Properties

Label 3808.2.a.e.1.1
Level $3808$
Weight $2$
Character 3808.1
Self dual yes
Analytic conductor $30.407$
Analytic rank $0$
Dimension $5$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [3808,2,Mod(1,3808)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(3808, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0, 0])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("3808.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 3808 = 2^{5} \cdot 7 \cdot 17 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 3808.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [5,0,0,0,-2,0,-5] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(7)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(30.4070330897\)
Analytic rank: \(0\)
Dimension: \(5\)
Coefficient field: 5.5.804272.1
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{5} - 9x^{3} - 6x^{2} + 3x + 2 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.1
Root \(-2.49947\) of defining polynomial
Character \(\chi\) \(=\) 3808.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-2.49947 q^{3} -2.69931 q^{5} -1.00000 q^{7} +3.24737 q^{9} +3.96654 q^{11} -0.387119 q^{13} +6.74685 q^{15} -1.00000 q^{17} -4.75333 q^{19} +2.49947 q^{21} -0.353662 q^{23} +2.28626 q^{25} -0.618307 q^{27} -9.19231 q^{29} +3.98921 q^{31} -9.91427 q^{33} +2.69931 q^{35} +5.51461 q^{37} +0.967593 q^{39} -8.86568 q^{41} -10.8134 q^{43} -8.76566 q^{45} +11.1275 q^{47} +1.00000 q^{49} +2.49947 q^{51} -5.13829 q^{53} -10.7069 q^{55} +11.8808 q^{57} -9.89336 q^{59} -9.79982 q^{61} -3.24737 q^{63} +1.04495 q^{65} -2.62263 q^{67} +0.883969 q^{69} +12.5784 q^{71} -8.73606 q^{73} -5.71444 q^{75} -3.96654 q^{77} +7.03241 q^{79} -8.19668 q^{81} -7.21112 q^{83} +2.69931 q^{85} +22.9759 q^{87} -14.7638 q^{89} +0.387119 q^{91} -9.97092 q^{93} +12.8307 q^{95} +7.34182 q^{97} +12.8809 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 5 q - 2 q^{5} - 5 q^{7} + 3 q^{9} - 4 q^{11} - 6 q^{13} + 8 q^{15} - 5 q^{17} - 6 q^{19} + 18 q^{23} + 5 q^{25} + 18 q^{27} - 14 q^{29} + 16 q^{31} - 26 q^{33} + 2 q^{35} + 2 q^{37} + 6 q^{39} - 10 q^{41}+ \cdots - 8 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −2.49947 −1.44307 −0.721536 0.692377i \(-0.756564\pi\)
−0.721536 + 0.692377i \(0.756564\pi\)
\(4\) 0 0
\(5\) −2.69931 −1.20717 −0.603583 0.797300i \(-0.706261\pi\)
−0.603583 + 0.797300i \(0.706261\pi\)
\(6\) 0 0
\(7\) −1.00000 −0.377964
\(8\) 0 0
\(9\) 3.24737 1.08246
\(10\) 0 0
\(11\) 3.96654 1.19596 0.597979 0.801512i \(-0.295971\pi\)
0.597979 + 0.801512i \(0.295971\pi\)
\(12\) 0 0
\(13\) −0.387119 −0.107367 −0.0536837 0.998558i \(-0.517096\pi\)
−0.0536837 + 0.998558i \(0.517096\pi\)
\(14\) 0 0
\(15\) 6.74685 1.74203
\(16\) 0 0
\(17\) −1.00000 −0.242536
\(18\) 0 0
\(19\) −4.75333 −1.09049 −0.545244 0.838277i \(-0.683563\pi\)
−0.545244 + 0.838277i \(0.683563\pi\)
\(20\) 0 0
\(21\) 2.49947 0.545430
\(22\) 0 0
\(23\) −0.353662 −0.0737436 −0.0368718 0.999320i \(-0.511739\pi\)
−0.0368718 + 0.999320i \(0.511739\pi\)
\(24\) 0 0
\(25\) 2.28626 0.457251
\(26\) 0 0
\(27\) −0.618307 −0.118993
\(28\) 0 0
\(29\) −9.19231 −1.70697 −0.853484 0.521119i \(-0.825515\pi\)
−0.853484 + 0.521119i \(0.825515\pi\)
\(30\) 0 0
\(31\) 3.98921 0.716482 0.358241 0.933629i \(-0.383377\pi\)
0.358241 + 0.933629i \(0.383377\pi\)
\(32\) 0 0
\(33\) −9.91427 −1.72585
\(34\) 0 0
\(35\) 2.69931 0.456266
\(36\) 0 0
\(37\) 5.51461 0.906596 0.453298 0.891359i \(-0.350247\pi\)
0.453298 + 0.891359i \(0.350247\pi\)
\(38\) 0 0
\(39\) 0.967593 0.154939
\(40\) 0 0
\(41\) −8.86568 −1.38459 −0.692293 0.721616i \(-0.743400\pi\)
−0.692293 + 0.721616i \(0.743400\pi\)
\(42\) 0 0
\(43\) −10.8134 −1.64903 −0.824515 0.565840i \(-0.808552\pi\)
−0.824515 + 0.565840i \(0.808552\pi\)
\(44\) 0 0
\(45\) −8.76566 −1.30671
\(46\) 0 0
\(47\) 11.1275 1.62311 0.811556 0.584275i \(-0.198621\pi\)
0.811556 + 0.584275i \(0.198621\pi\)
\(48\) 0 0
\(49\) 1.00000 0.142857
\(50\) 0 0
\(51\) 2.49947 0.349996
\(52\) 0 0
\(53\) −5.13829 −0.705798 −0.352899 0.935661i \(-0.614804\pi\)
−0.352899 + 0.935661i \(0.614804\pi\)
\(54\) 0 0
\(55\) −10.7069 −1.44372
\(56\) 0 0
\(57\) 11.8808 1.57365
\(58\) 0 0
\(59\) −9.89336 −1.28801 −0.644003 0.765023i \(-0.722728\pi\)
