520 2.67288
\(96\) 0 0
\(97\) −9.31901 −0.946202 −0.473101 0.881008i \(-0.656865\pi\)
−0.473101 + 0.881008i \(0.656865\pi\)
\(98\) 0 0
\(99\) 12.3667 1.24290
\(100\) 0 0
\(101\) −8.48458 −0.844247 −0.422124 0.906538i \(-0.638715\pi\)
−0.422124 + 0.906538i \(0.638715\pi\)
\(102\) 0 0
\(103\) 13.0322 1.28410 0.642052 0.766661i \(-0.278083\pi\)
0.642052 + 0.766661i \(0.278083\pi\)
\(104\) 0 0
\(105\) 2.24319 0.218913
\(106\) 0 0
\(107\) 5.38086 0.520188 0.260094 0.965583i \(-0.416247\pi\)
0.260094 + 0.965583i \(0.416247\pi\)
\(108\) 0 0
\(109\) 17.3264 1.65957 0.829786 0.558081i \(-0.188462\pi\)
0.829786 + 0.558081i \(0.188462\pi\)
\(110\) 0 0
\(111\) −5.91793 −0.561705
\(112\) 0 0
\(113\) −6.04698 −0.568852 −0.284426 0.958698i \(-0.591803\pi\)
−0.284426 + 0.958698i \(0.591803\pi\)
\(114\) 0 0
\(115\) −23.4992 −2.19132
\(116\) 0 0
\(117\) 6.77374 0.626233
\(118\) 0 0
\(119\) 1.00000 0.0916698
\(120\) 0 0
\(121\) 10.6032 0.963928
\(122\) 0 0
\(123\) −3.28329 −0.296044
\(124\) 0 0
\(125\) −18.6020 −1.66381
\(126\) 0 0
\(127\) 4.82245 0.427924 0.213962 0.976842i \(-0.431363\pi\)
0.213962 + 0.976842i \(0.431363\pi\)
\(128\) 0 0
\(129\) −5.23773 −0.461157
\(130\) 0 0
\(131\) 3.54563 0.309783 0.154892 0.987931i \(-0.450497\pi\)
0.154892 + 0.987931i \(0.450497\pi\)
\(132\) 0 0
\(133\) 6.76496 0.586596
\(134\) 0 0
\(135\) 12.6981 1.09287
\(136\) 0 0
\(137\) −14.5820 −1.24583 −0.622914 0.782291i \(-0.714051\pi\)
−0.622914 + 0.782291i \(0.714051\pi\)
\(138\) 0 0
\(139\) −10.7418 −0.911108 −0.455554 0.890208i \(-0.650559\pi\)
−0.455554 + 0.890208i \(0.650559\pi\)
\(140\) 0 0
\(141\) −3.90591 −0.328937
\(142\) 0 0
\(143\) 11.8329 0.989518
\(144\) 0 0
\(145\) −14.4014 −1.19597
\(146\) 0 0
\(147\) 0.582493 0.0480432
\(148\) 0 0
\(149\) 5.50899 0.451314 0.225657 0.974207i \(-0.427547\pi\)
0.225657 + 0.974207i \(0.427547\pi\)
\(150\) 0 0
\(151\) −0.993783 −0.0808729 −0.0404365 0.999182i \(-0.512875\pi\)
−0.0404365 + 0.999182i \(0.512875\pi\)
\(152\) 0 0
\(153\) 2.66070 0.215105
\(154\) 0 0
\(155\) 0.200036 0.0160673
\(156\) 0 0
\(157\) −19.2889 −1.53942 −0.769710 0.638394i \(-0.779599\pi\)
−0.769710 + 0.638394i \(0.779599\pi\)
\(158\) 0 0
\(159\) 5.04064 0.399748
\(160\) 0 0
\(161\) −6.10208 −0.480911
\(162\) 0 0
\(163\) −21.4931 −1.68347 −0.841734 0.539893i \(-0.818465\pi\)
−0.841734 + 0.539893i \(0.818465\pi\)
\(164\) 0 0
\(165\) 10.4262 0.811679
\(166\) 0 0
\(167\) 23.4801 1.81695 0.908473 0.417943i \(-0.137249\pi\)
0.908473 + 0.417943i \(0.137249\pi\)
\(168\) 0 0
\(169\) −6.51865 −0.501435
\(170\) 0 0
\(171\) 17.9995 1.37646
\(172\) 0 0
\(173\) −8.57694 −0.652093 −0.326046 0.945354i \(-0.605717\pi\)
−0.326046 + 0.945354i \(0.605717\pi\)
\(174\) 0 0
\(175\) −9.83039 −0.743108
\(176\) 0 0
\(177\) −0.221723 −0.0166657
\(178\) 0 0
\(179\) 1.32048 0.0986970 0.0493485 0.998782i \(-0.484286\pi\)
0.0493485 + 0.998782i \(0.484286\pi\)
\(180\) 0 0
\(181\) −10.5640 −0.785219 −0.392609 0.919705i \(-0.628428\pi\)
−0.392609 + 0.919705i \(0.628428\pi\)
\(182\) 0 0
\(183\) 2.61787 0.193518
\(184\) 0 0
\(185\) 39.1251 2.87653
\(186\) 0 0
\(187\) 4.64792 0.339890
\(188\) 0 0
\(189\) 3.29732 0.239845
\(190\) 0 0
\(191\) 14.1277 1.02225 0.511123 0.859508i \(-0.329230\pi\)
0.511123 + 0.859508i \(0.329230\pi\)
\(192\) 0 0
\(193\) 1.91288 0.137692 0.0688461 0.997627i \(-0.478068\pi\)
0.0688461 + 0.997627i \(0.478068\pi\)
\(194\) 0 0
\(195\) 5.71083 0.408961
\(196\) 0 0
\(197\) −13.2364 −0.943054 −0.471527 0.881852i \(-0.656297\pi\)
−0.471527 + 0.881852i \(0.656297\pi\)
\(198\) 0 0
