Properties

Label 3808.2.a.e.1.3
Level $3808$
Weight $2$
Character 3808.1
Self dual yes
Analytic conductor $30.407$
Analytic rank $0$
Dimension $5$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [3808,2,Mod(1,3808)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(3808, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0, 0])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("3808.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 3808 = 2^{5} \cdot 7 \cdot 17 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 3808.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [5,0,0,0,-2,0,-5] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(7)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(30.4070330897\)
Analytic rank: \(0\)
Dimension: \(5\)
Coefficient field: 5.5.804272.1
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{5} - 9x^{3} - 6x^{2} + 3x + 2 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.3
Root \(-0.540819\) of defining polynomial
Character \(\chi\) \(=\) 3808.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-0.540819 q^{3} +2.15728 q^{5} -1.00000 q^{7} -2.70751 q^{9} +2.06112 q^{11} -5.50921 q^{13} -1.16670 q^{15} -1.00000 q^{17} -2.17414 q^{19} +0.540819 q^{21} -3.57033 q^{23} -0.346161 q^{25} +3.08673 q^{27} +2.95730 q^{29} +10.2904 q^{31} -1.11469 q^{33} -2.15728 q^{35} +2.51088 q^{37} +2.97949 q^{39} +0.794247 q^{41} +5.74068 q^{43} -5.84086 q^{45} +3.00167 q^{47} +1.00000 q^{49} +0.540819 q^{51} +9.28871 q^{53} +4.44641 q^{55} +1.17582 q^{57} +11.7296 q^{59} -0.246361 q^{61} +2.70751 q^{63} -11.8849 q^{65} +12.7180 q^{67} +1.93090 q^{69} +1.63355 q^{71} -7.12369 q^{73} +0.187210 q^{75} -2.06112 q^{77} +5.02051 q^{79} +6.45318 q^{81} -0.0502562 q^{83} -2.15728 q^{85} -1.59936 q^{87} +6.56798 q^{89} +5.50921 q^{91} -5.56524 q^{93} -4.69023 q^{95} +12.9424 q^{97} -5.58052 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 5 q - 2 q^{5} - 5 q^{7} + 3 q^{9} - 4 q^{11} - 6 q^{13} + 8 q^{15} - 5 q^{17} - 6 q^{19} + 18 q^{23} + 5 q^{25} + 18 q^{27} - 14 q^{29} + 16 q^{31} - 26 q^{33} + 2 q^{35} + 2 q^{37} + 6 q^{39} - 10 q^{41}+ \cdots - 8 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −0.540819 −0.312242 −0.156121 0.987738i \(-0.549899\pi\)
−0.156121 + 0.987738i \(0.549899\pi\)
\(4\) 0 0
\(5\) 2.15728 0.964763 0.482382 0.875961i \(-0.339772\pi\)
0.482382 + 0.875961i \(0.339772\pi\)
\(6\) 0 0
\(7\) −1.00000 −0.377964
\(8\) 0 0
\(9\) −2.70751 −0.902505
\(10\) 0 0
\(11\) 2.06112 0.621452 0.310726 0.950500i \(-0.399428\pi\)
0.310726 + 0.950500i \(0.399428\pi\)
\(12\) 0 0
\(13\) −5.50921 −1.52798 −0.763990 0.645228i \(-0.776762\pi\)
−0.763990 + 0.645228i \(0.776762\pi\)
\(14\) 0 0
\(15\) −1.16670 −0.301240
\(16\) 0 0
\(17\) −1.00000 −0.242536
\(18\) 0 0
\(19\) −2.17414 −0.498783 −0.249391 0.968403i \(-0.580231\pi\)
−0.249391 + 0.968403i \(0.580231\pi\)
\(20\) 0 0
\(21\) 0.540819 0.118016
\(22\) 0 0
\(23\) −3.57033 −0.744466 −0.372233 0.928139i \(-0.621408\pi\)
−0.372233 + 0.928139i \(0.621408\pi\)
\(24\) 0 0
\(25\) −0.346161 −0.0692322
\(26\) 0 0
\(27\) 3.08673 0.594042
\(28\) 0 0
\(29\) 2.95730 0.549156 0.274578 0.961565i \(-0.411462\pi\)
0.274578 + 0.961565i \(0.411462\pi\)
\(30\) 0 0
\(31\) 10.2904 1.84821 0.924104 0.382140i \(-0.124813\pi\)
0.924104 + 0.382140i \(0.124813\pi\)
\(32\) 0 0
\(33\) −1.11469 −0.194043
\(34\) 0 0
\(35\) −2.15728 −0.364646
\(36\) 0 0
\(37\) 2.51088 0.412787 0.206393 0.978469i \(-0.433827\pi\)
0.206393 + 0.978469i \(0.433827\pi\)
\(38\) 0 0
\(39\) 2.97949 0.477099
\(40\) 0 0
\(41\) 0.794247 0.124041 0.0620203 0.998075i \(-0.480246\pi\)
0.0620203 + 0.998075i \(0.480246\pi\)
\(42\) 0 0
\(43\) 5.74068 0.875445 0.437722 0.899110i \(-0.355785\pi\)
0.437722 + 0.899110i \(0.355785\pi\)
\(44\) 0 0
\(45\) −5.84086 −0.870703
\(46\) 0 0
\(47\) 3.00167 0.437839 0.218920 0.975743i \(-0.429747\pi\)
0.218920 + 0.975743i \(0.429747\pi\)
\(48\) 0 0
\(49\) 1.00000 0.142857
\(50\) 0 0
\(51\) 0.540819 0.0757298
\(52\) 0 0
\(53\) 9.28871 1.27590 0.637952 0.770077i \(-0.279782\pi\)
0.637952 + 0.770077i \(0.279782\pi\)
\(54\) 0 0
\(55\) 4.44641 0.599554
\(56\) 0 0
\(57\) 1.17582 0.155741
\(58\) 0 0
\(59\) 11.7296 1.52706 0.763531 0.645772i \(-0.223464\pi\)