−0.644003 + 0.765023i \(0.722728\pi\)
\(60\) 0 0
\(61\) −9.79982 −1.25474 −0.627369 0.778722i \(-0.715868\pi\)
−0.627369 + 0.778722i \(0.715868\pi\)
\(62\) 0 0
\(63\) −3.24737 −0.409131
\(64\) 0 0
\(65\) 1.04495 0.129610
\(66\) 0 0
\(67\) −2.62263 −0.320405 −0.160202 0.987084i \(-0.551215\pi\)
−0.160202 + 0.987084i \(0.551215\pi\)
\(68\) 0 0
\(69\) 0.883969 0.106417
\(70\) 0 0
\(71\) 12.5784 1.49278 0.746389 0.665510i \(-0.231786\pi\)
0.746389 + 0.665510i \(0.231786\pi\)
\(72\) 0 0
\(73\) −8.73606 −1.02248 −0.511239 0.859439i \(-0.670813\pi\)
−0.511239 + 0.859439i \(0.670813\pi\)
\(74\) 0 0
\(75\) −5.71444 −0.659847
\(76\) 0 0
\(77\) −3.96654 −0.452030
\(78\) 0 0
\(79\) 7.03241 0.791208 0.395604 0.918421i \(-0.370535\pi\)
0.395604 + 0.918421i \(0.370535\pi\)
\(80\) 0 0
\(81\) −8.19668 −0.910742
\(82\) 0 0
\(83\) −7.21112 −0.791523 −0.395761 0.918353i \(-0.629519\pi\)
−0.395761 + 0.918353i \(0.629519\pi\)
\(84\) 0 0
\(85\) 2.69931 0.292781
\(86\) 0 0
\(87\) 22.9759 2.46328
\(88\) 0 0
\(89\) −14.7638 −1.56496 −0.782478 0.622678i \(-0.786045\pi\)
−0.782478 + 0.622678i \(0.786045\pi\)
\(90\) 0 0
\(91\) 0.387119 0.0405811
\(92\) 0 0
\(93\) −9.97092 −1.03394
\(94\) 0 0
\(95\) 12.8307 1.31640
\(96\) 0 0
\(97\) 7.34182 0.745449 0.372724 0.927942i \(-0.378424\pi\)
0.372724 + 0.927942i \(0.378424\pi\)
\(98\) 0 0
\(99\) 12.8809 1.29457
\(100\) 0 0
\(101\) 7.86895 0.782990 0.391495 0.920180i \(-0.371958\pi\)
0.391495 + 0.920180i \(0.371958\pi\)
\(102\) 0 0
\(103\) −7.10658 −0.700232 −0.350116 0.936706i \(-0.613858\pi\)
−0.350116 + 0.936706i \(0.613858\pi\)
\(104\) 0 0
\(105\) −6.74685 −0.658425
\(106\) 0 0
\(107\) 9.38607 0.907385 0.453693 0.891158i \(-0.350106\pi\)
0.453693 + 0.891158i \(0.350106\pi\)
\(108\) 0 0
\(109\) −6.13831 −0.587943 −0.293972 0.955814i \(-0.594977\pi\)
−0.293972 + 0.955814i \(0.594977\pi\)
\(110\) 0 0
\(111\) −13.7836 −1.30828
\(112\) 0 0
\(113\) −4.47424 −0.420902 −0.210451 0.977604i \(-0.567493\pi\)
−0.210451 + 0.977604i \(0.567493\pi\)
\(114\) 0 0
\(115\) 0.954641 0.0890208
\(116\) 0 0
\(117\) −1.25712 −0.116221
\(118\) 0 0
\(119\) 1.00000 0.0916698
\(120\) 0 0
\(121\) 4.73346 0.430315
\(122\) 0 0
\(123\) 22.1595 1.99806
\(124\) 0 0
\(125\) 7.32522 0.655188
\(126\) 0 0
\(127\) 2.77249 0.246018 0.123009 0.992406i \(-0.460746\pi\)
0.123009 + 0.992406i \(0.460746\pi\)
\(128\) 0 0
\(129\) 27.0279 2.37967
\(130\) 0 0
\(131\) 6.89441 0.602368 0.301184 0.953566i \(-0.402618\pi\)
0.301184 + 0.953566i \(0.402618\pi\)
\(132\) 0 0
\(133\) 4.75333 0.412166
\(134\) 0 0
\(135\) 1.66900 0.143645
\(136\) 0 0
\(137\) 21.9353 1.87406 0.937030 0.349249i \(-0.113563\pi\)
0.937030 + 0.349249i \(0.113563\pi\)
\(138\) 0 0
\(139\) −8.16206 −0.692297 −0.346148 0.938180i \(-0.612511\pi\)
−0.346148 + 0.938180i \(0.612511\pi\)
\(140\) 0 0
\(141\) −27.8129 −2.34227
\(142\) 0 0
\(143\) −1.53552 −0.128407
\(144\) 0 0
\(145\) 24.8129 2.06060
\(146\) 0 0
\(147\) −2.49947 −0.206153
\(148\) 0 0
\(149\) 9.78101 0.801291 0.400646 0.916233i \(-0.368786\pi\)
0.400646 + 0.916233i \(0.368786\pi\)
\(150\) 0 0
\(151\) 16.5952 1.35050 0.675251 0.737588i \(-0.264035\pi\)
0.675251 + 0.737588i \(0.264035\pi\)
\(152\) 0 0
\(153\) −3.24737 −0.262535
\(154\) 0 0
\(155\) −10.7681 −0.864914
\(156\) 0 0
\(157\) −6.45261 −0.514974 −0.257487 0.966282i \(-0.582895\pi\)
−0.257487 + 0.966282i \(0.582895\pi\)
\(158\) 0 0
\(159\) 12.8430 1.01852
\(160\) 0 0
\(161\) 0.353662 0.0278724
\(162\) 0 0
\(163\) 22.0386 1.72620 0.863099 0.505035i \(-0.168520\pi\)
0.863099 + 0.505035i \(0.168520\pi\)
\(164\) 0 0
\(165\) 26.7617 2.08339
\(166\) 0 0
\(167\) 5.69497 0.440690 0.220345 0.975422i \(-0.429282\pi\)
0.220345 + 0.975422i \(0.429282\pi\)
\(168\) 0 0
\(169\) −12.8501 −0.988472
\(170\) 0 0
\(171\) −15.4358 −1.18041
\(172\) 0 0
\(173\) −1.49216 −0.113447 −0.0567234 0.998390i \(-0.518065\pi\)
−0.0567234 + 0.998390i \(0.518065\pi\)
\(174\) 0 0
\(175\) −2.28626 −0.172825
\(176\) 0 0
\(177\) 24.7282 1.85869
\(178\) 0 0
\(179\) −0.790424 −0.0590790 −0.0295395 0.999564i \(-0.509404\pi\)
−0.0295395 + 0.999564i \(0.509404\pi\)
\(180\) 0 0
\(181\) −11.4418 −0.850465 −0.425233 0.905084i \(-0.639808\pi\)
−0.425233 + 0.905084i \(0.639808\pi\)
\(182\) 0 0