\(199\) 17.5021 1.24069 0.620344 0.784330i \(-0.286993\pi\)
0.620344 + 0.784330i \(0.286993\pi\)
\(200\) 0 0
\(201\) 0.966292 0.0681570
\(202\) 0 0
\(203\) −3.73962 −0.262470
\(204\) 0 0
\(205\) 21.7068 1.51607
\(206\) 0 0
\(207\) −16.2358 −1.12847
\(208\) 0 0
\(209\) 31.4430 2.17496
\(210\) 0 0
\(211\) −7.21316 −0.496574 −0.248287 0.968687i \(-0.579868\pi\)
−0.248287 + 0.968687i \(0.579868\pi\)
\(212\) 0 0
\(213\) −2.53895 −0.173966
\(214\) 0 0
\(215\) 34.6281 2.36162
\(216\) 0 0
\(217\) 0.0519437 0.00352617
\(218\) 0 0
\(219\) 2.50189 0.169062
\(220\) 0 0
\(221\) 2.54585 0.171252
\(222\) 0 0
\(223\) −1.21747 −0.0815279 −0.0407639 0.999169i \(-0.512979\pi\)
−0.0407639 + 0.999169i \(0.512979\pi\)
\(224\) 0 0
\(225\) −26.1557 −1.74372
\(226\) 0 0
\(227\) 22.9496 1.52322 0.761608 0.648037i \(-0.224410\pi\)
0.761608 + 0.648037i \(0.224410\pi\)
\(228\) 0 0
\(229\) −13.2440 −0.875187 −0.437594 0.899173i \(-0.644169\pi\)
−0.437594 + 0.899173i \(0.644169\pi\)
\(230\) 0 0
\(231\) 2.70738 0.178133
\(232\) 0 0
\(233\) −1.90483 −0.124789 −0.0623946 0.998052i \(-0.519874\pi\)
−0.0623946 + 0.998052i \(0.519874\pi\)
\(234\) 0 0
\(235\) 25.8230 1.68451
\(236\) 0 0
\(237\) 5.52375 0.358806
\(238\) 0 0
\(239\) −19.0815 −1.23428 −0.617141 0.786853i \(-0.711709\pi\)
−0.617141 + 0.786853i \(0.711709\pi\)
\(240\) 0 0
\(241\) −11.1006 −0.715050 −0.357525 0.933904i \(-0.616379\pi\)
−0.357525 + 0.933904i \(0.616379\pi\)
\(242\) 0 0
\(243\) 13.4227 0.861067
\(244\) 0 0
\(245\) −3.85102 −0.246033
\(246\) 0 0
\(247\) 17.2226 1.09585
\(248\) 0 0
\(249\) 9.17010 0.581132
\(250\) 0 0
\(251\) 22.8290 1.44095 0.720477 0.693479i \(-0.243923\pi\)
0.720477 + 0.693479i \(0.243923\pi\)
\(252\) 0 0
\(253\) −28.3620 −1.78310
\(254\) 0 0
\(255\) 2.24319 0.140474
\(256\) 0 0
\(257\) −0.707384 −0.0441254 −0.0220627 0.999757i \(-0.507023\pi\)
−0.0220627 + 0.999757i \(0.507023\pi\)
\(258\) 0 0
\(259\) 10.1597 0.631290
\(260\) 0 0
\(261\) −9.95002 −0.615891
\(262\) 0 0
\(263\) −3.29835 −0.203385 −0.101693 0.994816i \(-0.532426\pi\)
−0.101693 + 0.994816i \(0.532426\pi\)
\(264\) 0 0
\(265\) −33.3251 −2.04714
\(266\) 0 0
\(267\) −6.26540 −0.383436
\(268\) 0 0
\(269\) −13.2226 −0.806194 −0.403097 0.915157i \(-0.632066\pi\)
−0.403097 + 0.915157i \(0.632066\pi\)
\(270\) 0 0
\(271\) −17.6640 −1.07301 −0.536506 0.843896i \(-0.680256\pi\)
−0.536506 + 0.843896i \(0.680256\pi\)
\(272\) 0 0
\(273\) 1.48294 0.0897516
\(274\) 0 0
\(275\) −45.6909 −2.75527
\(276\) 0 0
\(277\) 27.8416 1.67284 0.836421 0.548088i \(-0.184644\pi\)
0.836421 + 0.548088i \(0.184644\pi\)
\(278\) 0 0
\(279\) 0.138207 0.00827422
\(280\) 0 0
\(281\) 15.5162 0.925621 0.462810 0.886457i \(-0.346841\pi\)
0.462810 + 0.886457i \(0.346841\pi\)
\(282\) 0 0
\(283\) 12.6717 0.753254 0.376627 0.926365i \(-0.377084\pi\)
0.376627 + 0.926365i \(0.377084\pi\)
\(284\) 0 0
\(285\) 15.1751 0.898897
\(286\) 0 0
\(287\) 5.63662 0.332719
\(288\) 0 0
\(289\) 1.00000 0.0588235
\(290\) 0 0
\(291\) −5.42826 −0.318210
\(292\) 0 0
\(293\) 7.65569 0.447250 0.223625 0.974675i \(-0.428211\pi\)
0.223625 + 0.974675i \(0.428211\pi\)
\(294\) 0 0
\(295\) 1.46588 0.0853466
\(296\) 0 0
\(297\) 15.3257 0.889287
\(298\) 0 0
\(299\) −15.5350 −0.898410
\(300\) 0 0
\(301\) 8.99193 0.518286
\(302\) 0 0
\(303\) −4.94221 −0.283922
\(304\) 0 0
\(305\) −17.3075 −0.991022
\(306\) 0 0
\(307\) −33.6476 −1.92037 −0.960186 0.279362i \(-0.909877\pi\)
−0.960186 + 0.279362i \(0.909877\pi\)
\(308\) 0 0
\(309\) 7.59119 0.431848
\(310\) 0 0
\(311\) −21.5180 −1.22017 −0.610086 0.792335i \(-0.708865\pi\)