0.763531 + 0.645772i \(0.223464\pi\)
\(60\) 0 0
\(61\) −0.246361 −0.0315433 −0.0157717 0.999876i \(-0.505020\pi\)
−0.0157717 + 0.999876i \(0.505020\pi\)
\(62\) 0 0
\(63\) 2.70751 0.341115
\(64\) 0 0
\(65\) −11.8849 −1.47414
\(66\) 0 0
\(67\) 12.7180 1.55375 0.776873 0.629657i \(-0.216805\pi\)
0.776873 + 0.629657i \(0.216805\pi\)
\(68\) 0 0
\(69\) 1.93090 0.232454
\(70\) 0 0
\(71\) 1.63355 0.193867 0.0969335 0.995291i \(-0.469097\pi\)
0.0969335 + 0.995291i \(0.469097\pi\)
\(72\) 0 0
\(73\) −7.12369 −0.833765 −0.416883 0.908960i \(-0.636877\pi\)
−0.416883 + 0.908960i \(0.636877\pi\)
\(74\) 0 0
\(75\) 0.187210 0.0216172
\(76\) 0 0
\(77\) −2.06112 −0.234887
\(78\) 0 0
\(79\) 5.02051 0.564852 0.282426 0.959289i \(-0.408861\pi\)
0.282426 + 0.959289i \(0.408861\pi\)
\(80\) 0 0
\(81\) 6.45318 0.717020
\(82\) 0 0
\(83\) −0.0502562 −0.00551633 −0.00275817 0.999996i \(-0.500878\pi\)
−0.00275817 + 0.999996i \(0.500878\pi\)
\(84\) 0 0
\(85\) −2.15728 −0.233989
\(86\) 0 0
\(87\) −1.59936 −0.171470
\(88\) 0 0
\(89\) 6.56798 0.696204 0.348102 0.937457i \(-0.386826\pi\)
0.348102 + 0.937457i \(0.386826\pi\)
\(90\) 0 0
\(91\) 5.50921 0.577522
\(92\) 0 0
\(93\) −5.56524 −0.577088
\(94\) 0 0
\(95\) −4.69023 −0.481207
\(96\) 0 0
\(97\) 12.9424 1.31410 0.657049 0.753848i \(-0.271805\pi\)
0.657049 + 0.753848i \(0.271805\pi\)
\(98\) 0 0
\(99\) −5.58052 −0.560864
\(100\) 0 0
\(101\) −17.3438 −1.72578 −0.862888 0.505395i \(-0.831347\pi\)
−0.862888 + 0.505395i \(0.831347\pi\)
\(102\) 0 0
\(103\) 13.8426 1.36395 0.681976 0.731375i \(-0.261121\pi\)
0.681976 + 0.731375i \(0.261121\pi\)
\(104\) 0 0
\(105\) 1.16670 0.113858
\(106\) 0 0
\(107\) 10.5908 1.02386 0.511928 0.859028i \(-0.328931\pi\)
0.511928 + 0.859028i \(0.328931\pi\)
\(108\) 0 0
\(109\) −8.60297 −0.824015 −0.412007 0.911180i \(-0.635172\pi\)
−0.412007 + 0.911180i \(0.635172\pi\)
\(110\) 0 0
\(111\) −1.35793 −0.128889
\(112\) 0 0
\(113\) −1.32777 −0.124906 −0.0624531 0.998048i \(-0.519892\pi\)
−0.0624531 + 0.998048i \(0.519892\pi\)
\(114\) 0 0
\(115\) −7.70219 −0.718233
\(116\) 0 0
\(117\) 14.9163 1.37901
\(118\) 0 0
\(119\) 1.00000 0.0916698
\(120\) 0 0
\(121\) −6.75177 −0.613797
\(122\) 0 0
\(123\) −0.429544 −0.0387307
\(124\) 0 0
\(125\) −11.5331 −1.03156
\(126\) 0 0
\(127\) 17.6334 1.56471 0.782357 0.622830i \(-0.214017\pi\)
0.782357 + 0.622830i \(0.214017\pi\)
\(128\) 0 0
\(129\) −3.10467 −0.273351
\(130\) 0 0
\(131\) −10.8112 −0.944581 −0.472290 0.881443i \(-0.656573\pi\)
−0.472290 + 0.881443i \(0.656573\pi\)
\(132\) 0 0
\(133\) 2.17414 0.188522
\(134\) 0 0
\(135\) 6.65893 0.573110
\(136\) 0 0
\(137\) −1.34571 −0.114971 −0.0574857 0.998346i \(-0.518308\pi\)
−0.0574857 + 0.998346i \(0.518308\pi\)
\(138\) 0 0
\(139\) −14.9943 −1.27180 −0.635898 0.771773i \(-0.719370\pi\)
−0.635898 + 0.771773i \(0.719370\pi\)
\(140\) 0 0
\(141\) −1.62336 −0.136712
\(142\) 0 0
\(143\) −11.3552 −0.949566
\(144\) 0 0
\(145\) 6.37970 0.529805
\(146\) 0 0
\(147\) −0.540819 −0.0446060
\(148\) 0 0
\(149\) −4.76119 −0.390052 −0.195026 0.980798i \(-0.562479\pi\)
−0.195026 + 0.980798i \(0.562479\pi\)
\(150\) 0 0
\(151\) −16.9031 −1.37555 −0.687776 0.725923i \(-0.741413\pi\)
−0.687776 + 0.725923i \(0.741413\pi\)
\(152\) 0 0
\(153\) 2.70751 0.218890
\(154\) 0 0
\(155\) 22.1992 1.78308
\(156\) 0 0
\(157\) 17.8748 1.42657 0.713283 0.700876i \(-0.247208\pi\)
0.713283 + 0.700876i \(0.247208\pi\)
\(158\) 0 0
\(159\) −5.02351 −0.398391
\(160\) 0 0
\(161\) 3.57033 0.281382
\(162\) 0 0
\(163\) −6.63872 −0.519984 −0.259992 0.965611i \(-0.583720\pi\)
−0.259992 + 0.965611i \(0.583720\pi\)
\(164\) 0 0
\(165\) −2.40470 −0.187206
\(166\) 0 0
\(167\) −4.41773 −0.341854 −0.170927 0.985284i \(-0.554676\pi\)
−0.170927 + 0.985284i \(0.554676\pi\)
\(168\) 0 0
\(169\) 17.3514 1.33472
\(170\) 0 0
\(171\) 5.88652 0.450154
\(172\) 0 0
\(173\) 20.2905 1.54266 0.771329 0.636437i \(-0.219592\pi\)
0.771329 + 0.636437i \(0.219592\pi\)
\(174\) 0 0
\(175\) 0.346161 0.0261673
\(176\) 0 0
\(177\) −6.34358 −0.476813
\(178\) 0 0
\(179\) −13.9068 −1.03945 −0.519723 0.854335i \(-0.673965\pi\)
−0.519723 + 0.854335i \(0.673965\pi\)
\(180\) 0 0
\(181\) −10.3073 −0.766132 −0.383066 0.923721i \(-0.625132\pi\)
−0.383066 + 0.923721i \(0.625132\pi\)
\(182\) 0 0
\(183\) 0.133237 0.00984915