\(183\) 24.4944 1.81068
\(184\) 0 0
\(185\) −14.8856 −1.09441
\(186\) 0 0
\(187\) −3.96654 −0.290062
\(188\) 0 0
\(189\) 0.618307 0.0449752
\(190\) 0 0
\(191\) 3.90456 0.282524 0.141262 0.989972i \(-0.454884\pi\)
0.141262 + 0.989972i \(0.454884\pi\)
\(192\) 0 0
\(193\) 21.4272 1.54236 0.771182 0.636615i \(-0.219666\pi\)
0.771182 + 0.636615i \(0.219666\pi\)
\(194\) 0 0
\(195\) −2.61183 −0.187037
\(196\) 0 0
\(197\) 19.8139 1.41168 0.705841 0.708370i \(-0.250569\pi\)
0.705841 + 0.708370i \(0.250569\pi\)
\(198\) 0 0
\(199\) 8.38280 0.594241 0.297120 0.954840i \(-0.403974\pi\)
0.297120 + 0.954840i \(0.403974\pi\)
\(200\) 0 0
\(201\) 6.55519 0.462367
\(202\) 0 0
\(203\) 9.19231 0.645173
\(204\) 0 0
\(205\) 23.9312 1.67143
\(206\) 0 0
\(207\) −1.14847 −0.0798243
\(208\) 0 0
\(209\) −18.8543 −1.30418
\(210\) 0 0
\(211\) 17.2251 1.18582 0.592911 0.805268i \(-0.297979\pi\)
0.592911 + 0.805268i \(0.297979\pi\)
\(212\) 0 0
\(213\) −31.4393 −2.15419
\(214\) 0 0
\(215\) 29.1887 1.99065
\(216\) 0 0
\(217\) −3.98921 −0.270805
\(218\) 0 0
\(219\) 21.8356 1.47551
\(220\) 0 0
\(221\) 0.387119 0.0260404
\(222\) 0 0
\(223\) −15.2676 −1.02239 −0.511196 0.859464i \(-0.670797\pi\)
−0.511196 + 0.859464i \(0.670797\pi\)
\(224\) 0 0
\(225\) 7.42433 0.494956
\(226\) 0 0
\(227\) 4.20523 0.279111 0.139556 0.990214i \(-0.455433\pi\)
0.139556 + 0.990214i \(0.455433\pi\)
\(228\) 0 0
\(229\) 9.12399 0.602930 0.301465 0.953477i \(-0.402524\pi\)
0.301465 + 0.953477i \(0.402524\pi\)
\(230\) 0 0
\(231\) 9.91427 0.652311
\(232\) 0 0
\(233\) 22.6986 1.48703 0.743516 0.668718i \(-0.233157\pi\)
0.743516 + 0.668718i \(0.233157\pi\)
\(234\) 0 0
\(235\) −30.0365 −1.95937
\(236\) 0 0
\(237\) −17.5773 −1.14177
\(238\) 0 0
\(239\) 2.94682 0.190614 0.0953070 0.995448i \(-0.469617\pi\)
0.0953070 + 0.995448i \(0.469617\pi\)
\(240\) 0 0
\(241\) 8.41632 0.542143 0.271071 0.962559i \(-0.412622\pi\)
0.271071 + 0.962559i \(0.412622\pi\)
\(242\) 0 0
\(243\) 22.3423 1.43326
\(244\) 0 0
\(245\) −2.69931 −0.172452
\(246\) 0 0
\(247\) 1.84010 0.117083
\(248\) 0 0
\(249\) 18.0240 1.14222
\(250\) 0 0
\(251\) −8.44525 −0.533059 −0.266530 0.963827i \(-0.585877\pi\)
−0.266530 + 0.963827i \(0.585877\pi\)
\(252\) 0 0
\(253\) −1.40281 −0.0881942
\(254\) 0 0
\(255\) −6.74685 −0.422504
\(256\) 0 0
\(257\) −7.91427 −0.493679 −0.246839 0.969056i \(-0.579392\pi\)
−0.246839 + 0.969056i \(0.579392\pi\)
\(258\) 0 0
\(259\) −5.51461 −0.342661
\(260\) 0 0
\(261\) −29.8509 −1.84772
\(262\) 0 0
\(263\) −26.1843 −1.61459 −0.807296 0.590146i \(-0.799070\pi\)
−0.807296 + 0.590146i \(0.799070\pi\)
\(264\) 0 0
\(265\) 13.8698 0.852016
\(266\) 0 0
\(267\) 36.9017 2.25835
\(268\) 0 0
\(269\) 2.15990 0.131691 0.0658457 0.997830i \(-0.479025\pi\)
0.0658457 + 0.997830i \(0.479025\pi\)
\(270\) 0 0
\(271\) 7.44630 0.452330 0.226165 0.974089i \(-0.427381\pi\)
0.226165 + 0.974089i \(0.427381\pi\)
\(272\) 0 0
\(273\) −0.967593 −0.0585614
\(274\) 0 0
\(275\) 9.06854 0.546853
\(276\) 0 0
\(277\) −18.2125 −1.09428 −0.547141 0.837040i \(-0.684284\pi\)
−0.547141 + 0.837040i \(0.684284\pi\)
\(278\) 0 0
\(279\) 12.9544 0.775562
\(280\) 0 0
\(281\) −27.4473 −1.63737 −0.818686 0.574242i \(-0.805297\pi\)
−0.818686 + 0.574242i \(0.805297\pi\)
\(282\) 0 0
\(283\) 19.7003 1.17106 0.585532 0.810650i \(-0.300886\pi\)
0.585532 + 0.810650i \(0.300886\pi\)
\(284\) 0 0
\(285\) −32.0700 −1.89966
\(286\) 0 0
\(287\) 8.86568 0.523325
\(288\) 0 0
\(289\) 1.00000 0.0588235
\(290\) 0 0
\(291\) −18.3507 −1.07574
\(292\) 0 0
\(293\) 22.0000 1.28525 0.642626 0.766180i \(-0.277845\pi\)
0.642626 + 0.766180i \(0.277845\pi\)
\(294\) 0 0
\(295\) 26.7052 1.55484
\(296\) 0 0
\(297\) −2.45254 −0.142311
\(298\) 0 0
\(299\) 0.136909 0.00791765
\(300\) 0 0
\(301\) 10.8134 0.623275
\(302\) 0 0
\(303\) −19.6682 −1.12991
\(304\) 0 0
\(305\) 26.4527 1.51468
\(306\) 0 0
\(307\) −3.87424 −0.221114 −0.110557 0.993870i \(-0.535264\pi\)
−0.110557 + 0.993870i \(0.535264\pi\)
\(308\) 0 0
\(309\) 17.7627 1.01049
\(310\) 0 0
\(311\) −24.3558 −1.38109 −0.690545 0.723289i \(-0.742629\pi\)
−0.690545 + 0.723289i \(0.742629\pi\)
\(312\) 0 0
\(313\) 8.39473 0.474498 0.237249 0.971449i \(-0.423754\pi\)
0.237249 + 0.971449i \(0.423754\pi\)
\(314\) 0 0
\(315\) 8.76566 0.493889