−0.610086 + 0.792335i \(0.708865\pi\)
\(312\) 0 0
\(313\) −19.2044 −1.08550 −0.542750 0.839894i \(-0.682617\pi\)
−0.542750 + 0.839894i \(0.682617\pi\)
\(314\) 0 0
\(315\) −10.2464 −0.577321
\(316\) 0 0
\(317\) 14.7492 0.828400 0.414200 0.910186i \(-0.364061\pi\)
0.414200 + 0.910186i \(0.364061\pi\)
\(318\) 0 0
\(319\) −17.3815 −0.973176
\(320\) 0 0
\(321\) 3.13431 0.174940
\(322\) 0 0
\(323\) 6.76496 0.376412
\(324\) 0 0
\(325\) −25.0267 −1.38823
\(326\) 0 0
\(327\) 10.0925 0.558118
\(328\) 0 0
\(329\) 6.70550 0.369686
\(330\) 0 0
\(331\) −22.0766 −1.21344 −0.606720 0.794916i \(-0.707515\pi\)
−0.606720 + 0.794916i \(0.707515\pi\)
\(332\) 0 0
\(333\) 27.0318 1.48133
\(334\) 0 0
\(335\) −6.38843 −0.349037
\(336\) 0 0
\(337\) −19.8836 −1.08313 −0.541564 0.840660i \(-0.682168\pi\)
−0.541564 + 0.840660i \(0.682168\pi\)
\(338\) 0 0
\(339\) −3.52232 −0.191306
\(340\) 0 0
\(341\) 0.241430 0.0130742
\(342\) 0 0
\(343\) −1.00000 −0.0539949
\(344\) 0 0
\(345\) −13.6881 −0.736945
\(346\) 0 0
\(347\) 10.9728 0.589050 0.294525 0.955644i \(-0.404839\pi\)
0.294525 + 0.955644i \(0.404839\pi\)
\(348\) 0 0
\(349\) −1.84028 −0.0985077 −0.0492539 0.998786i \(-0.515684\pi\)
−0.0492539 + 0.998786i \(0.515684\pi\)
\(350\) 0 0
\(351\) 8.39448 0.448064
\(352\) 0 0
\(353\) 23.1182 1.23046 0.615228 0.788349i \(-0.289064\pi\)
0.615228 + 0.788349i \(0.289064\pi\)
\(354\) 0 0
\(355\) 16.7857 0.890892
\(356\) 0 0
\(357\) 0.582493 0.0308288
\(358\) 0 0
\(359\) 26.3800 1.39228 0.696142 0.717904i \(-0.254898\pi\)
0.696142 + 0.717904i \(0.254898\pi\)
\(360\) 0 0
\(361\) 26.7647 1.40867
\(362\) 0 0
\(363\) 6.17629 0.324171
\(364\) 0 0
\(365\) −16.5407 −0.865779
\(366\) 0 0
\(367\) −23.4895 −1.22614 −0.613072 0.790027i \(-0.710066\pi\)
−0.613072 + 0.790027i \(0.710066\pi\)
\(368\) 0 0
\(369\) 14.9974 0.780731
\(370\) 0 0
\(371\) −8.65356 −0.449270
\(372\) 0 0
\(373\) −18.8168 −0.974296 −0.487148 0.873319i \(-0.661963\pi\)
−0.487148 + 0.873319i \(0.661963\pi\)
\(374\) 0 0
\(375\) −10.8355 −0.559543
\(376\) 0 0
\(377\) −9.52051 −0.490331
\(378\) 0 0
\(379\) 20.5866 1.05746 0.528731 0.848790i \(-0.322668\pi\)
0.528731 + 0.848790i \(0.322668\pi\)
\(380\) 0 0
\(381\) 2.80905 0.143912
\(382\) 0 0
\(383\) −14.6293 −0.747521 −0.373760 0.927525i \(-0.621932\pi\)
−0.373760 + 0.927525i \(0.621932\pi\)
\(384\) 0 0
\(385\) −17.8993 −0.912231
\(386\) 0 0
\(387\) 23.9248 1.21617
\(388\) 0 0
\(389\) 11.4040 0.578207 0.289103 0.957298i \(-0.406643\pi\)
0.289103 + 0.957298i \(0.406643\pi\)
\(390\) 0 0
\(391\) −6.10208 −0.308595
\(392\) 0 0
\(393\) 2.06531 0.104181
\(394\) 0 0
\(395\) −36.5190 −1.83747
\(396\) 0 0
\(397\) −28.4747 −1.42911 −0.714553 0.699581i \(-0.753370\pi\)
−0.714553 + 0.699581i \(0.753370\pi\)
\(398\) 0 0
\(399\) 3.94054 0.197274
\(400\) 0 0
\(401\) 21.1048 1.05392 0.526961 0.849889i \(-0.323331\pi\)
0.526961 + 0.849889i \(0.323331\pi\)
\(402\) 0 0
\(403\) 0.132241 0.00658738
\(404\) 0 0
\(405\) −23.3428 −1.15991
\(406\) 0 0
\(407\) 47.2213 2.34067
\(408\) 0 0
\(409\) 33.2177 1.64251 0.821254 0.570562i \(-0.193275\pi\)
0.821254 + 0.570562i \(0.193275\pi\)
\(410\) 0 0
\(411\) −8.49393 −0.418975
\(412\) 0 0
\(413\) 0.380646 0.0187303
\(414\) 0 0
\(415\) −60.6261 −2.97602
\(416\) 0 0
\(417\) −6.25702 −0.306408
\(418\) 0 0
\(419\) 26.2462 1.28221 0.641105 0.767454i \(-0.278476\pi\)
0.641105 + 0.767454i \(0.278476\pi\)
\(420\) 0 0
\(421\) 3.79079 0.184752 0.0923759 0.995724i \(-0.470554\pi\)
0.0923759 + 0.995724i \(0.470554\pi\)
\(422\) 0 0
\(423\) 17.8413 0.867475
\(424\) 0 0
\(425\) −9.83039 −0.476844