\(184\) 0 0
\(185\) 5.41667 0.398241
\(186\) 0 0
\(187\) −2.06112 −0.150724
\(188\) 0 0
\(189\) −3.08673 −0.224527
\(190\) 0 0
\(191\) −2.43289 −0.176038 −0.0880190 0.996119i \(-0.528054\pi\)
−0.0880190 + 0.996119i \(0.528054\pi\)
\(192\) 0 0
\(193\) 23.3759 1.68264 0.841318 0.540540i \(-0.181780\pi\)
0.841318 + 0.540540i \(0.181780\pi\)
\(194\) 0 0
\(195\) 6.42757 0.460288
\(196\) 0 0
\(197\) 5.29806 0.377471 0.188736 0.982028i \(-0.439561\pi\)
0.188736 + 0.982028i \(0.439561\pi\)
\(198\) 0 0
\(199\) 25.1404 1.78216 0.891079 0.453848i \(-0.149949\pi\)
0.891079 + 0.453848i \(0.149949\pi\)
\(200\) 0 0
\(201\) −6.87812 −0.485145
\(202\) 0 0
\(203\) −2.95730 −0.207561
\(204\) 0 0
\(205\) 1.71341 0.119670
\(206\) 0 0
\(207\) 9.66673 0.671884
\(208\) 0 0
\(209\) −4.48118 −0.309970
\(210\) 0 0
\(211\) −17.9219 −1.23379 −0.616897 0.787044i \(-0.711610\pi\)
−0.616897 + 0.787044i \(0.711610\pi\)
\(212\) 0 0
\(213\) −0.883456 −0.0605334
\(214\) 0 0
\(215\) 12.3842 0.844597
\(216\) 0 0
\(217\) −10.2904 −0.698557
\(218\) 0 0
\(219\) 3.85263 0.260337
\(220\) 0 0
\(221\) 5.50921 0.370590
\(222\) 0 0
\(223\) 19.6584 1.31642 0.658212 0.752833i \(-0.271313\pi\)
0.658212 + 0.752833i \(0.271313\pi\)
\(224\) 0 0
\(225\) 0.937236 0.0624824
\(226\) 0 0
\(227\) −14.1673 −0.940317 −0.470158 0.882582i \(-0.655803\pi\)
−0.470158 + 0.882582i \(0.655803\pi\)
\(228\) 0 0
\(229\) 10.2317 0.676129 0.338065 0.941123i \(-0.390228\pi\)
0.338065 + 0.941123i \(0.390228\pi\)
\(230\) 0 0
\(231\) 1.11469 0.0733415
\(232\) 0 0
\(233\) −16.1961 −1.06104 −0.530520 0.847672i \(-0.678003\pi\)
−0.530520 + 0.847672i \(0.678003\pi\)
\(234\) 0 0
\(235\) 6.47544 0.422411
\(236\) 0 0
\(237\) −2.71519 −0.176371
\(238\) 0 0
\(239\) 15.1591 0.980558 0.490279 0.871566i \(-0.336895\pi\)
0.490279 + 0.871566i \(0.336895\pi\)
\(240\) 0 0
\(241\) −9.36071 −0.602976 −0.301488 0.953470i \(-0.597483\pi\)
−0.301488 + 0.953470i \(0.597483\pi\)
\(242\) 0 0
\(243\) −12.7502 −0.817926
\(244\) 0 0
\(245\) 2.15728 0.137823
\(246\) 0 0
\(247\) 11.9778 0.762130
\(248\) 0 0
\(249\) 0.0271795 0.00172243
\(250\) 0 0
\(251\) −14.7815 −0.933001 −0.466500 0.884521i \(-0.654485\pi\)
−0.466500 + 0.884521i \(0.654485\pi\)
\(252\) 0 0
\(253\) −7.35890 −0.462650
\(254\) 0 0
\(255\) 1.16670 0.0730613
\(256\) 0 0
\(257\) 0.885305 0.0552238 0.0276119 0.999619i \(-0.491210\pi\)
0.0276119 + 0.999619i \(0.491210\pi\)
\(258\) 0 0
\(259\) −2.51088 −0.156019
\(260\) 0 0
\(261\) −8.00692 −0.495616
\(262\) 0 0
\(263\) 30.6921 1.89255 0.946277 0.323356i \(-0.104811\pi\)
0.946277 + 0.323356i \(0.104811\pi\)
\(264\) 0 0
\(265\) 20.0383 1.23094
\(266\) 0 0
\(267\) −3.55209 −0.217384
\(268\) 0 0
\(269\) −7.97781 −0.486416 −0.243208 0.969974i \(-0.578200\pi\)
−0.243208 + 0.969974i \(0.578200\pi\)
\(270\) 0 0
\(271\) 17.6999 1.07519 0.537595 0.843203i \(-0.319333\pi\)
0.537595 + 0.843203i \(0.319333\pi\)
\(272\) 0 0
\(273\) −2.97949 −0.180327
\(274\) 0 0
\(275\) −0.713481 −0.0430245
\(276\) 0 0
\(277\) −1.73985 −0.104538 −0.0522688 0.998633i \(-0.516645\pi\)
−0.0522688 + 0.998633i \(0.516645\pi\)
\(278\) 0 0
\(279\) −27.8614 −1.66802
\(280\) 0 0
\(281\) −8.18140 −0.488061 −0.244031 0.969768i \(-0.578470\pi\)
−0.244031 + 0.969768i \(0.578470\pi\)
\(282\) 0 0
\(283\) −31.5674 −1.87649 −0.938245 0.345973i \(-0.887549\pi\)
−0.938245 + 0.345973i \(0.887549\pi\)
\(284\) 0 0
\(285\) 2.53656 0.150253
\(286\) 0 0
\(287\) −0.794247 −0.0468829
\(288\) 0 0
\(289\) 1.00000 0.0588235
\(290\) 0 0
\(291\) −6.99947 −0.410316
\(292\) 0 0
\(293\) −28.3285 −1.65497 −0.827485 0.561488i \(-0.810229\pi\)
−0.827485 + 0.561488i \(0.810229\pi\)
\(294\) 0 0
\(295\) 25.3039 1.47325
\(296\) 0 0
\(297\) 6.36214 0.369169
\(298\) 0 0
\(299\) 19.6697 1.13753
\(300\) 0 0
\(301\) −5.74068 −0.330887
\(302\) 0 0
\(303\) 9.37988 0.538860
\(304\) 0 0
\(305\) −0.531469 −0.0304318
\(306\) 0 0
\(307\) 9.50837 0.542671 0.271336 0.962485i \(-0.412535\pi\)
0.271336 + 0.962485i \(0.412535\pi\)
\(308\) 0 0
\(309\) −7.48634 −0.425883
\(310\) 0 0
\(311\) 5.78612 0.328101 0.164050 0.986452i \(-0.447544\pi\)
0.164050 + 0.986452i \(0.447544\pi\)
\(312\) 0 0
\(313\) 3.22007 0.182009 0.0910047 0.995850i \(-0.470992\pi\)
0.0910047 + 0.995850i \(0.470992\pi\)
\(314\) 0 0