\(316\) 0 0
\(317\) 5.36556 0.301360 0.150680 0.988583i \(-0.451854\pi\)
0.150680 + 0.988583i \(0.451854\pi\)
\(318\) 0 0
\(319\) −36.4617 −2.04146
\(320\) 0 0
\(321\) −23.4602 −1.30942
\(322\) 0 0
\(323\) 4.75333 0.264482
\(324\) 0 0
\(325\) −0.885053 −0.0490939
\(326\) 0 0
\(327\) 15.3426 0.848445
\(328\) 0 0
\(329\) −11.1275 −0.613479
\(330\) 0 0
\(331\) −1.02789 −0.0564980 −0.0282490 0.999601i \(-0.508993\pi\)
−0.0282490 + 0.999601i \(0.508993\pi\)
\(332\) 0 0
\(333\) 17.9080 0.981353
\(334\) 0 0
\(335\) 7.07927 0.386782
\(336\) 0 0
\(337\) −28.3557 −1.54464 −0.772318 0.635236i \(-0.780903\pi\)
−0.772318 + 0.635236i \(0.780903\pi\)
\(338\) 0 0
\(339\) 11.1833 0.607391
\(340\) 0 0
\(341\) 15.8234 0.856883
\(342\) 0 0
\(343\) −1.00000 −0.0539949
\(344\) 0 0
\(345\) −2.38610 −0.128463
\(346\) 0 0
\(347\) −24.9874 −1.34139 −0.670697 0.741732i \(-0.734005\pi\)
−0.670697 + 0.741732i \(0.734005\pi\)
\(348\) 0 0
\(349\) 9.15191 0.489890 0.244945 0.969537i \(-0.421230\pi\)
0.244945 + 0.969537i \(0.421230\pi\)
\(350\) 0 0
\(351\) 0.239358 0.0127760
\(352\) 0 0
\(353\) 0.166585 0.00886642 0.00443321 0.999990i \(-0.498589\pi\)
0.00443321 + 0.999990i \(0.498589\pi\)
\(354\) 0 0
\(355\) −33.9529 −1.80203
\(356\) 0 0
\(357\) −2.49947 −0.132286
\(358\) 0 0
\(359\) −15.0289 −0.793194 −0.396597 0.917993i \(-0.629809\pi\)
−0.396597 + 0.917993i \(0.629809\pi\)
\(360\) 0 0
\(361\) 3.59410 0.189163
\(362\) 0 0
\(363\) −11.8312 −0.620976
\(364\) 0 0
\(365\) 23.5813 1.23430
\(366\) 0 0
\(367\) −14.7601 −0.770472 −0.385236 0.922818i \(-0.625880\pi\)
−0.385236 + 0.922818i \(0.625880\pi\)
\(368\) 0 0
\(369\) −28.7902 −1.49876
\(370\) 0 0
\(371\) 5.13829 0.266767
\(372\) 0 0
\(373\) 36.8479 1.90791 0.953955 0.299951i \(-0.0969702\pi\)
0.953955 + 0.299951i \(0.0969702\pi\)
\(374\) 0 0
\(375\) −18.3092 −0.945484
\(376\) 0 0
\(377\) 3.55851 0.183273
\(378\) 0 0
\(379\) −28.8891 −1.48393 −0.741967 0.670436i \(-0.766107\pi\)
−0.741967 + 0.670436i \(0.766107\pi\)
\(380\) 0 0
\(381\) −6.92976 −0.355022
\(382\) 0 0
\(383\) 30.4571 1.55628 0.778142 0.628088i \(-0.216162\pi\)
0.778142 + 0.628088i \(0.216162\pi\)
\(384\) 0 0
\(385\) 10.7069 0.545675
\(386\) 0 0
\(387\) −35.1152 −1.78501
\(388\) 0 0
\(389\) 15.9773 0.810083 0.405042 0.914298i \(-0.367257\pi\)
0.405042 + 0.914298i \(0.367257\pi\)
\(390\) 0 0
\(391\) 0.353662 0.0178854
\(392\) 0 0
\(393\) −17.2324 −0.869260
\(394\) 0 0
\(395\) −18.9826 −0.955119
\(396\) 0 0
\(397\) 21.7662 1.09241 0.546206 0.837651i \(-0.316072\pi\)
0.546206 + 0.837651i \(0.316072\pi\)
\(398\) 0 0
\(399\) −11.8808 −0.594785
\(400\) 0 0
\(401\) 4.80600 0.240000 0.120000 0.992774i \(-0.461711\pi\)
0.120000 + 0.992774i \(0.461711\pi\)
\(402\) 0 0
\(403\) −1.54430 −0.0769268
\(404\) 0 0
\(405\) 22.1254 1.09942
\(406\) 0 0
\(407\) 21.8739 1.08425
\(408\) 0 0
\(409\) 11.1234 0.550019 0.275009 0.961442i \(-0.411319\pi\)
0.275009 + 0.961442i \(0.411319\pi\)
\(410\) 0 0
\(411\) −54.8267 −2.70440
\(412\) 0 0
\(413\) 9.89336 0.486821
\(414\) 0 0
\(415\) 19.4650 0.955500
\(416\) 0 0
\(417\) 20.4009 0.999034
\(418\) 0 0
\(419\) 14.2304 0.695199 0.347600 0.937643i \(-0.386997\pi\)
0.347600 + 0.937643i \(0.386997\pi\)
\(420\) 0 0
\(421\) 14.0092 0.682768 0.341384 0.939924i \(-0.389104\pi\)
0.341384 + 0.939924i \(0.389104\pi\)
\(422\) 0 0
\(423\) 36.1351 1.75695
\(424\) 0 0
\(425\) −2.28626 −0.110900
\(426\) 0 0
\(427\) 9.79982 0.474246
\(428\) 0 0
\(429\) 3.83800 0.185300
\(430\) 0 0
\(431\) 2.96523 0.142830 0.0714152 0.997447i \(-0.477248\pi\)
0.0714152 + 0.997447i \(0.477248\pi\)
\(432\) 0 0
\(433\) −25.1851 −1.21032 −0.605159 0.796105i \(-0.706890\pi\)
−0.605159 + 0.796105i \(0.706890\pi\)
\(434\) 0 0
\(435\) −62.0191 −2.97359
\(436\) 0 0
\(437\) 1.68107 0.0804165
\(438\) 0 0
\(439\) 2.59316 0.123765 0.0618824 0.998083i \(-0.480290\pi\)
0.0618824 + 0.998083i \(0.480290\pi\)
\(440\) 0 0
\(441\) 3.24737 0.154637
\(442\) 0 0
\(443\) 18.0389 0.857054 0.428527 0.903529i \(-0.359033\pi\)
0.428527 + 0.903529i \(0.359033\pi\)
\(444\) 0 0
\(445\) 39.8519 1.88916
\(446\) 0 0
\(447\) −24.4474 −1.15632
\(448\) 0 0
\(449\) 2.35993 0.111372 0.0556859 0.998448i \(-0.482265\pi\)
0.0556859 + 0.998448i \(0.482265\pi\)
\(450\) 0 0