\(426\) 0 0
\(427\) −4.49425 −0.217492
\(428\) 0 0
\(429\) 6.89259 0.332777
\(430\) 0 0
\(431\) 37.0751 1.78584 0.892922 0.450211i \(-0.148651\pi\)
0.892922 + 0.450211i \(0.148651\pi\)
\(432\) 0 0
\(433\) −18.3813 −0.883349 −0.441675 0.897175i \(-0.645615\pi\)
−0.441675 + 0.897175i \(0.645615\pi\)
\(434\) 0 0
\(435\) −8.38870 −0.402207
\(436\) 0 0
\(437\) −41.2803 −1.97470
\(438\) 0 0
\(439\) −12.9794 −0.619475 −0.309738 0.950822i \(-0.600241\pi\)
−0.309738 + 0.950822i \(0.600241\pi\)
\(440\) 0 0
\(441\) −2.66070 −0.126700
\(442\) 0 0
\(443\) −21.0667 −1.00091 −0.500455 0.865762i \(-0.666834\pi\)
−0.500455 + 0.865762i \(0.666834\pi\)
\(444\) 0 0
\(445\) 41.4223 1.96360
\(446\) 0 0
\(447\) 3.20895 0.151778
\(448\) 0 0
\(449\) −20.4265 −0.963986 −0.481993 0.876175i \(-0.660087\pi\)
−0.481993 + 0.876175i \(0.660087\pi\)
\(450\) 0 0
\(451\) 26.1986 1.23364
\(452\) 0 0
\(453\) −0.578872 −0.0271978
\(454\) 0 0
\(455\) −9.80413 −0.459625
\(456\) 0 0
\(457\) −15.8962 −0.743593 −0.371796 0.928314i \(-0.621258\pi\)
−0.371796 + 0.928314i \(0.621258\pi\)
\(458\) 0 0
\(459\) 3.29732 0.153906
\(460\) 0 0
\(461\) −22.0933 −1.02899 −0.514494 0.857494i \(-0.672020\pi\)
−0.514494 + 0.857494i \(0.672020\pi\)
\(462\) 0 0
\(463\) −33.7663 −1.56925 −0.784627 0.619968i \(-0.787146\pi\)
−0.784627 + 0.619968i \(0.787146\pi\)
\(464\) 0 0
\(465\) 0.116520 0.00540348
\(466\) 0 0
\(467\) 24.4025 1.12921 0.564607 0.825360i \(-0.309028\pi\)
0.564607 + 0.825360i \(0.309028\pi\)
\(468\) 0 0
\(469\) −1.65889 −0.0766005
\(470\) 0 0
\(471\) −11.2356 −0.517711
\(472\) 0 0
\(473\) 41.7938 1.92168
\(474\) 0 0
\(475\) −66.5022 −3.05133
\(476\) 0 0
\(477\) −23.0245 −1.05422
\(478\) 0 0
\(479\) 4.38153 0.200197 0.100099 0.994978i \(-0.468084\pi\)
0.100099 + 0.994978i \(0.468084\pi\)
\(480\) 0 0
\(481\) 25.8649 1.17934
\(482\) 0 0
\(483\) −3.55442 −0.161732
\(484\) 0 0
\(485\) 35.8877 1.62958
\(486\) 0 0
\(487\) 37.4055 1.69500 0.847502 0.530792i \(-0.178105\pi\)
0.847502 + 0.530792i \(0.178105\pi\)
\(488\) 0 0
\(489\) −12.5196 −0.566154
\(490\) 0 0
\(491\) 9.91229 0.447336 0.223668 0.974665i \(-0.428197\pi\)
0.223668 + 0.974665i \(0.428197\pi\)
\(492\) 0 0
\(493\) −3.73962 −0.168424
\(494\) 0 0
\(495\) −47.6246 −2.14057
\(496\) 0 0
\(497\) 4.35876 0.195517
\(498\) 0 0
\(499\) 23.0416 1.03149 0.515743 0.856743i \(-0.327516\pi\)
0.515743 + 0.856743i \(0.327516\pi\)
\(500\) 0 0
\(501\) 13.6770 0.611044
\(502\) 0 0
\(503\) 17.0649 0.760885 0.380443 0.924805i \(-0.375772\pi\)
0.380443 + 0.924805i \(0.375772\pi\)
\(504\) 0 0
\(505\) 32.6743 1.45399
\(506\) 0 0
\(507\) −3.79707 −0.168634
\(508\) 0 0
\(509\) −5.28706 −0.234345 −0.117173 0.993112i \(-0.537383\pi\)
−0.117173 + 0.993112i \(0.537383\pi\)
\(510\) 0 0
\(511\) −4.29514 −0.190006
\(512\) 0 0
\(513\) 22.3062 0.984844
\(514\) 0 0
\(515\) −50.1875 −2.21152
\(516\) 0 0
\(517\) 31.1667 1.37071
\(518\) 0 0
\(519\) −4.99601 −0.219300
\(520\) 0 0
\(521\) 28.1368 1.23269 0.616347 0.787474i \(-0.288612\pi\)
0.616347 + 0.787474i \(0.288612\pi\)
\(522\) 0 0
\(523\) −24.1414 −1.05563 −0.527816 0.849359i \(-0.676989\pi\)
−0.527816 + 0.849359i \(0.676989\pi\)
\(524\) 0 0
\(525\) −5.72613 −0.249909
\(526\) 0 0
\(527\) 0.0519437 0.00226270
\(528\) 0 0
\(529\) 14.2353 0.618928
\(530\) 0 0
\(531\) 1.01278 0.0439511
\(532\) 0 0
\(533\) 14.3500 0.621566
\(534\) 0 0
\(535\) −20.7218 −0.895883
\(536\) 0 0
\(537\) 0.769168 0.0331920
\(538\) 0 0
\(539\) −4.64792 −0.200200
\(540\) 0 0
\(541\) 29.3315 1.26106 0.630531 0.776164i \(-0.282837\pi\)
0.630531 + 0.776164i \(0.282837\pi\)