\(315\) 5.84086 0.329095
\(316\) 0 0
\(317\) 15.3336 0.861224 0.430612 0.902537i \(-0.358298\pi\)
0.430612 + 0.902537i \(0.358298\pi\)
\(318\) 0 0
\(319\) 6.09535 0.341274
\(320\) 0 0
\(321\) −5.72773 −0.319691
\(322\) 0 0
\(323\) 2.17414 0.120973
\(324\) 0 0
\(325\) 1.90707 0.105785
\(326\) 0 0
\(327\) 4.65265 0.257292
\(328\) 0 0
\(329\) −3.00167 −0.165488
\(330\) 0 0
\(331\) 21.5074 1.18216 0.591078 0.806614i \(-0.298703\pi\)
0.591078 + 0.806614i \(0.298703\pi\)
\(332\) 0 0
\(333\) −6.79826 −0.372542
\(334\) 0 0
\(335\) 27.4361 1.49900
\(336\) 0 0
\(337\) 10.9215 0.594930 0.297465 0.954733i \(-0.403859\pi\)
0.297465 + 0.954733i \(0.403859\pi\)
\(338\) 0 0
\(339\) 0.718084 0.0390010
\(340\) 0 0
\(341\) 21.2098 1.14857
\(342\) 0 0
\(343\) −1.00000 −0.0539949
\(344\) 0 0
\(345\) 4.16549 0.224263
\(346\) 0 0
\(347\) 6.66678 0.357892 0.178946 0.983859i \(-0.442731\pi\)
0.178946 + 0.983859i \(0.442731\pi\)
\(348\) 0 0
\(349\) 4.61593 0.247085 0.123543 0.992339i \(-0.460574\pi\)
0.123543 + 0.992339i \(0.460574\pi\)
\(350\) 0 0
\(351\) −17.0055 −0.907684
\(352\) 0 0
\(353\) −15.2091 −0.809498 −0.404749 0.914428i \(-0.632641\pi\)
−0.404749 + 0.914428i \(0.632641\pi\)
\(354\) 0 0
\(355\) 3.52402 0.187036
\(356\) 0 0
\(357\) −0.540819 −0.0286232
\(358\) 0 0
\(359\) 3.42996 0.181027 0.0905133 0.995895i \(-0.471149\pi\)
0.0905133 + 0.995895i \(0.471149\pi\)
\(360\) 0 0
\(361\) −14.2731 −0.751216
\(362\) 0 0
\(363\) 3.65149 0.191653
\(364\) 0 0
\(365\) −15.3678 −0.804386
\(366\) 0 0
\(367\) 20.3618 1.06288 0.531439 0.847097i \(-0.321652\pi\)
0.531439 + 0.847097i \(0.321652\pi\)
\(368\) 0 0
\(369\) −2.15044 −0.111947
\(370\) 0 0
\(371\) −9.28871 −0.482246
\(372\) 0 0
\(373\) 26.2757 1.36050 0.680252 0.732979i \(-0.261871\pi\)
0.680252 + 0.732979i \(0.261871\pi\)
\(374\) 0 0
\(375\) 6.23734 0.322095
\(376\) 0 0
\(377\) −16.2924 −0.839099
\(378\) 0 0
\(379\) 0.646689 0.0332182 0.0166091 0.999862i \(-0.494713\pi\)
0.0166091 + 0.999862i \(0.494713\pi\)
\(380\) 0 0
\(381\) −9.53649 −0.488569
\(382\) 0 0
\(383\) 0.972646 0.0496999 0.0248499 0.999691i \(-0.492089\pi\)
0.0248499 + 0.999691i \(0.492089\pi\)
\(384\) 0 0
\(385\) −4.44641 −0.226610
\(386\) 0 0
\(387\) −15.5430 −0.790093
\(388\) 0 0
\(389\) 7.77073 0.393992 0.196996 0.980404i \(-0.436881\pi\)
0.196996 + 0.980404i \(0.436881\pi\)
\(390\) 0 0
\(391\) 3.57033 0.180559
\(392\) 0 0
\(393\) 5.84691 0.294938
\(394\) 0 0
\(395\) 10.8306 0.544948
\(396\) 0 0
\(397\) 20.8796 1.04792 0.523958 0.851744i \(-0.324455\pi\)
0.523958 + 0.851744i \(0.324455\pi\)
\(398\) 0 0
\(399\) −1.17582 −0.0588645
\(400\) 0 0
\(401\) 30.7076 1.53347 0.766733 0.641966i \(-0.221881\pi\)
0.766733 + 0.641966i \(0.221881\pi\)
\(402\) 0 0
\(403\) −56.6919 −2.82403
\(404\) 0 0
\(405\) 13.9213 0.691754
\(406\) 0 0
\(407\) 5.17524 0.256527
\(408\) 0 0
\(409\) 13.1961 0.652507 0.326253 0.945282i \(-0.394214\pi\)
0.326253 + 0.945282i \(0.394214\pi\)
\(410\) 0 0
\(411\) 0.727783 0.0358989
\(412\) 0 0
\(413\) −11.7296 −0.577175
\(414\) 0 0
\(415\) −0.108416 −0.00532195
\(416\) 0 0
\(417\) 8.10918 0.397108
\(418\) 0 0
\(419\) 7.80527 0.381312 0.190656 0.981657i \(-0.438938\pi\)
0.190656 + 0.981657i \(0.438938\pi\)
\(420\) 0 0
\(421\) −23.9280 −1.16618 −0.583089 0.812408i \(-0.698156\pi\)
−0.583089 + 0.812408i \(0.698156\pi\)
\(422\) 0 0
\(423\) −8.12708 −0.395152
\(424\) 0 0
\(425\) 0.346161 0.0167913
\(426\) 0 0
\(427\) 0.246361 0.0119223
\(428\) 0 0
\(429\) 6.14109 0.296494
\(430\) 0 0
\(431\) 1.42359 0.0685720 0.0342860 0.999412i \(-0.489084\pi\)
0.0342860 + 0.999412i \(0.489084\pi\)
\(432\) 0 0
\(433\) −19.2384 −0.924539 −0.462270 0.886739i \(-0.652965\pi\)
−0.462270 + 0.886739i \(0.652965\pi\)
\(434\) 0 0
\(435\) −3.45026 −0.165428
\(436\) 0 0
\(437\) 7.76241 0.371327
\(438\) 0 0
\(439\) 11.5887 0.553100 0.276550 0.961000i \(-0.410809\pi\)
0.276550 + 0.961000i \(0.410809\pi\)
\(440\) 0 0
\(441\) −2.70751 −0.128929
\(442\) 0 0
\(443\) −7.32233 −0.347894 −0.173947 0.984755i \(-0.555652\pi\)
−0.173947 + 0.984755i \(0.555652\pi\)
\(444\) 0 0
\(445\) 14.1689 0.671672
\(446\) 0 0
\(447\) 2.57494 0.121791
\(448\) 0 0
\(449\) 21.4833 1.01386 0.506929 0.861988i \(-0.330780\pi\)
0.506929 + 0.861988i \(0.330780\pi\)
\(450\) 0 0