\(451\) −35.1661 −1.65591
\(452\) 0 0
\(453\) −41.4794 −1.94887
\(454\) 0 0
\(455\) −1.04495 −0.0489881
\(456\) 0 0
\(457\) −14.7983 −0.692235 −0.346118 0.938191i \(-0.612500\pi\)
−0.346118 + 0.938191i \(0.612500\pi\)
\(458\) 0 0
\(459\) 0.618307 0.0288601
\(460\) 0 0
\(461\) −21.6568 −1.00866 −0.504328 0.863512i \(-0.668260\pi\)
−0.504328 + 0.863512i \(0.668260\pi\)
\(462\) 0 0
\(463\) −24.8480 −1.15478 −0.577392 0.816467i \(-0.695930\pi\)
−0.577392 + 0.816467i \(0.695930\pi\)
\(464\) 0 0
\(465\) 26.9146 1.24813
\(466\) 0 0
\(467\) 15.9147 0.736444 0.368222 0.929738i \(-0.379967\pi\)
0.368222 + 0.929738i \(0.379967\pi\)
\(468\) 0 0
\(469\) 2.62263 0.121102
\(470\) 0 0
\(471\) 16.1281 0.743145
\(472\) 0 0
\(473\) −42.8919 −1.97217
\(474\) 0 0
\(475\) −10.8673 −0.498627
\(476\) 0 0
\(477\) −16.6859 −0.763997
\(478\) 0 0
\(479\) 21.9729 1.00397 0.501985 0.864877i \(-0.332603\pi\)
0.501985 + 0.864877i \(0.332603\pi\)
\(480\) 0 0
\(481\) −2.13481 −0.0973389
\(482\) 0 0
\(483\) −0.883969 −0.0402220
\(484\) 0 0
\(485\) −19.8178 −0.899881
\(486\) 0 0
\(487\) −20.0473 −0.908428 −0.454214 0.890893i \(-0.650080\pi\)
−0.454214 + 0.890893i \(0.650080\pi\)
\(488\) 0 0
\(489\) −55.0850 −2.49103
\(490\) 0 0
\(491\) 22.9554 1.03596 0.517981 0.855392i \(-0.326684\pi\)
0.517981 + 0.855392i \(0.326684\pi\)
\(492\) 0 0
\(493\) 9.19231 0.414001
\(494\) 0 0
\(495\) −34.7694 −1.56277
\(496\) 0 0
\(497\) −12.5784 −0.564217
\(498\) 0 0
\(499\) 11.9586 0.535340 0.267670 0.963511i \(-0.413746\pi\)
0.267670 + 0.963511i \(0.413746\pi\)
\(500\) 0 0
\(501\) −14.2344 −0.635947
\(502\) 0 0
\(503\) 33.2164 1.48104 0.740522 0.672032i \(-0.234578\pi\)
0.740522 + 0.672032i \(0.234578\pi\)
\(504\) 0 0
\(505\) −21.2407 −0.945199
\(506\) 0 0
\(507\) 32.1186 1.42644
\(508\) 0 0
\(509\) 5.92264 0.262516 0.131258 0.991348i \(-0.458098\pi\)
0.131258 + 0.991348i \(0.458098\pi\)
\(510\) 0 0
\(511\) 8.73606 0.386460
\(512\) 0 0
\(513\) 2.93901 0.129761
\(514\) 0 0
\(515\) 19.1828 0.845297
\(516\) 0 0
\(517\) 44.1377 1.94117
\(518\) 0 0
\(519\) 3.72961 0.163712
\(520\) 0 0
\(521\) 43.1459 1.89025 0.945127 0.326702i \(-0.105937\pi\)
0.945127 + 0.326702i \(0.105937\pi\)
\(522\) 0 0
\(523\) 39.0197 1.70621 0.853107 0.521736i \(-0.174715\pi\)
0.853107 + 0.521736i \(0.174715\pi\)
\(524\) 0 0
\(525\) 5.71444 0.249399
\(526\) 0 0
\(527\) −3.98921 −0.173773
\(528\) 0 0
\(529\) −22.8749 −0.994562
\(530\) 0 0
\(531\) −32.1275 −1.39421
\(532\) 0 0
\(533\) 3.43207 0.148659
\(534\) 0 0
\(535\) −25.3359 −1.09537
\(536\) 0 0
\(537\) 1.97564 0.0852553
\(538\) 0 0
\(539\) 3.96654 0.170851
\(540\) 0 0
\(541\) −23.5658 −1.01317 −0.506586 0.862190i \(-0.669093\pi\)
−0.506586 + 0.862190i \(0.669093\pi\)
\(542\) 0 0
\(543\) 28.5986 1.22728
\(544\) 0 0
\(545\) 16.5692 0.709746
\(546\) 0 0
\(547\) −27.0101 −1.15487 −0.577434 0.816438i \(-0.695946\pi\)
−0.577434 + 0.816438i \(0.695946\pi\)
\(548\) 0 0
\(549\) −31.8237 −1.35820
\(550\) 0 0
\(551\) 43.6940 1.86143
\(552\) 0 0
\(553\) −7.03241 −0.299048
\(554\) 0 0
\(555\) 37.2063 1.57932
\(556\) 0 0
\(557\) 44.1385 1.87021 0.935105 0.354370i \(-0.115305\pi\)
0.935105 + 0.354370i \(0.115305\pi\)
\(558\) 0 0
\(559\) 4.18607 0.177052
\(560\) 0 0
\(561\) 9.91427 0.418581
\(562\) 0 0
\(563\) −2.31430 −0.0975361 −0.0487681 0.998810i \(-0.515530\pi\)
−0.0487681 + 0.998810i \(0.515530\pi\)
\(564\) 0 0
\(565\) 12.0774 0.508098
\(566\) 0 0
\(567\) 8.19668 0.344228
\(568\) 0 0
\(569\) −7.49662 −0.314275 −0.157137 0.987577i \(-0.550227\pi\)
−0.157137 + 0.987577i \(0.550227\pi\)
\(570\) 0 0
\(571\) −38.8032 −1.62386 −0.811932 0.583752i \(-0.801584\pi\)
−0.811932 + 0.583752i \(0.801584\pi\)
\(572\) 0 0
\(573\) −9.75936 −0.407703
\(574\) 0 0
\(575\) −0.808562 −0.0337194
\(576\) 0 0
\(577\) −5.38257 −0.224079 −0.112040 0.993704i \(-0.535738\pi\)
−0.112040 + 0.993704i \(0.535738\pi\)
\(578\) 0 0
\(579\) −53.5567 −2.22574
\(580\) 0 0
\(581\) 7.21112 0.299168
\(582\) 0 0
\(583\) −20.3812 −0.844105
\(584\) 0 0
\(585\) 3.39335 0.140298
\(586\) 0 0
\(587\) 8.92647 0.368435 0.184217 0.982886i \(-0.441025\pi\)
0.184217 + 0.982886i \(0.441025\pi\)
\(588\) 0 0
\(589\) −18.9620 −0.781315
\(590\) 0 0
\(591\) −49.5244 −2.03716
\(592\) 0 0