\(542\) 0 0
\(543\) −6.15348 −0.264071
\(544\) 0 0
\(545\) −66.7246 −2.85817
\(546\) 0 0
\(547\) −20.6034 −0.880937 −0.440468 0.897768i \(-0.645188\pi\)
−0.440468 + 0.897768i \(0.645188\pi\)
\(548\) 0 0
\(549\) −11.9579 −0.510349
\(550\) 0 0
\(551\) −25.2984 −1.07775
\(552\) 0 0
\(553\) −9.48294 −0.403256
\(554\) 0 0
\(555\) 22.7901 0.967385
\(556\) 0 0
\(557\) −42.5588 −1.80327 −0.901636 0.432495i \(-0.857633\pi\)
−0.901636 + 0.432495i \(0.857633\pi\)
\(558\) 0 0
\(559\) 22.8921 0.968232
\(560\) 0 0
\(561\) 2.70738 0.114306
\(562\) 0 0
\(563\) −38.6153 −1.62744 −0.813721 0.581256i \(-0.802562\pi\)
−0.813721 + 0.581256i \(0.802562\pi\)
\(564\) 0 0
\(565\) 23.2871 0.979694
\(566\) 0 0
\(567\) −6.06144 −0.254557
\(568\) 0 0
\(569\) 9.65111 0.404596 0.202298 0.979324i \(-0.435159\pi\)
0.202298 + 0.979324i \(0.435159\pi\)
\(570\) 0 0
\(571\) −22.6533 −0.948013 −0.474006 0.880521i \(-0.657193\pi\)
−0.474006 + 0.880521i \(0.657193\pi\)
\(572\) 0 0
\(573\) 8.22929 0.343784
\(574\) 0 0
\(575\) 59.9858 2.50158
\(576\) 0 0
\(577\) 3.15762 0.131454 0.0657268 0.997838i \(-0.479063\pi\)
0.0657268 + 0.997838i \(0.479063\pi\)
\(578\) 0 0
\(579\) 1.11424 0.0463062
\(580\) 0 0
\(581\) −15.7429 −0.653124
\(582\) 0 0
\(583\) −40.2211 −1.66579
\(584\) 0 0
\(585\) −26.0859 −1.07852
\(586\) 0 0
\(587\) 21.9850 0.907420 0.453710 0.891149i \(-0.350100\pi\)
0.453710 + 0.891149i \(0.350100\pi\)
\(588\) 0 0
\(589\) 0.351397 0.0144791
\(590\) 0 0
\(591\) −7.71011 −0.317151
\(592\) 0 0
\(593\) −14.4951 −0.595243 −0.297621 0.954684i \(-0.596193\pi\)
−0.297621 + 0.954684i \(0.596193\pi\)
\(594\) 0 0
\(595\) −3.85102 −0.157877
\(596\) 0 0
\(597\) 10.1948 0.417246
\(598\) 0 0
\(599\) 27.3702 1.11832 0.559159 0.829061i \(-0.311124\pi\)
0.559159 + 0.829061i \(0.311124\pi\)
\(600\) 0 0
\(601\) −12.9688 −0.529009 −0.264505 0.964384i \(-0.585208\pi\)
−0.264505 + 0.964384i \(0.585208\pi\)
\(602\) 0 0
\(603\) −4.41381 −0.179744
\(604\) 0 0
\(605\) −40.8332 −1.66011
\(606\) 0 0
\(607\) 12.8438 0.521315 0.260658 0.965431i \(-0.416061\pi\)
0.260658 + 0.965431i \(0.416061\pi\)
\(608\) 0 0
\(609\) −2.17830 −0.0882693
\(610\) 0 0
\(611\) 17.0712 0.690626
\(612\) 0 0
\(613\) −42.0422 −1.69807 −0.849034 0.528338i \(-0.822815\pi\)
−0.849034 + 0.528338i \(0.822815\pi\)
\(614\) 0 0
\(615\) 12.6440 0.509857
\(616\) 0 0
\(617\) −35.5895 −1.43278 −0.716390 0.697700i \(-0.754207\pi\)
−0.716390 + 0.697700i \(0.754207\pi\)
\(618\) 0 0
\(619\) 15.7453 0.632858 0.316429 0.948616i \(-0.397516\pi\)
0.316429 + 0.948616i \(0.397516\pi\)
\(620\) 0 0
\(621\) −20.1205 −0.807408
\(622\) 0 0
\(623\) 10.7562 0.430937
\(624\) 0 0
\(625\) 22.4846 0.899385
\(626\) 0 0
\(627\) 18.3153 0.731444
\(628\) 0 0
\(629\) 10.1597 0.405092
\(630\) 0 0
\(631\) 8.70746 0.346639 0.173319 0.984866i \(-0.444551\pi\)
0.173319 + 0.984866i \(0.444551\pi\)
\(632\) 0 0
\(633\) −4.20161 −0.166999
\(634\) 0 0
\(635\) −18.5714 −0.736983
\(636\) 0 0
\(637\) −2.54585 −0.100870
\(638\) 0 0
\(639\) 11.5974 0.458784
\(640\) 0 0
\(641\) 18.0314 0.712198 0.356099 0.934448i \(-0.384107\pi\)
0.356099 + 0.934448i \(0.384107\pi\)
\(642\) 0 0
\(643\) −29.5341 −1.16471 −0.582355 0.812934i \(-0.697869\pi\)
−0.582355 + 0.812934i \(0.697869\pi\)
\(644\) 0 0
\(645\) 20.1706 0.794218
\(646\) 0 0
\(647\) −11.2951 −0.444056 −0.222028 0.975040i \(-0.571268\pi\)
−0.222028 + 0.975040i \(0.571268\pi\)
\(648\) 0 0
\(649\) 1.76921 0.0694476
\(650\) 0 0
\(651\) 0.0302568 0.00118586
\(652\) 0 0
\(653\) 21.3164 0.834174 0.417087 0.908867i \(-0.363051\pi\)
0.417087 + 0.908867i \(0.363051\pi\)