\(451\) 1.63704 0.0770853
\(452\) 0 0
\(453\) 9.14150 0.429505
\(454\) 0 0
\(455\) 11.8849 0.557172
\(456\) 0 0
\(457\) −16.1809 −0.756913 −0.378456 0.925619i \(-0.623545\pi\)
−0.378456 + 0.925619i \(0.623545\pi\)
\(458\) 0 0
\(459\) −3.08673 −0.144076
\(460\) 0 0
\(461\) 0.312456 0.0145525 0.00727626 0.999974i \(-0.497684\pi\)
0.00727626 + 0.999974i \(0.497684\pi\)
\(462\) 0 0
\(463\) −40.1436 −1.86563 −0.932815 0.360355i \(-0.882656\pi\)
−0.932815 + 0.360355i \(0.882656\pi\)
\(464\) 0 0
\(465\) −12.0058 −0.556754
\(466\) 0 0
\(467\) 28.7018 1.32816 0.664080 0.747662i \(-0.268824\pi\)
0.664080 + 0.747662i \(0.268824\pi\)
\(468\) 0 0
\(469\) −12.7180 −0.587261
\(470\) 0 0
\(471\) −9.66704 −0.445434
\(472\) 0 0
\(473\) 11.8322 0.544047
\(474\) 0 0
\(475\) 0.752604 0.0345318
\(476\) 0 0
\(477\) −25.1493 −1.15151
\(478\) 0 0
\(479\) −34.0619 −1.55633 −0.778164 0.628061i \(-0.783849\pi\)
−0.778164 + 0.628061i \(0.783849\pi\)
\(480\) 0 0
\(481\) −13.8330 −0.630730
\(482\) 0 0
\(483\) −1.93090 −0.0878592
\(484\) 0 0
\(485\) 27.9202 1.26779
\(486\) 0 0
\(487\) 31.9012 1.44558 0.722790 0.691068i \(-0.242859\pi\)
0.722790 + 0.691068i \(0.242859\pi\)
\(488\) 0 0
\(489\) 3.59034 0.162361
\(490\) 0 0
\(491\) −1.99190 −0.0898934 −0.0449467 0.998989i \(-0.514312\pi\)
−0.0449467 + 0.998989i \(0.514312\pi\)
\(492\) 0 0
\(493\) −2.95730 −0.133190
\(494\) 0 0
\(495\) −12.0387 −0.541100
\(496\) 0 0
\(497\) −1.63355 −0.0732748
\(498\) 0 0
\(499\) 7.89853 0.353587 0.176793 0.984248i \(-0.443428\pi\)
0.176793 + 0.984248i \(0.443428\pi\)
\(500\) 0 0
\(501\) 2.38919 0.106741
\(502\) 0 0
\(503\) 12.2052 0.544204 0.272102 0.962268i \(-0.412281\pi\)
0.272102 + 0.962268i \(0.412281\pi\)
\(504\) 0 0
\(505\) −37.4154 −1.66497
\(506\) 0 0
\(507\) −9.38396 −0.416756
\(508\) 0 0
\(509\) 20.8644 0.924797 0.462398 0.886672i \(-0.346989\pi\)
0.462398 + 0.886672i \(0.346989\pi\)
\(510\) 0 0
\(511\) 7.12369 0.315134
\(512\) 0 0
\(513\) −6.71100 −0.296298
\(514\) 0 0
\(515\) 29.8623 1.31589
\(516\) 0 0
\(517\) 6.18682 0.272096
\(518\) 0 0
\(519\) −10.9735 −0.481683
\(520\) 0 0
\(521\) 13.6690 0.598849 0.299425 0.954120i \(-0.403205\pi\)
0.299425 + 0.954120i \(0.403205\pi\)
\(522\) 0 0
\(523\) −37.2185 −1.62745 −0.813725 0.581251i \(-0.802564\pi\)
−0.813725 + 0.581251i \(0.802564\pi\)
\(524\) 0 0
\(525\) −0.187210 −0.00817054
\(526\) 0 0
\(527\) −10.2904 −0.448256
\(528\) 0 0
\(529\) −10.2527 −0.445771
\(530\) 0 0
\(531\) −31.7580 −1.37818
\(532\) 0 0
\(533\) −4.37567 −0.189532
\(534\) 0 0
\(535\) 22.8474 0.987778
\(536\) 0 0
\(537\) 7.52109 0.324559
\(538\) 0 0
\(539\) 2.06112 0.0887789
\(540\) 0 0
\(541\) 19.0332 0.818303 0.409151 0.912467i \(-0.365825\pi\)
0.409151 + 0.912467i \(0.365825\pi\)
\(542\) 0 0
\(543\) 5.57436 0.239219
\(544\) 0 0
\(545\) −18.5590 −0.794979
\(546\) 0 0
\(547\) 21.0855 0.901553 0.450776 0.892637i \(-0.351147\pi\)
0.450776 + 0.892637i \(0.351147\pi\)
\(548\) 0 0
\(549\) 0.667027 0.0284680
\(550\) 0 0
\(551\) −6.42958 −0.273910
\(552\) 0 0
\(553\) −5.02051 −0.213494
\(554\) 0 0
\(555\) −2.92944 −0.124348
\(556\) 0 0
\(557\) −8.00638 −0.339241 −0.169621 0.985509i \(-0.554254\pi\)
−0.169621 + 0.985509i \(0.554254\pi\)
\(558\) 0 0
\(559\) −31.6266 −1.33766
\(560\) 0 0
\(561\) 1.11469 0.0470624
\(562\) 0 0
\(563\) 24.4778 1.03162 0.515808 0.856704i \(-0.327492\pi\)
0.515808 + 0.856704i \(0.327492\pi\)
\(564\) 0 0
\(565\) −2.86437 −0.120505
\(566\) 0 0
\(567\) −6.45318 −0.271008
\(568\) 0 0
\(569\) 2.89788 0.121485 0.0607427 0.998153i \(-0.480653\pi\)
0.0607427 + 0.998153i \(0.480653\pi\)
\(570\) 0 0
\(571\) −31.9675 −1.33780 −0.668898 0.743354i \(-0.733234\pi\)
−0.668898 + 0.743354i \(0.733234\pi\)
\(572\) 0 0
\(573\) 1.31576 0.0549665
\(574\) 0 0
\(575\) 1.23591 0.0515410
\(576\) 0 0
\(577\) −15.8209 −0.658631 −0.329316 0.944220i \(-0.606818\pi\)
−0.329316 + 0.944220i \(0.606818\pi\)
\(578\) 0 0
\(579\) −12.6421 −0.525390
\(580\) 0 0
\(581\) 0.0502562 0.00208498
\(582\) 0 0
\(583\) 19.1452 0.792913
\(584\) 0 0
\(585\) 32.1785 1.33042
\(586\) 0 0
\(587\) 10.1944 0.420768 0.210384 0.977619i \(-0.432529\pi\)
0.210384 + 0.977619i \(0.432529\pi\)
\(588\) 0 0
\(589\) −22.3728 −0.921854
\(590\) 0 0
\(591\) −2.86529 −0.117862
\(592\) 0 0