\(593\) 36.1707 1.48535 0.742675 0.669651i \(-0.233557\pi\)
0.742675 + 0.669651i \(0.233557\pi\)
\(594\) 0 0
\(595\) −2.69931 −0.110661
\(596\) 0 0
\(597\) −20.9526 −0.857533
\(598\) 0 0
\(599\) −19.7708 −0.807814 −0.403907 0.914800i \(-0.632348\pi\)
−0.403907 + 0.914800i \(0.632348\pi\)
\(600\) 0 0
\(601\) −37.1676 −1.51610 −0.758049 0.652198i \(-0.773847\pi\)
−0.758049 + 0.652198i \(0.773847\pi\)
\(602\) 0 0
\(603\) −8.51665 −0.346825
\(604\) 0 0
\(605\) −12.7771 −0.519462
\(606\) 0 0
\(607\) 21.5923 0.876404 0.438202 0.898876i \(-0.355615\pi\)
0.438202 + 0.898876i \(0.355615\pi\)
\(608\) 0 0
\(609\) −22.9759 −0.931032
\(610\) 0 0
\(611\) −4.30766 −0.174269
\(612\) 0 0
\(613\) 5.06652 0.204635 0.102317 0.994752i \(-0.467374\pi\)
0.102317 + 0.994752i \(0.467374\pi\)
\(614\) 0 0
\(615\) −59.8154 −2.41199
\(616\) 0 0
\(617\) 45.0672 1.81434 0.907168 0.420769i \(-0.138240\pi\)
0.907168 + 0.420769i \(0.138240\pi\)
\(618\) 0 0
\(619\) −11.5442 −0.463999 −0.231999 0.972716i \(-0.574527\pi\)
−0.231999 + 0.972716i \(0.574527\pi\)
\(620\) 0 0
\(621\) 0.218672 0.00877499
\(622\) 0 0
\(623\) 14.7638 0.591498
\(624\) 0 0
\(625\) −31.2043 −1.24817
\(626\) 0 0
\(627\) 47.1258 1.88202
\(628\) 0 0
\(629\) −5.51461 −0.219882
\(630\) 0 0
\(631\) 6.73416 0.268083 0.134041 0.990976i \(-0.457204\pi\)
0.134041 + 0.990976i \(0.457204\pi\)
\(632\) 0 0
\(633\) −43.0536 −1.71123
\(634\) 0 0
\(635\) −7.48379 −0.296985
\(636\) 0 0
\(637\) −0.387119 −0.0153382
\(638\) 0 0
\(639\) 40.8467 1.61587
\(640\) 0 0
\(641\) −11.6749 −0.461131 −0.230565 0.973057i \(-0.574058\pi\)
−0.230565 + 0.973057i \(0.574058\pi\)
\(642\) 0 0
\(643\) −5.78351 −0.228080 −0.114040 0.993476i \(-0.536379\pi\)
−0.114040 + 0.993476i \(0.536379\pi\)
\(644\) 0 0
\(645\) −72.9565 −2.87266
\(646\) 0 0
\(647\) 0.247318 0.00972308 0.00486154 0.999988i \(-0.498453\pi\)
0.00486154 + 0.999988i \(0.498453\pi\)
\(648\) 0 0
\(649\) −39.2425 −1.54040
\(650\) 0 0
\(651\) 9.97092 0.390791
\(652\) 0 0
\(653\) 21.1488 0.827617 0.413808 0.910364i \(-0.364198\pi\)
0.413808 + 0.910364i \(0.364198\pi\)
\(654\) 0 0
\(655\) −18.6101 −0.727158
\(656\) 0 0
\(657\) −28.3692 −1.10679
\(658\) 0 0
\(659\) 10.8669 0.423313 0.211657 0.977344i \(-0.432114\pi\)
0.211657 + 0.977344i \(0.432114\pi\)
\(660\) 0 0
\(661\) 7.55573 0.293884 0.146942 0.989145i \(-0.453057\pi\)
0.146942 + 0.989145i \(0.453057\pi\)
\(662\) 0 0
\(663\) −0.967593 −0.0375782
\(664\) 0 0
\(665\) −12.8307 −0.497553
\(666\) 0 0
\(667\) 3.25097 0.125878
\(668\) 0 0
\(669\) 38.1609 1.47539
\(670\) 0 0
\(671\) −38.8714 −1.50061
\(672\) 0 0
\(673\) 3.21471 0.123918 0.0619589 0.998079i \(-0.480265\pi\)
0.0619589 + 0.998079i \(0.480265\pi\)
\(674\) 0 0
\(675\) −1.41361 −0.0544098
\(676\) 0 0
\(677\) 48.2707 1.85519 0.927597 0.373583i \(-0.121871\pi\)
0.927597 + 0.373583i \(0.121871\pi\)
\(678\) 0 0
\(679\) −7.34182 −0.281753
\(680\) 0 0
\(681\) −10.5109 −0.402778
\(682\) 0 0
\(683\) 29.4018 1.12503 0.562515 0.826787i \(-0.309834\pi\)
0.562515 + 0.826787i \(0.309834\pi\)
\(684\) 0 0
\(685\) −59.2101 −2.26230
\(686\) 0 0
\(687\) −22.8052 −0.870072
\(688\) 0 0
\(689\) 1.98913 0.0757797
\(690\) 0 0
\(691\) 24.8169 0.944079 0.472040 0.881577i \(-0.343518\pi\)
0.472040 + 0.881577i \(0.343518\pi\)
\(692\) 0 0
\(693\) −12.8809 −0.489303
\(694\) 0 0
\(695\) 22.0319 0.835717
\(696\) 0 0
\(697\) 8.86568 0.335812
\(698\) 0 0
\(699\) −56.7345 −2.14589
\(700\) 0 0
\(701\) −47.0769 −1.77807 −0.889035 0.457840i \(-0.848623\pi\)
−0.889035 + 0.457840i \(0.848623\pi\)
\(702\) 0 0
\(703\) −26.2127 −0.988632
\(704\) 0 0
\(705\) 75.0755 2.82751
\(706\) 0 0
\(707\) −7.86895 −0.295942
\(708\) 0 0
\(709\) −10.4576 −0.392745 −0.196373 0.980529i \(-0.562916\pi\)
−0.196373 + 0.980529i \(0.562916\pi\)
\(710\) 0 0
\(711\) 22.8369 0.856449
\(712\) 0 0
\(713\) −1.41083 −0.0528360
\(714\) 0 0
\(715\) 4.14485 0.155008
\(716\) 0 0
\(717\) −7.36551 −0.275070
\(718\) 0 0
\(719\) 28.3406 1.05692 0.528462 0.848957i \(-0.322769\pi\)
0.528462 + 0.848957i \(0.322769\pi\)
\(720\) 0 0
\(721\) 7.10658 0.264663
\(722\) 0 0
\(723\) −21.0364 −0.782351
\(724\) 0 0
\(725\) −21.0160 −0.780514
\(726\) 0 0
\(727\) 50.3347 1.86681 0.933406 0.358823i \(-0.116822\pi\)
0.933406 + 0.358823i \(0.116822\pi\)
\(728\) 0 0