\(654\) 0 0
\(655\) −13.6543 −0.533518
\(656\) 0 0
\(657\) −11.4281 −0.445852
\(658\) 0 0
\(659\) −27.4874 −1.07076 −0.535379 0.844612i \(-0.679831\pi\)
−0.535379 + 0.844612i \(0.679831\pi\)
\(660\) 0 0
\(661\) −23.6276 −0.919008 −0.459504 0.888176i \(-0.651973\pi\)
−0.459504 + 0.888176i \(0.651973\pi\)
\(662\) 0 0
\(663\) 1.48294 0.0575926
\(664\) 0 0
\(665\) −26.0520 −1.01025
\(666\) 0 0
\(667\) 22.8195 0.883573
\(668\) 0 0
\(669\) −0.709168 −0.0274180
\(670\) 0 0
\(671\) −20.8889 −0.806408
\(672\) 0 0
\(673\) 29.7545 1.14695 0.573476 0.819222i \(-0.305595\pi\)
0.573476 + 0.819222i \(0.305595\pi\)
\(674\) 0 0
\(675\) −32.4139 −1.24761
\(676\) 0 0
\(677\) 38.3681 1.47461 0.737303 0.675562i \(-0.236099\pi\)
0.737303 + 0.675562i \(0.236099\pi\)
\(678\) 0 0
\(679\) 9.31901 0.357631
\(680\) 0 0
\(681\) 13.3680 0.512262
\(682\) 0 0
\(683\) 31.8142 1.21734 0.608668 0.793425i \(-0.291704\pi\)
0.608668 + 0.793425i \(0.291704\pi\)
\(684\) 0 0
\(685\) 56.1558 2.14560
\(686\) 0 0
\(687\) −7.71453 −0.294328
\(688\) 0 0
\(689\) −22.0306 −0.839301
\(690\) 0 0
\(691\) 13.1861 0.501623 0.250812 0.968036i \(-0.419303\pi\)
0.250812 + 0.968036i \(0.419303\pi\)
\(692\) 0 0
\(693\) −12.3667 −0.469774
\(694\) 0 0
\(695\) 41.3669 1.56914
\(696\) 0 0
\(697\) 5.63662 0.213502
\(698\) 0 0
\(699\) −1.10955 −0.0419669
\(700\) 0 0
\(701\) 26.0297 0.983127 0.491564 0.870842i \(-0.336426\pi\)
0.491564 + 0.870842i \(0.336426\pi\)
\(702\) 0 0
\(703\) 68.7296 2.59219
\(704\) 0 0
\(705\) 15.0417 0.566505
\(706\) 0 0
\(707\) 8.48458 0.319095
\(708\) 0 0
\(709\) −45.6490 −1.71438 −0.857191 0.514998i \(-0.827793\pi\)
−0.857191 + 0.514998i \(0.827793\pi\)
\(710\) 0 0
\(711\) −25.2313 −0.946247
\(712\) 0 0
\(713\) −0.316964 −0.0118704
\(714\) 0 0
\(715\) −45.5688 −1.70418
\(716\) 0 0
\(717\) −11.1149 −0.415092
\(718\) 0 0
\(719\) −21.8166 −0.813621 −0.406810 0.913513i \(-0.633359\pi\)
−0.406810 + 0.913513i \(0.633359\pi\)
\(720\) 0 0
\(721\) −13.0322 −0.485346
\(722\) 0 0
\(723\) −6.46600 −0.240473
\(724\) 0 0
\(725\) 36.7619 1.36530
\(726\) 0 0
\(727\) −44.3721 −1.64567 −0.822834 0.568281i \(-0.807608\pi\)
−0.822834 + 0.568281i \(0.807608\pi\)
\(728\) 0 0
\(729\) −10.3657 −0.383914
\(730\) 0 0
\(731\) 8.99193 0.332578
\(732\) 0 0
\(733\) 26.5767 0.981634 0.490817 0.871263i \(-0.336698\pi\)
0.490817 + 0.871263i \(0.336698\pi\)
\(734\) 0 0
\(735\) −2.24319 −0.0827415
\(736\) 0 0
\(737\) −7.71040 −0.284016
\(738\) 0 0
\(739\) 17.2009 0.632744 0.316372 0.948635i \(-0.397535\pi\)
0.316372 + 0.948635i \(0.397535\pi\)
\(740\) 0 0
\(741\) 10.0320 0.368536
\(742\) 0 0
\(743\) 29.8491 1.09506 0.547528 0.836787i \(-0.315569\pi\)
0.547528 + 0.836787i \(0.315569\pi\)
\(744\) 0 0
\(745\) −21.2152 −0.777266
\(746\) 0 0
\(747\) −41.8870 −1.53257
\(748\) 0 0
\(749\) −5.38086 −0.196612
\(750\) 0 0
\(751\) −9.81591 −0.358188 −0.179094 0.983832i \(-0.557317\pi\)
−0.179094 + 0.983832i \(0.557317\pi\)
\(752\) 0 0
\(753\) 13.2977 0.484596
\(754\) 0 0
\(755\) 3.82708 0.139282
\(756\) 0 0
\(757\) 49.8321 1.81118 0.905589 0.424157i \(-0.139429\pi\)
0.905589 + 0.424157i \(0.139429\pi\)
\(758\) 0 0
\(759\) −16.5207 −0.599662
\(760\) 0 0
\(761\) −37.2833 −1.35152 −0.675760 0.737122i \(-0.736184\pi\)
−0.675760 + 0.737122i \(0.736184\pi\)
\(762\) 0 0
\(763\) −17.3264 −0.627260
\(764\) 0 0
\(765\) −10.2464 −0.370460
\(766\) 0 0
\(767\) 0.969066 0.0349909
\(768\) 0 0
\(769\) 5.08067 0.183214 0.0916068 0.995795i \(-0.470800\pi\)
0.0916068 + 0.995795i \(0.470800\pi\)
\(770\) 0 0
\(771\) −0.412046 −0.0148395
\(772\) 0 0