\(593\) −5.94870 −0.244284 −0.122142 0.992513i \(-0.538976\pi\)
−0.122142 + 0.992513i \(0.538976\pi\)
\(594\) 0 0
\(595\) 2.15728 0.0884397
\(596\) 0 0
\(597\) −13.5964 −0.556465
\(598\) 0 0
\(599\) −19.7001 −0.804924 −0.402462 0.915437i \(-0.631846\pi\)
−0.402462 + 0.915437i \(0.631846\pi\)
\(600\) 0 0
\(601\) −18.1121 −0.738806 −0.369403 0.929269i \(-0.620438\pi\)
−0.369403 + 0.929269i \(0.620438\pi\)
\(602\) 0 0
\(603\) −34.4341 −1.40226
\(604\) 0 0
\(605\) −14.5654 −0.592169
\(606\) 0 0
\(607\) −34.2303 −1.38936 −0.694682 0.719317i \(-0.744455\pi\)
−0.694682 + 0.719317i \(0.744455\pi\)
\(608\) 0 0
\(609\) 1.59936 0.0648094
\(610\) 0 0
\(611\) −16.5369 −0.669010
\(612\) 0 0
\(613\) 46.9137 1.89482 0.947412 0.320015i \(-0.103688\pi\)
0.947412 + 0.320015i \(0.103688\pi\)
\(614\) 0 0
\(615\) −0.926645 −0.0373659
\(616\) 0 0
\(617\) 35.8081 1.44158 0.720790 0.693153i \(-0.243779\pi\)
0.720790 + 0.693153i \(0.243779\pi\)
\(618\) 0 0
\(619\) 1.90730 0.0766607 0.0383304 0.999265i \(-0.487796\pi\)
0.0383304 + 0.999265i \(0.487796\pi\)
\(620\) 0 0
\(621\) −11.0207 −0.442244
\(622\) 0 0
\(623\) −6.56798 −0.263141
\(624\) 0 0
\(625\) −23.1494 −0.925975
\(626\) 0 0
\(627\) 2.42351 0.0967855
\(628\) 0 0
\(629\) −2.51088 −0.100116
\(630\) 0 0
\(631\) −13.2851 −0.528873 −0.264437 0.964403i \(-0.585186\pi\)
−0.264437 + 0.964403i \(0.585186\pi\)
\(632\) 0 0
\(633\) 9.69250 0.385242
\(634\) 0 0
\(635\) 38.0402 1.50958
\(636\) 0 0
\(637\) −5.50921 −0.218283
\(638\) 0 0
\(639\) −4.42287 −0.174966
\(640\) 0 0
\(641\) 30.2084 1.19316 0.596579 0.802554i \(-0.296526\pi\)
0.596579 + 0.802554i \(0.296526\pi\)
\(642\) 0 0
\(643\) −20.6626 −0.814854 −0.407427 0.913238i \(-0.633574\pi\)
−0.407427 + 0.913238i \(0.633574\pi\)
\(644\) 0 0
\(645\) −6.69762 −0.263719
\(646\) 0 0
\(647\) −14.8429 −0.583533 −0.291766 0.956490i \(-0.594243\pi\)
−0.291766 + 0.956490i \(0.594243\pi\)
\(648\) 0 0
\(649\) 24.1761 0.948995
\(650\) 0 0
\(651\) 5.56524 0.218119
\(652\) 0 0
\(653\) 47.4330 1.85620 0.928099 0.372334i \(-0.121442\pi\)
0.928099 + 0.372334i \(0.121442\pi\)
\(654\) 0 0
\(655\) −23.3228 −0.911296
\(656\) 0 0
\(657\) 19.2875 0.752477
\(658\) 0 0
\(659\) −5.28888 −0.206025 −0.103013 0.994680i \(-0.532848\pi\)
−0.103013 + 0.994680i \(0.532848\pi\)
\(660\) 0 0
\(661\) 5.29597 0.205989 0.102995 0.994682i \(-0.467158\pi\)
0.102995 + 0.994682i \(0.467158\pi\)
\(662\) 0 0
\(663\) −2.97949 −0.115714
\(664\) 0 0
\(665\) 4.69023 0.181879
\(666\) 0 0
\(667\) −10.5585 −0.408828
\(668\) 0 0
\(669\) −10.6316 −0.411043
\(670\) 0 0
\(671\) −0.507781 −0.0196027
\(672\) 0 0
\(673\) 21.6361 0.834010 0.417005 0.908904i \(-0.363080\pi\)
0.417005 + 0.908904i \(0.363080\pi\)
\(674\) 0 0
\(675\) −1.06851 −0.0411268
\(676\) 0 0
\(677\) −25.2318 −0.969738 −0.484869 0.874587i \(-0.661133\pi\)
−0.484869 + 0.874587i \(0.661133\pi\)
\(678\) 0 0
\(679\) −12.9424 −0.496682
\(680\) 0 0
\(681\) 7.66195 0.293606
\(682\) 0 0
\(683\) 7.13904 0.273168 0.136584 0.990629i \(-0.456388\pi\)
0.136584 + 0.990629i \(0.456388\pi\)
\(684\) 0 0
\(685\) −2.90306 −0.110920
\(686\) 0 0
\(687\) −5.53349 −0.211116
\(688\) 0 0
\(689\) −51.1735 −1.94955
\(690\) 0 0
\(691\) −51.2992 −1.95151 −0.975757 0.218856i \(-0.929767\pi\)
−0.975757 + 0.218856i \(0.929767\pi\)
\(692\) 0 0
\(693\) 5.58052 0.211986
\(694\) 0 0
\(695\) −32.3467 −1.22698
\(696\) 0 0
\(697\) −0.794247 −0.0300843
\(698\) 0 0
\(699\) 8.75915 0.331302
\(700\) 0 0
\(701\) −10.7077 −0.404423 −0.202212 0.979342i \(-0.564813\pi\)
−0.202212 + 0.979342i \(0.564813\pi\)
\(702\) 0 0
\(703\) −5.45902 −0.205891
\(704\) 0 0
\(705\) −3.50204 −0.131895
\(706\) 0 0
\(707\) 17.3438 0.652282
\(708\) 0 0
\(709\) −28.4276 −1.06762 −0.533811 0.845604i \(-0.679241\pi\)
−0.533811 + 0.845604i \(0.679241\pi\)
\(710\) 0 0
\(711\) −13.5931 −0.509782
\(712\) 0 0
\(713\) −36.7401 −1.37593
\(714\) 0 0
\(715\) −24.4962 −0.916106
\(716\) 0 0
\(717\) −8.19831 −0.306171
\(718\) 0 0
\(719\) 40.5961 1.51398 0.756990 0.653427i \(-0.226669\pi\)
0.756990 + 0.653427i \(0.226669\pi\)
\(720\) 0 0
\(721\) −13.8426 −0.515525
\(722\) 0 0
\(723\) 5.06245 0.188274
\(724\) 0 0
\(725\) −1.02370 −0.0380193
\(726\) 0 0
\(727\) 6.14972 0.228080 0.114040 0.993476i \(-0.463621\pi\)
0.114040 + 0.993476i \(0.463621\pi\)