\(729\) −31.2540 −1.15756
\(730\) 0 0
\(731\) 10.8134 0.399949
\(732\) 0 0
\(733\) −20.9397 −0.773426 −0.386713 0.922200i \(-0.626390\pi\)
−0.386713 + 0.922200i \(0.626390\pi\)
\(734\) 0 0
\(735\) 6.74685 0.248861
\(736\) 0 0
\(737\) −10.4028 −0.383191
\(738\) 0 0
\(739\) 15.8002 0.581221 0.290610 0.956841i \(-0.406142\pi\)
0.290610 + 0.956841i \(0.406142\pi\)
\(740\) 0 0
\(741\) −4.59929 −0.168959
\(742\) 0 0
\(743\) 12.8376 0.470968 0.235484 0.971878i \(-0.424333\pi\)
0.235484 + 0.971878i \(0.424333\pi\)
\(744\) 0 0
\(745\) −26.4019 −0.967292
\(746\) 0 0
\(747\) −23.4172 −0.856791
\(748\) 0 0
\(749\) −9.38607 −0.342959
\(750\) 0 0
\(751\) 23.2906 0.849886 0.424943 0.905220i \(-0.360294\pi\)
0.424943 + 0.905220i \(0.360294\pi\)
\(752\) 0 0
\(753\) 21.1087 0.769243
\(754\) 0 0
\(755\) −44.7956 −1.63028
\(756\) 0 0
\(757\) 1.14207 0.0415091 0.0207546 0.999785i \(-0.493393\pi\)
0.0207546 + 0.999785i \(0.493393\pi\)
\(758\) 0 0
\(759\) 3.50630 0.127271
\(760\) 0 0
\(761\) −20.4442 −0.741103 −0.370552 0.928812i \(-0.620831\pi\)
−0.370552 + 0.928812i \(0.620831\pi\)
\(762\) 0 0
\(763\) 6.13831 0.222222
\(764\) 0 0
\(765\) 8.76566 0.316923
\(766\) 0 0
\(767\) 3.82991 0.138290
\(768\) 0 0
\(769\) 19.4240 0.700448 0.350224 0.936666i \(-0.386105\pi\)
0.350224 + 0.936666i \(0.386105\pi\)
\(770\) 0 0
\(771\) 19.7815 0.712414
\(772\) 0 0
\(773\) 35.6453 1.28207 0.641037 0.767510i \(-0.278505\pi\)
0.641037 + 0.767510i \(0.278505\pi\)
\(774\) 0 0
\(775\) 9.12035 0.327613
\(776\) 0 0
\(777\) 13.7836 0.494485
\(778\) 0 0
\(779\) 42.1415 1.50987
\(780\) 0 0
\(781\) 49.8927 1.78530
\(782\) 0 0
\(783\) 5.68367 0.203118
\(784\) 0 0
\(785\) 17.4176 0.621660
\(786\) 0 0
\(787\) −18.3271 −0.653290 −0.326645 0.945147i \(-0.605918\pi\)
−0.326645 + 0.945147i \(0.605918\pi\)
\(788\) 0 0
\(789\) 65.4470 2.32997
\(790\) 0 0
\(791\) 4.47424 0.159086
\(792\) 0 0
\(793\) 3.79369 0.134718
\(794\) 0 0
\(795\) −34.6673 −1.22952
\(796\) 0 0
\(797\) −29.4813 −1.04428 −0.522140 0.852860i \(-0.674866\pi\)
−0.522140 + 0.852860i \(0.674866\pi\)
\(798\) 0 0
\(799\) −11.1275 −0.393662
\(800\) 0 0
\(801\) −47.9435 −1.69400
\(802\) 0 0
\(803\) −34.6519 −1.22284
\(804\) 0 0
\(805\) −0.954641 −0.0336467
\(806\) 0 0
\(807\) −5.39861 −0.190040
\(808\) 0 0
\(809\) 38.8713 1.36664 0.683320 0.730119i \(-0.260535\pi\)
0.683320 + 0.730119i \(0.260535\pi\)
\(810\) 0 0
\(811\) −6.94096 −0.243730 −0.121865 0.992547i \(-0.538888\pi\)
−0.121865 + 0.992547i \(0.538888\pi\)
\(812\) 0 0
\(813\) −18.6118 −0.652745
\(814\) 0 0
\(815\) −59.4890 −2.08381
\(816\) 0 0
\(817\) 51.3997 1.79825
\(818\) 0 0
\(819\) 1.25712 0.0439273
\(820\) 0 0
\(821\) −3.68396 −0.128571 −0.0642856 0.997932i \(-0.520477\pi\)
−0.0642856 + 0.997932i \(0.520477\pi\)
\(822\) 0 0
\(823\) −27.3693 −0.954032 −0.477016 0.878895i \(-0.658282\pi\)
−0.477016 + 0.878895i \(0.658282\pi\)
\(824\) 0 0
\(825\) −22.6666 −0.789149
\(826\) 0 0
\(827\) −13.4756 −0.468592 −0.234296 0.972165i \(-0.575279\pi\)
−0.234296 + 0.972165i \(0.575279\pi\)
\(828\) 0 0
\(829\) −50.0184 −1.73721 −0.868605 0.495505i \(-0.834983\pi\)
−0.868605 + 0.495505i \(0.834983\pi\)
\(830\) 0 0
\(831\) 45.5216 1.57913
\(832\) 0 0
\(833\) −1.00000 −0.0346479
\(834\) 0 0
\(835\) −15.3725 −0.531986
\(836\) 0 0
\(837\) −2.46655 −0.0852566
\(838\) 0 0
\(839\) 48.4292 1.67196 0.835981 0.548759i \(-0.184899\pi\)
0.835981 + 0.548759i \(0.184899\pi\)
\(840\) 0 0
\(841\) 55.4985 1.91374
\(842\) 0 0
\(843\) 68.6040 2.36285
\(844\) 0 0
\(845\) 34.6865 1.19325
\(846\) 0 0
\(847\) −4.73346 −0.162644
\(848\) 0 0
\(849\) −49.2405 −1.68993
\(850\) 0 0
\(851\) −1.95031 −0.0668557
\(852\) 0 0
\(853\) 3.53342 0.120982 0.0604910 0.998169i \(-0.480733\pi\)
0.0604910 + 0.998169i \(0.480733\pi\)
\(854\) 0 0
\(855\) 41.6660 1.42495
\(856\) 0 0
\(857\) 41.3779 1.41344 0.706721 0.707493i \(-0.250174\pi\)
0.706721 + 0.707493i \(0.250174\pi\)
\(858\) 0 0
\(859\) −7.62294 −0.260091 −0.130046 0.991508i \(-0.541512\pi\)
−0.130046 + 0.991508i \(0.541512\pi\)
\(860\) 0 0
\(861\) −22.1595 −0.755195
\(862\) 0 0
\(863\) −41.2894 −1.40551 −0.702754 0.711433i \(-0.748047\pi\)
−0.702754 + 0.711433i \(0.748047\pi\)
\(864\) 0 0
\(865\) 4.02779 0.136949
\(866\) 0 0
\(867\) −2.49947 −0.0848866