\(773\) 17.5543 0.631384 0.315692 0.948862i \(-0.397763\pi\)
0.315692 + 0.948862i \(0.397763\pi\)
\(774\) 0 0
\(775\) −0.510627 −0.0183423
\(776\) 0 0
\(777\) 5.91793 0.212304
\(778\) 0 0
\(779\) 38.1315 1.36620
\(780\) 0 0
\(781\) 20.2592 0.724931
\(782\) 0 0
\(783\) −12.3307 −0.440664
\(784\) 0 0
\(785\) 74.2819 2.65124
\(786\) 0 0
\(787\) 37.9118 1.35141 0.675706 0.737172i \(-0.263839\pi\)
0.675706 + 0.737172i \(0.263839\pi\)
\(788\) 0 0
\(789\) −1.92127 −0.0683990
\(790\) 0 0
\(791\) 6.04698 0.215006
\(792\) 0 0
\(793\) −11.4417 −0.406306
\(794\) 0 0
\(795\) −19.4116 −0.688459
\(796\) 0 0
\(797\) −16.4612 −0.583086 −0.291543 0.956558i \(-0.594169\pi\)
−0.291543 + 0.956558i \(0.594169\pi\)
\(798\) 0 0
\(799\) 6.70550 0.237224
\(800\) 0 0
\(801\) 28.6190 1.01120
\(802\) 0 0
\(803\) −19.9635 −0.704496
\(804\) 0 0
\(805\) 23.4992 0.828240
\(806\) 0 0
\(807\) −7.70205 −0.271125
\(808\) 0 0
\(809\) −43.6942 −1.53621 −0.768103 0.640326i \(-0.778799\pi\)
−0.768103 + 0.640326i \(0.778799\pi\)
\(810\) 0 0
\(811\) −16.9380 −0.594774 −0.297387 0.954757i \(-0.596115\pi\)
−0.297387 + 0.954757i \(0.596115\pi\)
\(812\) 0 0
\(813\) −10.2892 −0.360857
\(814\) 0 0
\(815\) 82.7704 2.89932
\(816\) 0 0
\(817\) 60.8300 2.12817
\(818\) 0 0
\(819\) −6.77374 −0.236694
\(820\) 0 0
\(821\) 9.90439 0.345666 0.172833 0.984951i \(-0.444708\pi\)
0.172833 + 0.984951i \(0.444708\pi\)
\(822\) 0 0
\(823\) 38.2148 1.33209 0.666043 0.745914i \(-0.267987\pi\)
0.666043 + 0.745914i \(0.267987\pi\)
\(824\) 0 0
\(825\) −26.6146 −0.926603
\(826\) 0 0
\(827\) 47.0218 1.63511 0.817554 0.575851i \(-0.195329\pi\)
0.817554 + 0.575851i \(0.195329\pi\)
\(828\) 0 0
\(829\) −9.95734 −0.345833 −0.172916 0.984937i \(-0.555319\pi\)
−0.172916 + 0.984937i \(0.555319\pi\)
\(830\) 0 0
\(831\) 16.2176 0.562581
\(832\) 0 0
\(833\) −1.00000 −0.0346479
\(834\) 0 0
\(835\) −90.4225 −3.12920
\(836\) 0 0
\(837\) 0.171275 0.00592013
\(838\) 0 0
\(839\) 30.9370 1.06807 0.534033 0.845464i \(-0.320676\pi\)
0.534033 + 0.845464i \(0.320676\pi\)
\(840\) 0 0
\(841\) −15.0152 −0.517766
\(842\) 0 0
\(843\) 9.03810 0.311289
\(844\) 0 0
\(845\) 25.1035 0.863587
\(846\) 0 0
\(847\) −10.6032 −0.364330
\(848\) 0 0
\(849\) 7.38118 0.253321
\(850\) 0 0
\(851\) −61.9950 −2.12516
\(852\) 0 0
\(853\) −22.1629 −0.758843 −0.379421 0.925224i \(-0.623877\pi\)
−0.379421 + 0.925224i \(0.623877\pi\)
\(854\) 0 0
\(855\) −69.3167 −2.37058
\(856\) 0 0
\(857\) −27.4914 −0.939088 −0.469544 0.882909i \(-0.655582\pi\)
−0.469544 + 0.882909i \(0.655582\pi\)
\(858\) 0 0
\(859\) 1.90545 0.0650130 0.0325065 0.999472i \(-0.489651\pi\)
0.0325065 + 0.999472i \(0.489651\pi\)
\(860\) 0 0
\(861\) 3.28329 0.111894
\(862\) 0 0
\(863\) −0.423210 −0.0144062 −0.00720312 0.999974i \(-0.502293\pi\)
−0.00720312 + 0.999974i \(0.502293\pi\)
\(864\) 0 0
\(865\) 33.0300 1.12305
\(866\) 0 0
\(867\) 0.582493 0.0197825
\(868\) 0 0
\(869\) −44.0760 −1.49518
\(870\) 0 0
\(871\) −4.22329 −0.143101
\(872\) 0 0
\(873\) 24.7951 0.839187
\(874\) 0 0
\(875\) 18.6020 0.628861
\(876\) 0 0
\(877\) 11.6562 0.393603 0.196802 0.980443i \(-0.436945\pi\)
0.196802 + 0.980443i \(0.436945\pi\)
\(878\) 0 0
\(879\) 4.45939 0.150411
\(880\) 0 0
\(881\) 22.4703 0.757043 0.378522 0.925592i \(-0.376433\pi\)
0.378522 + 0.925592i \(0.376433\pi\)
\(882\) 0 0
\(883\) −40.3687 −1.35851 −0.679257 0.733900i \(-0.737698\pi\)
−0.679257 + 0.733900i \(0.737698\pi\)
\(884\) 0 0
\(885\) 0.853862 0.0287023
\(886\) 0 0
\(887\) −23.8461 −0.800673 −0.400337 0.916368i \(-0.631107\pi\)
−0.400337 + 0.916368i \(0.631107\pi\)