\(728\) 0 0
\(729\) −12.4640 −0.461629
\(730\) 0 0
\(731\) −5.74068 −0.212327
\(732\) 0 0
\(733\) −12.0501 −0.445080 −0.222540 0.974924i \(-0.571435\pi\)
−0.222540 + 0.974924i \(0.571435\pi\)
\(734\) 0 0
\(735\) −1.16670 −0.0430342
\(736\) 0 0
\(737\) 26.2133 0.965579
\(738\) 0 0
\(739\) 27.8334 1.02387 0.511935 0.859024i \(-0.328929\pi\)
0.511935 + 0.859024i \(0.328929\pi\)
\(740\) 0 0
\(741\) −6.47783 −0.237969
\(742\) 0 0
\(743\) 36.1262 1.32534 0.662671 0.748911i \(-0.269423\pi\)
0.662671 + 0.748911i \(0.269423\pi\)
\(744\) 0 0
\(745\) −10.2712 −0.376308
\(746\) 0 0
\(747\) 0.136069 0.00497852
\(748\) 0 0
\(749\) −10.5908 −0.386981
\(750\) 0 0
\(751\) −7.52254 −0.274502 −0.137251 0.990536i \(-0.543827\pi\)
−0.137251 + 0.990536i \(0.543827\pi\)
\(752\) 0 0
\(753\) 7.99412 0.291322
\(754\) 0 0
\(755\) −36.4646 −1.32708
\(756\) 0 0
\(757\) −48.6035 −1.76653 −0.883263 0.468879i \(-0.844658\pi\)
−0.883263 + 0.468879i \(0.844658\pi\)
\(758\) 0 0
\(759\) 3.97983 0.144459
\(760\) 0 0
\(761\) 27.6245 1.00139 0.500694 0.865625i \(-0.333078\pi\)
0.500694 + 0.865625i \(0.333078\pi\)
\(762\) 0 0
\(763\) 8.60297 0.311448
\(764\) 0 0
\(765\) 5.84086 0.211177
\(766\) 0 0
\(767\) −64.6207 −2.33332
\(768\) 0 0
\(769\) −25.3541 −0.914293 −0.457146 0.889391i \(-0.651128\pi\)
−0.457146 + 0.889391i \(0.651128\pi\)
\(770\) 0 0
\(771\) −0.478790 −0.0172432
\(772\) 0 0
\(773\) 4.20981 0.151416 0.0757082 0.997130i \(-0.475878\pi\)
0.0757082 + 0.997130i \(0.475878\pi\)
\(774\) 0 0
\(775\) −3.56213 −0.127956
\(776\) 0 0
\(777\) 1.35793 0.0487156
\(778\) 0 0
\(779\) −1.72681 −0.0618693
\(780\) 0 0
\(781\) 3.36695 0.120479
\(782\) 0 0
\(783\) 9.12838 0.326222
\(784\) 0 0
\(785\) 38.5609 1.37630
\(786\) 0 0
\(787\) −25.6320 −0.913683 −0.456842 0.889548i \(-0.651019\pi\)
−0.456842 + 0.889548i \(0.651019\pi\)
\(788\) 0 0
\(789\) −16.5989 −0.590935
\(790\) 0 0
\(791\) 1.32777 0.0472101
\(792\) 0 0
\(793\) 1.35726 0.0481976
\(794\) 0 0
\(795\) −10.8371 −0.384352
\(796\) 0 0
\(797\) −42.8427 −1.51757 −0.758783 0.651343i \(-0.774206\pi\)
−0.758783 + 0.651343i \(0.774206\pi\)
\(798\) 0 0
\(799\) −3.00167 −0.106192
\(800\) 0 0
\(801\) −17.7829 −0.628328
\(802\) 0 0
\(803\) −14.6828 −0.518145
\(804\) 0 0
\(805\) 7.70219 0.271467
\(806\) 0 0
\(807\) 4.31455 0.151879
\(808\) 0 0
\(809\) −25.3601 −0.891615 −0.445807 0.895129i \(-0.647083\pi\)
−0.445807 + 0.895129i \(0.647083\pi\)
\(810\) 0 0
\(811\) −24.8332 −0.872011 −0.436005 0.899944i \(-0.643607\pi\)
−0.436005 + 0.899944i \(0.643607\pi\)
\(812\) 0 0
\(813\) −9.57243 −0.335720
\(814\) 0 0
\(815\) −14.3215 −0.501662
\(816\) 0 0
\(817\) −12.4811 −0.436657
\(818\) 0 0
\(819\) −14.9163 −0.521217
\(820\) 0 0
\(821\) −10.4448 −0.364525 −0.182263 0.983250i \(-0.558342\pi\)
−0.182263 + 0.983250i \(0.558342\pi\)
\(822\) 0 0
\(823\) −39.3355 −1.37115 −0.685574 0.728003i \(-0.740449\pi\)
−0.685574 + 0.728003i \(0.740449\pi\)
\(824\) 0 0
\(825\) 0.385864 0.0134341
\(826\) 0 0
\(827\) −43.7487 −1.52129 −0.760645 0.649168i \(-0.775117\pi\)
−0.760645 + 0.649168i \(0.775117\pi\)
\(828\) 0 0
\(829\) 16.9080 0.587241 0.293620 0.955922i \(-0.405140\pi\)
0.293620 + 0.955922i \(0.405140\pi\)
\(830\) 0 0
\(831\) 0.940945 0.0326410
\(832\) 0 0
\(833\) −1.00000 −0.0346479
\(834\) 0 0
\(835\) −9.53026 −0.329808
\(836\) 0 0
\(837\) 31.7637 1.09791
\(838\) 0 0
\(839\) −18.1429 −0.626362 −0.313181 0.949693i \(-0.601395\pi\)
−0.313181 + 0.949693i \(0.601395\pi\)
\(840\) 0 0
\(841\) −20.2544 −0.698428
\(842\) 0 0
\(843\) 4.42466 0.152393
\(844\) 0 0
\(845\) 37.4317 1.28769
\(846\) 0 0
\(847\) 6.75177 0.231994
\(848\) 0 0
\(849\) 17.0723 0.585919
\(850\) 0 0
\(851\) −8.96469 −0.307306
\(852\) 0 0
\(853\) 5.51844 0.188948 0.0944738 0.995527i \(-0.469883\pi\)
0.0944738 + 0.995527i \(0.469883\pi\)
\(854\) 0 0
\(855\) 12.6989 0.434292
\(856\) 0 0
\(857\) −44.9035 −1.53388 −0.766938 0.641722i \(-0.778220\pi\)
−0.766938 + 0.641722i \(0.778220\pi\)
\(858\) 0 0
\(859\) −12.4901 −0.426157 −0.213079 0.977035i \(-0.568349\pi\)
−0.213079 + 0.977035i \(0.568349\pi\)
\(860\) 0 0
\(861\) 0.429544 0.0146388
\(862\) 0 0
\(863\) 28.6033 0.973667 0.486833 0.873495i \(-0.338152\pi\)
0.486833 + 0.873495i \(0.338152\pi\)
\(864\) 0 0
\(865\) 43.7722 1.48830
\(866\) 0 0