\(868\) 0 0
\(869\) 27.8943 0.946251
\(870\) 0 0
\(871\) 1.01527 0.0344010
\(872\) 0 0
\(873\) 23.8416 0.806917
\(874\) 0 0
\(875\) −7.32522 −0.247638
\(876\) 0 0
\(877\) −50.2264 −1.69603 −0.848013 0.529976i \(-0.822201\pi\)
−0.848013 + 0.529976i \(0.822201\pi\)
\(878\) 0 0
\(879\) −54.9884 −1.85471
\(880\) 0 0
\(881\) −45.4974 −1.53285 −0.766423 0.642336i \(-0.777965\pi\)
−0.766423 + 0.642336i \(0.777965\pi\)
\(882\) 0 0
\(883\) −12.2921 −0.413662 −0.206831 0.978377i \(-0.566315\pi\)
−0.206831 + 0.978377i \(0.566315\pi\)
\(884\) 0 0
\(885\) −66.7490 −2.24374
\(886\) 0 0
\(887\) −33.7665 −1.13377 −0.566885 0.823797i \(-0.691852\pi\)
−0.566885 + 0.823797i \(0.691852\pi\)
\(888\) 0 0
\(889\) −2.77249 −0.0929862
\(890\) 0 0
\(891\) −32.5125 −1.08921
\(892\) 0 0
\(893\) −52.8926 −1.76998
\(894\) 0 0
\(895\) 2.13360 0.0713182
\(896\) 0 0
\(897\) −0.342201 −0.0114257
\(898\) 0 0
\(899\) −36.6700 −1.22301
\(900\) 0 0
\(901\) 5.13829 0.171181
\(902\) 0 0
\(903\) −27.0279 −0.899431
\(904\) 0 0
\(905\) 30.8850 1.02665
\(906\) 0 0
\(907\) 6.72961 0.223453 0.111727 0.993739i \(-0.464362\pi\)
0.111727 + 0.993739i \(0.464362\pi\)
\(908\) 0 0
\(909\) 25.5534 0.847554
\(910\) 0 0
\(911\) −9.94245 −0.329408 −0.164704 0.986343i \(-0.552667\pi\)
−0.164704 + 0.986343i \(0.552667\pi\)
\(912\) 0 0
\(913\) −28.6032 −0.946628
\(914\) 0 0
\(915\) −66.1179 −2.18579
\(916\) 0 0
\(917\) −6.89441 −0.227674
\(918\) 0 0
\(919\) −26.1101 −0.861293 −0.430646 0.902521i \(-0.641714\pi\)
−0.430646 + 0.902521i \(0.641714\pi\)
\(920\) 0 0
\(921\) 9.68355 0.319084
\(922\) 0 0
\(923\) −4.86932 −0.160276
\(924\) 0 0
\(925\) 12.6078 0.414543
\(926\) 0 0
\(927\) −23.0777 −0.757972
\(928\) 0 0
\(929\) −32.7024 −1.07293 −0.536465 0.843922i \(-0.680241\pi\)
−0.536465 + 0.843922i \(0.680241\pi\)
\(930\) 0 0
\(931\) −4.75333 −0.155784
\(932\) 0 0
\(933\) 60.8767 1.99301
\(934\) 0 0
\(935\) 10.7069 0.350154
\(936\) 0 0
\(937\) 13.2825 0.433921 0.216961 0.976180i \(-0.430386\pi\)
0.216961 + 0.976180i \(0.430386\pi\)
\(938\) 0 0
\(939\) −20.9824 −0.684735
\(940\) 0 0
\(941\) −25.1141 −0.818696 −0.409348 0.912378i \(-0.634244\pi\)
−0.409348 + 0.912378i \(0.634244\pi\)
\(942\) 0 0
\(943\) 3.13545 0.102104
\(944\) 0 0
\(945\) −1.66900 −0.0542926
\(946\) 0 0
\(947\) −43.7909 −1.42301 −0.711506 0.702680i \(-0.751987\pi\)
−0.711506 + 0.702680i \(0.751987\pi\)
\(948\) 0 0
\(949\) 3.38189 0.109781
\(950\) 0 0
\(951\) −13.4111 −0.434884
\(952\) 0 0
\(953\) −33.5962 −1.08829 −0.544144 0.838992i \(-0.683145\pi\)
−0.544144 + 0.838992i \(0.683145\pi\)
\(954\) 0 0
\(955\) −10.5396 −0.341054
\(956\) 0 0
\(957\) 91.1350 2.94598
\(958\) 0 0
\(959\) −21.9353 −0.708328
\(960\) 0 0
\(961\) −15.0862 −0.486653
\(962\) 0 0
\(963\) 30.4801 0.982207
\(964\) 0 0
\(965\) −57.8386 −1.86189
\(966\) 0 0
\(967\) −28.9747 −0.931763 −0.465881 0.884847i \(-0.654263\pi\)
−0.465881 + 0.884847i \(0.654263\pi\)
\(968\) 0 0
\(969\) −11.8808 −0.381667
\(970\) 0 0
\(971\) 31.2076 1.00150 0.500750 0.865592i \(-0.333058\pi\)
0.500750 + 0.865592i \(0.333058\pi\)
\(972\) 0 0
\(973\) 8.16206 0.261664
\(974\) 0 0
\(975\) 2.21217 0.0708461
\(976\) 0 0
\(977\) 23.9617 0.766603 0.383301 0.923623i \(-0.374787\pi\)
0.383301 + 0.923623i \(0.374787\pi\)
\(978\) 0 0
\(979\) −58.5611 −1.87162
\(980\) 0 0
\(981\) −19.9334 −0.636424
\(982\) 0 0
\(983\) 37.4195 1.19350 0.596748 0.802429i \(-0.296459\pi\)
0.596748 + 0.802429i \(0.296459\pi\)
\(984\) 0 0
\(985\) −53.4838 −1.70414
\(986\) 0 0
\(987\) 27.8129 0.885294
\(988\) 0 0
\(989\) 3.82429 0.121605
\(990\) 0 0
\(991\) 24.2658 0.770830 0.385415 0.922743i \(-0.374058\pi\)
0.385415 + 0.922743i \(0.374058\pi\)
\(992\) 0 0
\(993\) 2.56919 0.0815307
\(994\) 0 0
\(995\) −22.6277 −0.717348
\(996\) 0 0
\(997\) 5.71337 0.180944 0.0904721 0.995899i \(-0.471162\pi\)
0.0904721 + 0.995899i \(0.471162\pi\)
\(998\) 0 0
\(999\) −3.40972 −0.107879
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 3808.2.a.e.1.1 5
4.3 odd 2 3808.2.a.f.1.5 yes 5
8.3 odd 2 7616.2.a.bs.1.1 5
8.5 even 2 7616.2.a.br.1.5 5
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
3808.2.a.e.1.1 5 1.1 even 1 trivial
3808.2.a.f.1.5 yes 5 4.3 odd 2
7616.2.a.br.1.5 5 8.5 even 2
7616.2.a.bs.1.1 5 8.3 odd 2