\(888\) 0 0
\(889\) −4.82245 −0.161740
\(890\) 0 0
\(891\) −28.1731 −0.943835
\(892\) 0 0
\(893\) 45.3624 1.51800
\(894\) 0 0
\(895\) −5.08518 −0.169979
\(896\) 0 0
\(897\) −9.04901 −0.302138
\(898\) 0 0
\(899\) −0.194250 −0.00647859
\(900\) 0 0
\(901\) −8.65356 −0.288292
\(902\) 0 0
\(903\) 5.23773 0.174301
\(904\) 0 0
\(905\) 40.6824 1.35233
\(906\) 0 0
\(907\) 22.0212 0.731202 0.365601 0.930772i \(-0.380864\pi\)
0.365601 + 0.930772i \(0.380864\pi\)
\(908\) 0 0
\(909\) 22.5749 0.748763
\(910\) 0 0
\(911\) 34.7769 1.15221 0.576105 0.817376i \(-0.304572\pi\)
0.576105 + 0.817376i \(0.304572\pi\)
\(912\) 0 0
\(913\) −73.1716 −2.42163
\(914\) 0 0
\(915\) −10.0815 −0.333283
\(916\) 0 0
\(917\) −3.54563 −0.117087
\(918\) 0 0
\(919\) 56.0414 1.84864 0.924318 0.381623i \(-0.124635\pi\)
0.924318 + 0.381623i \(0.124635\pi\)
\(920\) 0 0
\(921\) −19.5995 −0.645826
\(922\) 0 0
\(923\) 11.0967 0.365254
\(924\) 0 0
\(925\) −99.8733 −3.28382
\(926\) 0 0
\(927\) −34.6749 −1.13887
\(928\) 0 0
\(929\) 16.2756 0.533986 0.266993 0.963698i \(-0.413970\pi\)
0.266993 + 0.963698i \(0.413970\pi\)
\(930\) 0 0
\(931\) −6.76496 −0.221713
\(932\) 0 0
\(933\) −12.5341 −0.410347
\(934\) 0 0
\(935\) −17.8993 −0.585369
\(936\) 0 0
\(937\) −11.3951 −0.372263 −0.186131 0.982525i \(-0.559595\pi\)
−0.186131 + 0.982525i \(0.559595\pi\)
\(938\) 0 0
\(939\) −11.1865 −0.365056
\(940\) 0 0
\(941\) −31.8138 −1.03710 −0.518550 0.855047i \(-0.673528\pi\)
−0.518550 + 0.855047i \(0.673528\pi\)
\(942\) 0 0
\(943\) −34.3951 −1.12006
\(944\) 0 0
\(945\) −12.6981 −0.413068
\(946\) 0 0
\(947\) 3.89310 0.126509 0.0632544 0.997997i \(-0.479852\pi\)
0.0632544 + 0.997997i \(0.479852\pi\)
\(948\) 0 0
\(949\) −10.9348 −0.354958
\(950\) 0 0
\(951\) 8.59133 0.278593
\(952\) 0 0
\(953\) −30.7331 −0.995544 −0.497772 0.867308i \(-0.665848\pi\)
−0.497772 + 0.867308i \(0.665848\pi\)
\(954\) 0 0
\(955\) −54.4062 −1.76054
\(956\) 0 0
\(957\) −10.1246 −0.327282
\(958\) 0 0
\(959\) 14.5820 0.470878
\(960\) 0 0
\(961\) −30.9973 −0.999913
\(962\) 0 0
\(963\) −14.3169 −0.461355
\(964\) 0 0
\(965\) −7.36655 −0.237138
\(966\) 0 0
\(967\) −23.3237 −0.750038 −0.375019 0.927017i \(-0.622364\pi\)
−0.375019 + 0.927017i \(0.622364\pi\)
\(968\) 0 0
\(969\) 3.94054 0.126588
\(970\) 0 0
\(971\) −10.6257 −0.340993 −0.170497 0.985358i \(-0.554537\pi\)
−0.170497 + 0.985358i \(0.554537\pi\)
\(972\) 0 0
\(973\) 10.7418 0.344366
\(974\) 0 0
\(975\) −14.5779 −0.466865
\(976\) 0 0
\(977\) 24.2395 0.775489 0.387745 0.921767i \(-0.373254\pi\)
0.387745 + 0.921767i \(0.373254\pi\)
\(978\) 0 0
\(979\) 49.9939 1.59781
\(980\) 0 0
\(981\) −46.1005 −1.47188
\(982\) 0 0
\(983\) 2.70430 0.0862539 0.0431269 0.999070i \(-0.486268\pi\)
0.0431269 + 0.999070i \(0.486268\pi\)
\(984\) 0 0
\(985\) 50.9737 1.62416
\(986\) 0 0
\(987\) 3.90591 0.124326
\(988\) 0 0
\(989\) −54.8694 −1.74475
\(990\) 0 0
\(991\) −1.72466 −0.0547858 −0.0273929 0.999625i \(-0.508721\pi\)
−0.0273929 + 0.999625i \(0.508721\pi\)
\(992\) 0 0
\(993\) −12.8595 −0.408083
\(994\) 0 0
\(995\) −67.4009 −2.13675
\(996\) 0 0
\(997\) −2.21823 −0.0702520 −0.0351260 0.999383i \(-0.511183\pi\)
−0.0351260 + 0.999383i \(0.511183\pi\)
\(998\) 0 0
\(999\) 33.4996 1.05988
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 3808.2.a.e.1.4 5
4.3 odd 2 3808.2.a.f.1.2 yes 5
8.3 odd 2 7616.2.a.bs.1.4 5
8.5 even 2 7616.2.a.br.1.2 5
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
3808.2.a.e.1.4 5 1.1 even 1 trivial
3808.2.a.f.1.2 yes 5 4.3 odd 2
7616.2.a.br.1.2 5 8.5 even 2
7616.2.a.bs.1.4 5 8.3 odd 2