\(867\) −0.540819 −0.0183672
\(868\) 0 0
\(869\) 10.3479 0.351028
\(870\) 0 0
\(871\) −70.0659 −2.37409
\(872\) 0 0
\(873\) −35.0416 −1.18598
\(874\) 0 0
\(875\) 11.5331 0.389891
\(876\) 0 0
\(877\) 44.5608 1.50471 0.752356 0.658757i \(-0.228917\pi\)
0.752356 + 0.658757i \(0.228917\pi\)
\(878\) 0 0
\(879\) 15.3206 0.516751
\(880\) 0 0
\(881\) −7.02041 −0.236524 −0.118262 0.992982i \(-0.537732\pi\)
−0.118262 + 0.992982i \(0.537732\pi\)
\(882\) 0 0
\(883\) −32.6634 −1.09921 −0.549605 0.835424i \(-0.685222\pi\)
−0.549605 + 0.835424i \(0.685222\pi\)
\(884\) 0 0
\(885\) −13.6849 −0.460011
\(886\) 0 0
\(887\) 38.5931 1.29583 0.647916 0.761712i \(-0.275641\pi\)
0.647916 + 0.761712i \(0.275641\pi\)
\(888\) 0 0
\(889\) −17.6334 −0.591406
\(890\) 0 0
\(891\) 13.3008 0.445594
\(892\) 0 0
\(893\) −6.52607 −0.218387
\(894\) 0 0
\(895\) −30.0009 −1.00282
\(896\) 0 0
\(897\) −10.6378 −0.355184
\(898\) 0 0
\(899\) 30.4317 1.01495
\(900\) 0 0
\(901\) −9.28871 −0.309452
\(902\) 0 0
\(903\) 3.10467 0.103317
\(904\) 0 0
\(905\) −22.2356 −0.739136
\(906\) 0 0
\(907\) 25.4634 0.845497 0.422748 0.906247i \(-0.361065\pi\)
0.422748 + 0.906247i \(0.361065\pi\)
\(908\) 0 0
\(909\) 46.9587 1.55752
\(910\) 0 0
\(911\) 8.78190 0.290957 0.145479 0.989361i \(-0.453528\pi\)
0.145479 + 0.989361i \(0.453528\pi\)
\(912\) 0 0
\(913\) −0.103584 −0.00342814
\(914\) 0 0
\(915\) 0.287429 0.00950210
\(916\) 0 0
\(917\) 10.8112 0.357018
\(918\) 0 0
\(919\) 14.6730 0.484018 0.242009 0.970274i \(-0.422194\pi\)
0.242009 + 0.970274i \(0.422194\pi\)
\(920\) 0 0
\(921\) −5.14231 −0.169445
\(922\) 0 0
\(923\) −8.99958 −0.296225
\(924\) 0 0
\(925\) −0.869170 −0.0285781
\(926\) 0 0
\(927\) −37.4790 −1.23097
\(928\) 0 0
\(929\) −39.7569 −1.30438 −0.652191 0.758054i \(-0.726150\pi\)
−0.652191 + 0.758054i \(0.726150\pi\)
\(930\) 0 0
\(931\) −2.17414 −0.0712547
\(932\) 0 0
\(933\) −3.12924 −0.102447
\(934\) 0 0
\(935\) −4.44641 −0.145413
\(936\) 0 0
\(937\) −37.9558 −1.23996 −0.619981 0.784616i \(-0.712860\pi\)
−0.619981 + 0.784616i \(0.712860\pi\)
\(938\) 0 0
\(939\) −1.74148 −0.0568310
\(940\) 0 0
\(941\) 3.47508 0.113284 0.0566422 0.998395i \(-0.481961\pi\)
0.0566422 + 0.998395i \(0.481961\pi\)
\(942\) 0 0
\(943\) −2.83573 −0.0923440
\(944\) 0 0
\(945\) −6.65893 −0.216615
\(946\) 0 0
\(947\) −8.61706 −0.280017 −0.140008 0.990150i \(-0.544713\pi\)
−0.140008 + 0.990150i \(0.544713\pi\)
\(948\) 0 0
\(949\) 39.2459 1.27398
\(950\) 0 0
\(951\) −8.29273 −0.268910
\(952\) 0 0
\(953\) 60.2017 1.95013 0.975063 0.221929i \(-0.0712354\pi\)
0.975063 + 0.221929i \(0.0712354\pi\)
\(954\) 0 0
\(955\) −5.24842 −0.169835
\(956\) 0 0
\(957\) −3.29648 −0.106560
\(958\) 0 0
\(959\) 1.34571 0.0434551
\(960\) 0 0
\(961\) 74.8921 2.41587
\(962\) 0 0
\(963\) −28.6749 −0.924035
\(964\) 0 0
\(965\) 50.4283 1.62335
\(966\) 0 0
\(967\) 48.5686 1.56186 0.780930 0.624618i \(-0.214745\pi\)
0.780930 + 0.624618i \(0.214745\pi\)
\(968\) 0 0
\(969\) −1.17582 −0.0377727
\(970\) 0 0
\(971\) −17.0482 −0.547104 −0.273552 0.961857i \(-0.588199\pi\)
−0.273552 + 0.961857i \(0.588199\pi\)
\(972\) 0 0
\(973\) 14.9943 0.480694
\(974\) 0 0
\(975\) −1.03138 −0.0330307
\(976\) 0 0
\(977\) 57.4932 1.83937 0.919686 0.392655i \(-0.128443\pi\)
0.919686 + 0.392655i \(0.128443\pi\)
\(978\) 0 0
\(979\) 13.5374 0.432658
\(980\) 0 0
\(981\) 23.2927 0.743678
\(982\) 0 0
\(983\) 14.8492 0.473617 0.236808 0.971556i \(-0.423899\pi\)
0.236808 + 0.971556i \(0.423899\pi\)
\(984\) 0 0
\(985\) 11.4294 0.364171
\(986\) 0 0
\(987\) 1.62336 0.0516722
\(988\) 0 0
\(989\) −20.4961 −0.651739
\(990\) 0 0
\(991\) 10.8483 0.344608 0.172304 0.985044i \(-0.444879\pi\)
0.172304 + 0.985044i \(0.444879\pi\)
\(992\) 0 0
\(993\) −11.6316 −0.369119
\(994\) 0 0
\(995\) 54.2349 1.71936
\(996\) 0 0
\(997\) −20.9973 −0.664990 −0.332495 0.943105i \(-0.607890\pi\)
−0.332495 + 0.943105i \(0.607890\pi\)
\(998\) 0 0
\(999\) 7.75043 0.245213
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 3808.2.a.e.1.3 5
4.3 odd 2 3808.2.a.f.1.3 yes 5
8.3 odd 2 7616.2.a.bs.1.3 5
8.5 even 2 7616.2.a.br.1.3 5
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
3808.2.a.e.1.3 5 1.1 even 1 trivial
3808.2.a.f.1.3 yes 5 4.3 odd 2
7616.2.a.br.1.3 5 8.5 even 2
7616.2.a.bs.1.3 5 8.3 odd 2